A STUDY ON THE HEAVY METAL CONTENTS OF MERANG COASTAL SEDIMENTS

NOR ZURIATI BINTI MOHD RANI

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU 2012

LP 29 FMSM 3 2012

1100088898 A study on the heavy metal contents of Merang coastal sediment / Nor Zuriati Mohd Rani.

District Control	1	100	880	URZAHIRAH SAREE EMITE ANU
	1			
		, fe		
	ŀ		•	· ·
	-			
	-minglehier-			
7				
7	24.4			
· 8	. 1		-	
	. [•	(*)	
				V
				The state of the s

HAK MILIK PERPUSTAKAAN SULTANAH NUR ZAHIRAH UHT

Lihet sebelah

A STUDY ON THE HEAVY METAL CONTENTS OF MERANG COASTAL SEDIMENTS

BY NOR ZURIATI BINTI MOHD RANI

Research Report submitted in partial fulfillment of the requirement for the degree of Bachelor of Science (Marine Science)

Department of Marine Science
Faculty of Maritime Studies and Marine Science
UNIVERSITI MALAYSIA TERENGGANU
2012

This project report should be cited as:

Nor Zuriati, M. R. 2012. A Study On The Heavy Metal Contents Of Merang Coastal Sediments. Undergraduate Thesis, Bachelor of Science in Marine Science, Faculty of Maritime Studies and Marine Science (UMT), Terengganu.64pp.

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of photographic, recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project.

DEPARTMENT OF MARINE SCIENCE FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

DECLARATION AND VERIFICATION FORM

FINAL YEAR RESEARCH PROJECT

It is hereby declared and verified that this research report entitled:

A Study on the Heavy Metal Contents of Merang Coastal Sediments by Nor Zuriati Binti Mohd Rani, Matric No. UK21373 has been examined and all errors identified have been corrected. This report is submitted to the Department of Marine Science as partial fulfillment towards obtaining the Degree of Bachelor of Science (Marine Science), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu.

voilinea oj.
Ant

Principal Supervisor

Name: Dr Nor Antonina bt Abdullah

Official stamp:

Verified by

DR. ANTONINA ABBULLAH

Department of Marine Science:
Faculty of Maritime Studies and Marine Science
Universiti Malaysia Terengganu (UMT)

21030 Kuala Terengo

Head of Department of Marine Science

Name: Prof. Madya Dr. Rosnan Yaacob

Official stamp:

PROF. MADYA DR. ROSNAN BIN YAACOB Ketua Jabatan Sains Marin Fakulti Pengajian Maritim dan Sains Marin Universiti Malaysia Terengganu 21030 Kuala Terengganu Date: 19 June 2012

Date 14 June 2012

ACKNOWLEDGEMENT

First of all, I would like to express my greatest appreciation to Allah S.W.T. for his blessing which enable me to finish my study. Although this year is hard for me to finish my final year project, but I can go through all the difficulties with helping from the others. Also my appreciation to my supervisor, Dr. Nor Antonina Abdullah for her advices, supporting and helping me in finishing my project. Without her supervision, this study and report might not have been possible. Not forgetting, thank you very much to Mr Joseph Bidai for his helpful comment and encouragement.

Besides that, many thanks to the Universiti Malaysia Terengganu (UMT) especially to FMSM staff for their helping me wether during sampling or laboratory works, En. Suliman, En. Syed and En. Sainol. My appreciation also forward to my friends Elmi Suziana bt Othman, Nurulain bt Sumarji, Hafiz Ridhuan b Roslee and Muhamad Nor Firdaus. They are so kind and always be with me during my sampling and laboratory works and I really appreciate that. Their encouragement and support and moral has enabled me to complete this study untill the end.

Last but not least, thank you also to my family for their concerned and advices in pursuing my studies here. Thank you for your love. Thank you very much for all of you.

