

1100054361

Perpustakaan Sultanah Nur Zahirah (UMT) Universiti Malaysia Terengganu

1100054361

Determination of Chlorophyll-a concentrations in the coastal waters of Kuala Terengganu using OCM (Ocean Color Monitor) satellite data / Nor Azlin Mokhtar.

PERPUSTAKAAN SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UMT) 21030 KUALA TERENGGANU

1	1000543	61
		_
		Lihat sebeleh

HAK MILIK PERPUSTAKAAN SULTARAH NUR ZAHIRAH UNT

DETERMINATION OF CHLOROPHYLL-A CONCENTRATIONS IN THE COASTAL WATERS OF KUALA TERENGGANU USING OCM (OCEAN COLOR MONITOR) SATELLITE DATA

NOR AZLIN BINTI MOKHTAR

Department of Marine Science Faculty of Maritime Studies and Marine Science UNIVERSITI MALAYSIA TERENGGANU 2007

1100054361

DETERMINATION OF CHLOROPHYLL-A CONCENTRATIONS IN THE COASTAL WATERS OF KUALA TERENGGANU USING OCM (OCEAN COLOR MONITOR) SATELLITE DATA

By

Nor Azlin Binti Mokhtar

Research Report submitted in partial fulfillment of The requirements for the degree of Bachelor of Science (Marine Science)

Department of Marine Science Faculty of Maritime Studies and Marine Science UNIVERSITI MALAYSIA TERENGGANU 2007

This project should be cited as:

Nor Azlin, M., 2007. Determination of Chlorophyll-a Concentrations in the Coastal Waters of Kuala Terengganu Using OCM (Ocean Color Monitor) Satellite Data. Undergraduate thesis, Bachelor of Science in Marine Science, Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu. 77 p.

No part of this project report may be produced by any material, photographic, o electronic process, or in the form of phonographic recording, nor many it be stored in retrieval system, transmitted, or otherwise copied for public or private use, withou written permission from the author and the supervisor(s) of the project.

JABATAN SAINS SAMUDERA FAKULTI PENGURUSAN MARITIM DAN SAINS MARIN UNIVERSITI MALAYSIA TERENGGANU

RESEARCH PROJECT REPORT APPROVAL AND VALIDATION FORM I AND II

I certify that the report of this final year project entitled:

DETERMINATION OF CHLOROPHYLL-A CONCENTRATION IN THE COASTAL WATERS OF KUALA TERENGGANU USING OCM (OCEAN COLOR MONITOR) SATELLITE DATA by **NOR AZLIN BT MOKHTAR** No. Matrics: UK 10037 has been read and all the alteration and correction recommended by examiners have been done. This report has been submitted and accepted as fulfillment of the requirement for **Bachelor of Science (Marine Science)**, under the Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu.

Approved by:

First Supervisor Name: MOHO SUFFIAN IDRIS Pensyarah Institut Oseanografi Universifi Malaysia Terengganu (UMT) 21030 Kuala Terengganu, Terengganu.

Head of Madne Science Department, Second Supervisor Name:

DR. RAZAK ZAKARIYA Ketua Jabatan Sains Marin Fakulti Pengajian Maritim dan Sains Marin Universiti Malaysia Terengganu (UMT)

Date : $\frac{23}{5} \sqrt{5}$

6/6/07 Date :

ACKNOWLEDGEMENTS

Alhamdulillah, thanks to The Almighty, most gracious and most merciful with His blessing, I finally completed my final year project.

First of all, I would like to deliver my heartiest gratitude and deepest appreciation to my honorable supervisor, Mr. Mohd Suffian Idris for his guidance and advice from the beginning until the end of my study. I am very thankful for all the patience and knowledge given by him. Not to forget, Dr. Nor Antonina Abdullah and Dr. Razak Zakariya for their concerned throughout the study.

Special thanks to the Science Officers of Informatic Lab in INOS, Mr. Nasir Mohammad and Mr. Azri Muhamad for the assistance and support during the survey and data analysis period. Not forgetting all the laboratory assistants in Oceanography laboratory; Mr. Kamari, Mr. Kamarun, Mr. Raja and Mr. Sulaiman for their assistance during the laboratory sessions. Special appreciation is also expressed to Nurul Adila bt Hj. Rohailan for her assistance and advices throughout my project.

