HETEROTROPHIC CULTURE TRIALS ON MARINE MICROALGA Chaetoceros species FOR BIODIESEL PRODUCTION

GAN YEW SUN

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU 2011

1100088796

Perpustakaan Sultanah Nur Zahirah Universiti Malavsia Terengganu (UMT)

1100088796

.

Heterotrophic culture trials on marine microalga, Chaetoceros species for biodiesel production / Gan Yew Sun.

 1.1

۶.

ŝ

1	1000887	86.
E.		
, N	•	
1.		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
•		•
	ant e a	

HAK MILIK PERPUSTAKAAN SULTANAH NUR ZAHIRAH UMT

HETEROTROPHIC CULTURE TRIALS ON MARINE MICROALGA, Chaetoceros species FOR BIODIESEL PRODUCTION

By

Gan Yew Sun

Research report submitted in partial fulfillment of the requirement for the degree of Bachelor of Science (Marine Biology)

Department of Marine Science Faculty of Maritime Studies and Marine Science UNIVERSITI MALAYSIA TERENGGANU 2011

This project report should be cited as:

Gan, Y.S. 2011. Heterotrophic culture trials on the marine microalga for biodiesel production. Undergraduate thesis, Bachelor of Science in Marine Biology, Faculty of Maritime Studies and Marine Science, University Malaysia of Terengganu, Terengganu, 72pp.

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of photography recording, nor may it be stored in a retrieval system, transmitter or otherwise copy for public or private use, without written permission from the author and the supervisor(s) of the project.

1100088796

DEPARTMENT OF MARINE SCIENCE FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

DECLARATION AND VERIFICATION REPORT

FINAL YEAR RESEARCH PROJECT

DR SITI AISHAH ABDULLAH @ CHRISTINE A. OROSCO

Verified by:

. Closer

Principal Supervisor Name: DP. SITI ALSHAH ABDULLAH Official stamp:

Penyelaras Program Barjana Muda Sains (Biologi Marin) Jabatan Sains Marin Fakulti Pengajian Maritim dan Sains Morin Universiti Malaysia Terengganu (UM+) 21030 Kuala Terangganu

Date: 352011

Second Supervisor (where applicable)

Name:

Official stamp:

Profue

Head of Department of Marine Science

Name: Dr. Razak bin Zakariya

Official stamp: DR. RAZAK ZAKARIYA ketua Jabatan Sains Marin Fakulti Pennailan Maritim dan Sains Marin Univer 19 10 10 10 Terengganu (2014) Date:

29/4/0 Date: ..

ACKNOWLEDGEMENT

I would like to take this opportunity to express my greatest appreciation and gratitude to my first supervisor, Dr. Siti Aishah Abdullah @ Christine Abellana Orosco and my co-supervisor, Dr. Zainudin Bachok for all their times and efforts in guiding me throughout the way of my Final Year Project. To be frank, without their help and supervision, this project would not have been successfully completed by me alone.

Besides that, I would also like to thanks Mr. Gan Ming Herng and Miss Choy Mun Kuin for their willingness to help and share their knowledge with me. My gratitude also goes to laboratory assistants from both Biodiversity laboratory and Oceanography laboratory (MOSEA) for allowing me to borrow and use the apparatus and instruments available.

Not to forget, I would like to express my thankfulness to Mr. Chew Eng How and Miss Lim Chuin Siew for sharing their experience in handling algal cultures and protocol in extracting microalgae lipid. This also goes to my fellow Marine Biology coursemates who willing to spend their times to accompany me in the laboratory, lending their pair of hands during my analysis, give me useful advices and comments, care and concern towards my project and being supportive throughout my journey.

Last but not least, I would like to deliver my greatest love and gratefulness towards my family members who give me motivation and moral support to face difficulties and tolerance for spending limited time with them. Every moment

i

throughout the project left me beautiful memories and I will remember those experiences I gained during this period.

To those that I miss out here, sorry for my carelessness and thank you for all your support to me.