TABLE OF CONTENTS

CONTENTS	PAGE
ACKNOWLEDGEMENT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	x
LIST OF APPENDICES	xi
ABSTRACT	xii
ABSTRAK	xiii
CHAPTER 1	
INTRODUCTION	
1.1 Introduction	1
1.2 Objectives of Study	3
CHAPTER 2	
LITERATURE REVIEW	
2.1 Heavy metals	4
2.2 Source of heavy metals	5
2.3 Heavy metals the cause of water pollution	5
2.4 Sedimentation	6
2.5 Particle Size	7

CHAPTER 3

METHODOLOGY

3.1 Study area		12
3.2	Preparation of apparatus	14
3.3	Samples Collection	14
3.4	Sedimentological Characteristic	15
3.4.1	Dry Sieving Method	15
3.4.2	Hydrometer Method	15
3.5	Heavy Metal Analysis	17
3.5.1	Samples Preparation	17
3.5.2	Reagent preparation for mixed acid	17
3.5.3	Sample digestion for heavy metals (Teflon Bomb)	18
3.5.4	Heavy Metal calculation	18
3.5.5	Recovery Test	19
3.6	Organic Carbon Analysis	19
3.6.1	Chemical solution preparation	19
3.6.2	Methods	20
3.6.3	Organic Carbon Analysis Accuracy Test	21
СНА	PTER 4	
RESU	JLTS	
4.1 Se	edimentological Characteristic	22
4.1.1	Mean Size	22
4.1.2	Sorting	24
4.1.3	Skewness	26
4.1.4	Kurtosis	28
4.1.5 Particle Size		30

4.2 Total organic carbon	31
4.3 Heavy Metal Concentration	33
4.3.1 Recovery test	33
4.3.2 Heavy Metals Contents	34
4.3.2a Manganese	34
4.3.2b Copper	35
4.3.2c Chromium	37
4.3.2d Zinc	38
4.3.2e Lead	40
4.3.2f Iron	41
4.3.2g Cadmium	43
CHAPTER 5	
DISCUSSION	
5.1 Sedimentological characteristic	45
5.2 Heavy Metals	47
5.2.1 Heavy Metal Distribution in Sediment	47
5.2.2 Correlation between heavy metal and mean size	48
5.2.3 Correlation between heavy metal and organic carbon	52
5.3 Total Organic Carbon	57
5.4 Enrichment Factor	58

CHAPTER 6 CONCLUSION 59 REFERENCES 60 APPENDICES 63 CURRICULUM VITAE 64

LIST OF TABLES

Table		Page
2.1	The Wentworth grain size scale for sediment.	10
2.2	Characteristic for Sorting.	10
2.3	Characteristic for Skewness.	10
2.4	Characteristic for Kurtosis.	11
3.1	Coordinates of sampling station in the study area.	14
4.1	Mean size and its categories.	22
4.2	Sorting value and its categories.	24
4.3	Skewness value and its categories.	26
4.4	Kurtosis value and its categories.	28
4.5	Particle size and texture of the sediments.	30
4.6	Total organic carbon content for sediment in the study area.	31
4.7	Recovery test results of analysis 'Estuarine Sediment'.	33
4.8	Concentration of Mn.	34
4.9	Concentration of Cu.	35
4.10	Concentration of Cr.	37
4.11	Concentration of Zn.	38
4.12	Concentration of Pb.	40

4.13	Concentration of Fe.	41
4.14	Concentration of Cd.	43
5.1	Correlation r value and P value for each element.	48
5.2	R values of heavy metal in the study area.	53
53	Enrichments factor values in the study area	58