I would like to extend my sincere gratitude to my beloved family, especially Mak and Abah for all your support, concern and care. I love you all very much and will always pray for our family happiness. I will never let you down again. Have trust in me.

Finally, I would like to thank all of those who have contributed in one way or another to the completion of this project. Last but not least, thanks to all my friends; all 59 Marine Science students for the beautiful friendship we had together. Thank you.

TABLE OF CONTENTS

CON	TENTS	5		PAGE
TITL	Æ			i
APPI	ROVAI	FORM	1	ii
ACK	NOWL	.EDGEN	MENTS	111
TAB	LE OF	CONTE	ENTS	iv
LIST	OF TA	BLES		viii
LIST	OF FI	GURES		ix
LIST	OF AI	BBREVI	IATIONS AND SYMBOLS	xi
LIST	OF Al	PPENDI	ICES	xiv
ABS	FRAC 1	Γ		xv
ABS	ГRAK			xvi
1.0	INTE	RODUC	TION	1
	1.1	Justifi	cation of study	3
	1.2	Object	tives	4
2.0	LITE	ERATUI	RE REVIEW	5
	2.1	Chlore	ophyll in ocean waters	5
		2.1.2	High concentration effects of chlorophyll	6
	2.2	Chlore	ophyll detection in ocean waters	7
		2.2.1	Conventional method of chlorophyll detection	8
		2.2.2	Air borne / remote sensing method	10
	2.3	Remo	te sensing techniques for chlorophyll detection	11

Perpustakaan Sultanah Nur Zahirah (UMT) Universiti Malaysia Terengganu

	2.3.1	Advantages of remote sensing technique	14
	2.3.2	Disadvantages of remote sensing technique	15
2.4	Ocean	color sensor for chlorophyll mapping	16
	2.4.1	Ocean Color Monitor (OCM)	16
	2.4.2	MODIS	18
	2.4.3	SeaWiFS	20
	2.4.4	Others	21
2.5		cation of remote sensing for chlorophyll mapping study area	21
METI	HODO	LOGY	23
3.1	Descri	ptions of study area	23
3.2	Enviro	onmental setting	24
	3.2.1	Climate	24
	3.2.2	Tides and current	29
	3.2.3	Wind and waves	29
3.3	Data c	collection	31
	3.3.1	Field measurement	31
	3.3.2	Laboratory analysis	32
	3.3.3	Atmospheric correction	33
	3.3.4	Image analysis	35
RESU	ILTS		37
4.1	Physic	cal parameter	37
	4.1.1	Temperature	38

3.0

4.0

	4.1.2	Salinity	38
	4.1.3	pH	39
	4.1.4	(Naphatometer Turbidity Unit) NTU	39
4.2	Water	clarity	40
4.3	Chloro	ophyll-a concentration	41
4.4		ophyll-a analysis using Ocean Color Monitor (OCM) te data	43
	4.4.1	Regression analysis	43
4.5	Chlore	ophyll-a distribution from OCM data	46
	4.5.1	Accuracy assessment of chlorophyll-a concentration	48
	4.5.2	Comparison between measured and modeled chlorophyll-a concentration at band 4 (510 nm)	49
	4.5.3	Comparison between measured and modeled chlorophyll-a concentration at band 5 (555 nm)	50
4.6	Chlore	ophyll-a distribution using global algorithm	51
	4.6.1	Accuracy assessment of Mitchell and Kahru, (1998)	52
DISC	USSIO	Ν	54
5.1	Physic	cal parameter	54
	5.1.1	Water Turbidity	55
5.2	Chlore	ophyll-a concentration at the study area	56
	5.2.1	The importance of determining chlorophyll-a concentration	57
5.3	Accur	acy assessment of chlorophyll-a concentration	59
	5.3.1	Good estimation of chlorophyll-a concentration using OCM satellite data	60