TABLE OF CONTENT

Page

ACK	NOWL	LEDGEMENT	i
TAB	LE OF	CONTENT	ii
LIST	Γ OF TA	ABLES	vi
LIST	r of fi	GURES	vii
LIST	ſ OF AE	BREVIATIONS	viii
LIST	ſ OF AF	PPENDICES	ix
ABS	TRACT		xi
ABS	TRAK		xii
CHA	PTER	1: INTRODUCTION	1
1.1	Resea	arch Problems and Justification	1
1.2	Objec	ctives of Study	6
		42	
CHA	PTER	2: LITERATURE REVIEW	7
2.1	Biodi	esel	7
	2.1.1	Current status of biodiesel in Malaysia	8
	2.1.2	Conventional Biodiesel	9
	2.1.3	Biodiesel from Microalgae	10
2.2	Micr	oalgae	12
	2.2.1	Importance of Microalgae	12

	2.2.2	Chaetoceros species	13
2.3	Hetero	trophic Growth Mode	14
2.4	Lipid		15
	2.4.1	General characteristic of lipid	15
	2.4.2	Lipids in Microalgae	15
	2.4.3	Lipids for Biodiesel	17
CHAI	PTER 3	: METHODOLOGY	18
3.1	Overvi	ew	18
3.2	Stock	Culture	19
3.3	Culture	e Medium Preparation	20
3.4	Prepara	ation of Glucose	21
3.5	Hetero	trophic Cultivation	22
3.6	Cell D	ensity Counting	23
3.7	Specifi	ic growth rate	23
3.8	Harves	sting	24
3.9	Total I	Lipid Measurement	25
3.10	Triacy	Iglycerol Determination	25
3.11	Statisti	cal analysis	26
CHAI	PTER 4	: RESULT	27
4.1	Growt	h characteristic of Chaetoceros species	27
	4.1.1	Cell densities of <i>Chaetoceros</i> species in various glucose concentrations	28

	4.1.2	Specific growth rate of <i>Chaetoceros</i> species in various glucose concentrations	29
	4.1.3	Mean cell size of <i>Chaetoceros</i> species in various glucose concentrations	29
4.2		dry weight and yield of <i>Chaetoceros</i> species $(g.L^{-1})$ under s glucose concentrations	31
4.3	Colou	r of Chaetoceros species cultures	32
4.4	-	composition of Chaetoceros species in different cultivation ds and under various glucose concentrations	34
	4.4.1	Total crude lipid (mg.g-1)	34
	4.4.2	Triacylglycerol content (%)	36

CHAP	TER 5: DISCUSSION	38
5.1	Growth dynamic of heterotrophic Chaetoceros species	38
5.2	Cell size of heterotrophic Chaetoceros species	40
5.3	Culture healthiness	41
5.4	Total crude lipid (%) extracted from <i>Chaetoceros</i> species under various glucose concentrations	42
	Triacylglycerol (TAG) content (%) in <i>Chaetoceros</i> species under various glucose concentrations	43
5.6	Other lipid classes	44
5.7	Overall assessment of heterotrophically cultured <i>Chaetoceros</i> as biodiesel source	45

CHAPTER 6: CONCLUSION AND RECOMMENDATION 47

APPENDICES

CURRICULUM VITAE

49

55

69

LIST OF TABLES

No.	Title	Page
Table 1.1	Oil content of some microalgae	4
Table 2.1	Top 10 countries in terms of absolute biodiesel potential	8
Table 2.2	Comparison of some sources of biodiesel	11
Table 3.1	Components of Conway medium (Main mineral solution)	20
Table 3.2	Components of Conway medium (Trace metal solution)	21
Table 3.3	Components of Conway medium (Vitamin solution)	21
Table 4.1	Specific growth rate (d ⁻¹) of <i>Chaetoceros</i> sp. under various glucose concentrations	29
Table 4.2	Total dry weight and yield of <i>Chaetoceros</i> species in dry weight (g.L ⁻¹) under various glucose concentrations	32
Table 4.3	Total crude lipid (%) extracted from cultures cultivated under various glucose concentrations in both trials.	35
Table 4.4	Lipid compositions of <i>Chaetoceros</i> sp. under autotrophic and heterotrophic cultivation for both trials.	36
Table 5.1	Examples of marine diatoms that had been tested with heterotrophic cultivation by using glucose	39