LIST OF FIGURES

Figur	Figure	
3.1	Map of the Terengganu.	13
3.2	Map of Redang Island and Bidong Island.	13
3.3	The stations in the study area.	13
3.4	Soil textural classes diagram.	17
4.1	Mean size (\emptyset) values in the study area.	22
4.2	Sorting (Ø) values in the study area.	24
4.3	Skewness (Ø) values in the study area.	26
4.4	Kurtosis (\emptyset) values in the study area.	28
4.5	Percentage total organic carbon in the study area.	32
4.6	Concentration of Mn (µg/g dry weights) in the study area.	34
4.7	Concentration of Cu (µg/g dry weights) in the study area.	36
4.8	Concentration of Cr (µg/g dry weights) in the study area.	37
4.9	Concentration of Zn (μ g/g dry weights) in the study area.	39
4.10	Concentration of Pb (µg/g dry weights) in the study area.	40
4.11	Concentration of Fe (%) in the study area.	42
4.12	Concentration of Cd (µg/g dry weights) in the study area.	43
5.1	Mn concentration against mean size.	49
5.2	Cu concentration against mean size.	49

5.3	re concentration against mean size.	30
5.4	Cr concentration against mean size.	50
5.5	Zn concentration against mean size.	51
5.6	Pb concentration against mean size.	51
5.7	Cd concentration against mean size.	52
5.8	Mn concentration (μg/g) against organic carbon.	54
5.9	Cu concentration (µg/g) against organic carbon.	54
5.10	Cr concentration (µg/g) against organic carbon.	55
5.11	Zn concentration (μg/g) against organic carbon.	55
5.12	Pb concentration (μg/g) against organic carbon.	56
5.13	Fe concentration (μg/g) against organic carbon.	56
5.14	Cd concentration (µg/g) against organic carbon.	57

LIST OF ABBREVIATIONS

Symbols

% Percent

°C degree Celcius

Ø phi

r correlation coefficient

μgg⁻¹ microgram per gram

mL milliliter

L Liter

ppm part per million

HF Hydroflouric acid

HCl Hydrochloric acid

HNO₃ Nitric acid

K₂Cr₄O₇ Potassium dichromate

AgSO₄ Argentums sulphate

H₂SO₄ Sulfuric acid

Fe Iron

Mn Manganese

Cu Copper

Cr Chromium

Zn Zinc

Pb Lead

Cd Cadmium

ICP-MS Inductively Coupled Plasma Mass Spectroscopy

LIST OF APPENDICES

Appendix			Page
1	Categories of r value		63
2	Sediment contamination categories		63
3	Earth's crust value		63

ABSTRACT

This study was conducted to determine the heavy metal contents in the Merang Coastal sediments. Seventeen samples of surface sediments were collected during June 2011. The sediment characteristics and concentrations of Fe, Mn, Cu, Cr, Zn, Pb and Cd were determined. Concentrations of heavy metals were generally lower than average shales. The average concentration of heavy metals were 3.15% for Fe, 75.47µg/g for Mn, 7.48µg/g for Cu, 34.38µg/g for Cr, 15.71µg/g for Zn, 6.78µg/g for Pb and 0.07µg/g for Cd. The correlation between heavy metals and sediment mean size and the correlation between heavy metals and organic carbon were almost negligible relationship. Enrichment factor (EF) indicated that heavy metals concentration were of background levels.

ABSTRAK

Kajian ini dijalankan untuk menentukan kandungan logam di dalam sedimen Perairan Merang. Tujuh belas sampel sedimen permukaan telah diambil semasa Jun 2011. Kriteria sedimen dan kepekatan Fe, Mn, Cu, Cr, Zn, Pb dan Cd telah dikenalpasti. Kepekatan logam berat adalah lebih rendah daripada purata logam di bumi. Purata kepekatan logam berat adalah 3.15% untuk Fe, 75.47μg/g untuk Mn, 7.48μg/g untuk Cu, 34.38μg/g untuk Cr, 15.71μg/g untuk Zn, 6.78μg/g untuk Pb dan 0.07μg/g untuk Cd. Korelasi antara logam berat dan min saiz sedimen dan korelasi antara logam berat dan karbon organik adalah hampir boleh diabaikan. Faktor Pengkayaan menunjukkan kepekatan logam berat berada pada tahap asalnya.