5.0

61
62
64
66
70
77

vii

LIST OF TABLES

TABLE		PAGE
2.1	Characteristic of OCM Satellite	17
2.2	Bands Characteristic of OCM Satellite	17
2.3	Characteristic of MODIS Satellite	18
2.4	Bands Characteristics of MODIS Satellite	19
2.5	Other sensor use for determining ocean color	21
3.1	Data collected from GPS and cloud observing	24
3.2	Climatological information of Malaysia based on monthly averages for the 30 -year period (1971 – 2000)	28
4.1	Physical parameters collected at the study area using YSI multiprobe	37
4.2	Average depth of Secchi disc at the sampling location	40
4.3	Chlorophyll-a concentration at the study area from the laboratory analysis using spectrophotometric method	42
4.4	Remote sensing reflectance extracted from the OCM satellite data	43
4.5	Measured and modeled chlorophyll-a concentration of 510 nm and 555 nm wavelength	48
4.6	Table of Chlorophyll-a concentration retrieved from the Mitchell and Kahru, (1998) algorithm	52

LIST OF FIGURES

FIGUE	PAGE	
3.1	Location of the study area	23
4.1	Graph of Temperature (C) at the study location using YSI multiprobe	38
4.2	Graph of salinity at the study location using YSI multiprobe	38
4.3	Graph of pH at the study location using YSI multiprobe	39
4.4	Graph of NTU+ at the study location using YSI multiprobe	39
4.5	Graph of average depth of Secchi disc at the sampling location	41
4.6	Chlorophyll-a Concentration at the study area from the laboratory analysis using spectrophotometric method	42
4.7	Water leaving reflectance vs. chlorophyll-a concentration (mg/m3) at 412 nm wavelength	44
4.8	Water leaving reflectance vs. chlorophyll-a concentration (mg/m3) at 443 nm wavelength	44
4.9	Water leaving reflectance vs. chlorophyll-a concentration (mg/m3) at 490 nm wavelength	44
4.10	Water leaving reflectance vs. chlorophyll-a concentration (mg/m3) at 510 nm wavelength	45
4.11	Water leaving reflectance vs. chlorophyll-a concentration (mg/m3) at 555 nm wavelength	45
4.12	Chlorophyll-a distribution using band 4 OCM (510 nm) wavelength	46
4.13	Chlorophyll-a distribution of the study area using band 4 OCM (510 nm) wavelength	46
4.14	Chlorophyll-a distribution using band 5 OCM (555 nm) wavelength	47

4.15	Chlorophyll-a distribution of the study area using band 5 OCM (555 nm) wavelength	47
4.16	Chlorophyll-a concentration at the study location by measured data and satellite data at 510 nm wavelength	49
4.17	Chlorophyll-a concentration at the study location by measured data and satellite data at 555 nm wavelength	50
4.18	Chlorophyll-a distribution using Mitchell and Kahru, (1998) algorithm	51
4.19	Chlorophyll-a concentration at the study location by measured data and satellite data using Mitchell and Kahru, (1998) algorithm	53

LIST OF ABBREVATION AND SYMBOLS

SYMBOL	DEFINITION
OCM	Ocean Color Monitor
IRS-P4	Indian Remote Sensing Satellite-Project 4
SST	Sea surface temperature
TOA	Top of the atmosphere
$L_{ m w}(\lambda)$	Water leaving reflectance
R _{rs}	Remote sensing reflectance
R _{rs} (%)	Percentage Remote sensing Reflectance
Lwn	Normalized water leaving radiance
Ca	Chlorophyll-a
OCTS	Ocean Color and Temperature Scanner
SeaWiFS	Sea-viewing Wide field of view Sensor
MODIS	Moderate Resolution Imaging Spectroradiometer
MERIS	Medium Resolution Imaging Spectroradiometer
rpm	Revolutions per minute
RMSE	Root-mean-square error
SNR	Signal to noise ratio
nLw	Normalized water leaving radiance
IRS-P3	Indian Remote Sensing Satellite-Project 3
GPS	Global Positioning System

Temp	Water temperature, °C
HPLC	High-performance liquid chromatographic
Chl	Chlorophyll a concentration, mgm ⁻³
РР	Primary production, mg C $m^{-3} d^{-1}$
NTU	Nepholometric Turbidity Unit
VNIR	Visible/near infra-red
mg/m ³ , mgm ⁻³	Miligram per cubic meter
nm	Nanometer
km	Kilometer
m	Meter
%	Percentage
m/s	Meter per second
μm	Micrometer
MgCO ₃	Magnesium carbonate
μg/L	Microgram per liter
mL	Mililiter
V	Volume
ppt	Part per thousand
$\rho_r(\lambda_i)$	Rayleigh scattering in the absence of aerosols
$\rho_{\sigma}(\lambda_{i})$	Aerosols scattering in the absence of air
$ \rho_{\sigma}(\lambda_{i}) $ $ \rho_{r\sigma}(\lambda_{i}) $	Rayleigh and aerosol scattering
$t(\lambda_i)$	Diffuse transmittance for water leaving radiance