LIST OF FIGURES

No.	Title	Page
Figure 3.1	Overview of experiment methodology	18
Figure 3.2	Measured <i>Chaetoceros</i> sp. under the observation of compound microscope, Nikon Eclipse 80i (Scale = $50 \ \mu m$)	19
Figure 3.3	Experimental set-up for heterotrophic cultivation. Heterotrophic cultures were kept inside cardboard boxes to prevent light exposure.	22
Figure 4.1	Cell density of <i>Chaetoceros</i> sp. over days under cultivation with various glucose concentrations in first trial.	28
Figure 4.2	Cell density of <i>Chaetoceros</i> sp. over days under cultivation with various glucose concentrations in second trial.	28
Figure 4.3	Mean cell size of <i>Chaetoceros</i> sp. over days under cultivation with various glucose concentrations in first trial.	a 30
Figure 4.4	Mean cell size of <i>Chaetoceros</i> sp. over days under cultivation with various glucose concentrations in second trial.	n 31
Figure 4.5	Images of coloration of <i>Chaetoceros</i> sp. cultures in first tria taken on day 7 (a) 0g.L ⁻¹ glucose (b) 25g.L ⁻¹ glucose (c) 50g.L ⁻¹ glucose and (d) 75g.L ⁻¹ glucose	1 33
Figure 4.6	Images of coloration of <i>Chaetoceros</i> sp. cultures in second tria taken on day 7 (a) 0g.L ⁻¹ glucose (b) 12.5g.L ⁻¹ glucose (c) 25g.L ⁻¹ glucose (d) 50g.L ⁻¹ glucose and (e) 75g.L ⁻¹ glucose	al 33

LIST OF ABBREVIATIONS

°C	-	degree celcius
g	-	gram
μm	-	micrometre
mL	-	millilitre
L	-	litre
%	-	percentage
mg	-	milligram
rpm	-	revolutions per minute
psu		practical salinity unit
HCI	÷,	hydrochloric acid
SD	-	standard deviation
dH ₂ 0	÷	deionized water
HCL		hydrochloric acid

LIST OF APPENDICES

Appendix

Page

Ι	Daily cell count density for <i>Chaetoceros</i> sp. cultivated at 0.0 g.L^{-1} glucose concentration.	51
II	Daily cell count density for <i>Chaetoceros</i> sp. cultivated at 12.5 g.L ⁻¹ glucose concentration.	52
III	Daily cell count density for <i>Chaetoceros</i> sp. cultivated at 25.0 g.L ^{-1} glucose concentration.	53
IV	Daily cell count density for <i>Chaetoceros</i> sp. cultivated at 50.0 g.L^{-1} glucose concentration.	54
V	Daily cell count density for <i>Chaetoceros</i> sp. cultivated at 75.0 g.L ^{-1} glucose concentration.	55
VI	Daily cell size measured for <i>Chaetoceros</i> sp. cultivated at 0.0 g.L^{-1} glucose concentration.	56
VII	Daily cell size measured for <i>Chaetoceros</i> sp. cultivated at 12.5 g.L ^{-1} glucose concentration.	57
VIII	Daily cell size measured for <i>Chaetoceros</i> sp. cultivated at 25.0 g.L ^{-1} glucose concentration.	58
IX	Daily cell size measured for <i>Chaetoceros</i> sp. cultivated at 50.0 g.L^{-1} glucose concentration.	59
Х	Daily cell size measured for <i>Chaetoceros</i> sp. cultivated at 75.0 g.L ^{-1} glucose concentration.	60
XI	Cell density and different glucose concentrations for <i>Chaetoceros</i> sp. for statistical analysis	61

XII	Cell size and different glucose concentrations for <i>Chaetoceros</i> sp.	62
	for statistical analysis	
XIII	The total lipid composition chromatograms for <i>Chaetoceros</i> sp. in autotrophic and heterotrophic culture and statistical analysis	63
XIV	Changes between TAG and PL content in autotrophic and	64
	heterotrophic culture and statistical analysis	

ABSTRACT

Biodiesel was once developing in the early 1940s, however during the late 1940s, in terms of price and quality, biodiesel was being discredited by public for petroleum. But later, continued use of petroleum was known to be unsustainable due to intensified air pollution and magnified global warming. This helped biodiesel to regain back its confidence from the public. Since biodiesel was being established in numerous countries, potential raw material is crucially needed and experts have proven that microalgae as the most promising source for biodiesel production. However, cultivation method commonly used in microalgae industry was not able to satisfy the demand. Thus, an alternative method is needed. In this present study, the marine diatom, Chaetoceros sp. was selected and cultured using heterotrophic cultivation. The aim of this study is to determine (1) whether the marine diatom, Chaetoceros sp. can survive heterotrophically and (2) the glucose concentration (0.0 $g.L^{-1}$, 12.5 $g.L^{-1}$, 25.0 $g.L^{-1}$, 50.0 $g.L^{-1}$, 75.0 $g.L^{-1}$) that was optimum for specific growth rate, total lipid and triacylglycerol content. Two heterotrophic cultivation trials were conducted in total darkness condition using Conway medium. Slightly higher growth rates were obtained in all heterotrophic cultures than autotrophic culture. The highest growth rate was recorded at 25 g.L⁻¹ during second cultivation trial with the value of 0.8962d⁻¹. In addition, 25 g.L⁻¹ was also the only heterotrophic culture that produced detectable lipid content. The lipid in 25 g.L⁻¹ was 24.77 ± 4.97 % which is seven times higher compared to autotrophic culture. As for triacylglycerol content, there was no significant difference between autotrophic and heterotrophic Chaetoceros sp. (p > 0.05). Overall, the specific growth rate, total lipid and triacylglycerol contents suggest that heterotrophic cultivation on marine *Chaetoceros* sp. is potentially feasible for biodiesel production.

PENCUBAAN KULTUR HETEROTROFIK KE ATAS DIATOM MARIN, Chaetoceros sp. BAGI PERNGELUARAN BIODIESEL

ABSTRAK

Biodiesel pernah berkembang di awal 1940-an, namun di akhir 1940-an, dari segi harga dan kualiti, biodiesel mula digugur oleh orang ramai disebabkan pengenalan petroleum. Akan tetapi, kelangsungan pengunaan petroleum telah dibuktikan tidak baik disebabkan ia melaratkan keadaaan pencemaran udara dan pemanasan global. Hal ini telah membantu biodiesel untuk mengembalikan reputasi dan kevakinan dari orang ramai. Oleh sebab, pengembangan berlaku di pelbagai negara, bahan mentah yang berpotensi adalah amat diperlukan dan para ahli yang berkenaan telah membuktikan mikrolaga sebagai sumber yang berpotensi tinggi dalam penjanaan biodiesel. Namun, kaedah kultur microalga yang biasa digunakan di jangka tidak dapat memenuhi permintaan pasaran. Oleh itu, kaedah alternative adalah amat diperlukan. Dalam kajian ini, diatom marin, Chaetoceros sp. telah dipilih untuk menjalankan kultur heterotrofik. Tujuan kajian ini adalah untuk membuktikan keberkesanan diatom marin, Chaetoceros sp. dalam menjalankan pertumbuhan heterotrofik dan kepekatan glukosa (0.0 g.L⁻¹, 12.5 g.L⁻¹, 25.0 g.L⁻¹, 50.0 g.L⁻¹ dan 75.0 g.L⁻¹) yang optimum bagi factor kadar spesifikasi pertumbuhan, kandungan lemak dan triasilgliserol. Dua cubaan kultur heterotorfik telah dijalankan dalam keadaan gelap dengsn menggunakan media Conway. Kadar spesifikasi pertumbuhan yang tinggi diperolehi dalam semua heterotrofik kultur berbanding dengan autotrofik kultur. Kadar spesifikasi pertumbuhan yang tertinggi dicatatkan pada kepekatan glukosa 25 g.L⁻¹ dalam cubaan heterotrofik kedua dengan nilai 0.8962 d-1. Tambahan pula. 25 g.L⁻¹ heterotrofik kultur merupakan satu-satunya heterotrofik kultur yang mampu menghasilkan kadar lemak yang dapat dikenalpasti. Peratusan lemak yang dicatat adalah 24.77 \pm 4.97 % di mana adalah jauh lebih tinggi berbanding dengan autotrofik kultur. Menjurus kepada kandungan triasigliserol, tiada perbezaan yang jelas di antara *Chaetoceros* sp. dari autotrofik dan heterotrofik. Secara keseluruhannya, kadar spesifikasi pertumbuhan, kandungan lemak dan triasigliserol menunjukkan bahawa Chaetoceros sp. marin adalah berkemampuan dalam pengeluaran bioidiesel.