$\rho_w(\lambda_i)$	Water leaving radiance
L_{λ}	Measured radiance
F_0	Extraterrestrial irradiance
$\cos heta_0$	Solar zenith angle

LIST OF APPENDICES

APPENDIX		PAGE
1	Table of chlorophyll-a concentration at the study area from the laboratory analysis using spectrophotometric method	70
2	Table of physical parameter collected using YSI multiprobe	71
3	Table of Secchi disc depth at the sampling location	72
4	Flowchart of chlorophyll-a measurement	73
5	Flow chart of Chlorophyll- <i>a</i> Determination by Spectrophotometer	74
6	Table of Global Algorithms	75

ABSTRACT

The field of remote sensing can be used to determine the distribution of different types of constituents in seawater such as chlorophyll-a, Colored Dissolved Organic Matter (CDOM) and Total Suspended Solids (TSS). In this research, IRS-P4, OCM satellite data was used to determine the chlorophyll-a concentration in the coastal waters of Kuala Terengganu. Twenty-two sampling stations were setup and data collections were conducted on the 14th of September 2006 and 17th of September 2006 concurrently with satellite overpass. The data from the satellite image were extracted to derive the empirical model of chlorophyll-a. The highest R^2 value was used to estimate surface water variables in the study area. Using the model maker, map of chlorophyll-a distribution were derived from the algorithm and the concentration of chlorophyll-a at the study area were determined and compared with actual data. The highest R^2 was found at band 4 (510) nm) with $R^2=0.7739$, (y = 7.7352x^{1.8296}) and the second highest R^2 was found at band 5 (555 nm) with $R^2=0.7026$, (y = 4.3484x^{1.0117}). Algorithm from band 4 indicates station 12 as the highest concentration while band 5 indicates station 21. These two stations were located near to the coastal area, and might be contain high concentration of phytoplankton. Band 4 and 5 algorithms were also indicated that station 17 has the lowest chlorophyll-a which located quite far from the coastal area. It can be concluded that the distance from coastal area and water turbidity have a great influence on the concentration of chlorophyll-a at the study area.

ABSTRAK

Bidang penderiaan jauh boleh digunakan untuk menentukan pelbagai konstituenkonstituen yang terdapat dalam air laut seperti taburan klorofil-a, Bahan Organik Terlarut (CDOM) dan Jumlah Pepejal Terampai (TSS). Dalam kajian ini, IRS-P4, OCM satellite data digunakan untuk menentukan kandungan klorofil-a di kawasan perairan Kuala Terengganu. Dua puluh dua stesen kajian telah dipilih dan pengambilan data dijalankan pada 14hb September 2006 and 17hb September 2006 serentak dengan lintasan satelit. Data daripada imej satelit diekstrak untuk mendapatkan 'empirical model' klorofil-a. Nilai R² tertinggi digunakan untuk melihat perubahan air permukaan di kawasan kajian. Menggunakan 'model maker', peta taburan klorofil-a dihasilkan daripada algorithm dan kandungan klorofil-a di kawasan kajian dibandingkan dengan data sebenar. Nilai R² tertinggi adalah pada jalur 4 (510 nm) iaitu R²=0.7739, (y = $7.7352x^{1.8296}$) dan R² kedua tertinggi pada jalur 5 (555 nm) iaitu R²=0.7026, (y = $4.3484x^{1.0117}$). Algorithm daripada Jalur 4 menunjukkan stesen 12 mempunyai kandungan klorofil-a tertinggi manakala jalur 5 pada stesen 21. Kedua-dua stesen ini terletak berhampiran dengan kawasan persisiran pantai dan berkemungkinan mempunyai kandungan fitoplankton yang tinggi. Algorithm daripada jalur 4 dan 5 menunjukkan stesen 17 mempunyai kandungan klorofil-a terendah kerana terletak agak jauh daripada kawasan persisiran pantai. Ini boleh disimpulkan bahawa jarak daripada kawasan persisiran pantai dan kekeruhan air banyak mempengaruhi kandungan klorofil-a di kawasan kajian.