TEMPORAL VARIATION OF THE BEACH PROFILE TREND AND SEDIMENT VARIABILITY AT TANJUNG LUMPUR OF KUANTAN AND PENARIK OF TERENGGANU

MOHAMAD AMIR BIN RAZAK

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU 2012

Universiti Malaveia Lerangganu

LP 15 FMSM 3 2012

1100088886

Temporal variation of the beach profile trend and sediment variability at Tanjung Lumpur of Kuantan and Penarik of Terengganu / Mohamad Amir Razak.

PERPUSTAKAAN SULTANAH NUR ZAHRAH UNIVERSITI MALAYSTA TERLENGGANU (UNIV

1	1000888	6
		1
		** *
	• •	• •
	r m	
	* ; * * .	
		. V .
140		

Lihat sebelefi

HAK MILIK PERPUSTAKAAN SULTANAH NUR ZAHIRAH UMT

TEMPORAL VARIATION OF THE BEACH PROFILE TREND AND SEDIMENT VARIABILITY AT TANJUNG LUMPUR OF KUANTAN AND PENARIK OF TERENGGANU

By

Mohamad Amir bin Razak Matric No: UK20684

Research Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Science)

Department of Marine Science
Faculty of Maritime Studies and Marine Science
UNIVERSITI MALAYSIA TERENGGANU
2012

This project report should be cited as:

Amir, R. 2012. A study on temporal variation of the beach profile trend and sediment variability at Tanjung Lumpur of Kuantan and Penarik of Terengganu. Undergraduate thesis, Bachelor of Science (Marine Science), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu, Terengganu, Terengganu. 94p.

No part of this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project

DEPARTMENT OF MARINE SCIENCE FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

DECLARATION AND VERIFICATION FORM

FINAL YEAR RESEARCH PROJECT

Variation of the Beach Profile Trend and Sediment Variability at Tanjung Lumpur of Kuantan and Penarik of Terengganu by Mohamad Amir bin Razak, Matric No. UK 20684 has been examined and all errors identified have been corrected. This report issubmitted to the Department of Marine Science as partial fulfillment towards obtaining the Degree of Bachelor of Science (Marine Science), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu.

Verified by:

Principal Supervisor

Name: Prof Madya Dr. Rosnan Yaacob

Official STATED MADYA DR. ROSNAN BIN YAACOB

Ketua Jabatan Sains Marin Fakulti Pengajian Maritim dan Sains Marin Universiti Malaysia Terengganu 21030 Kuala Terengganu

Head of Department of Marine Science

Name: Prof. Madya Dr. Rosnan Yaacob

Official stampprof. MADYA DR. ROSNAN BIN YAACOB

Ketua Jabatan Sains Marin Fakulti Pengajian Maritim dan Sains Marin Universiti Malaysia Terengganu 21030 Kuala Terengganu Date: 17-6-2012

Date: 17-6-2012

ACKNOWLEDGEMENT

First and foremost, my deepest gratitude to god and it's gracious, whose help and guidance gave me the strength to complete this final year project. Here I would like to express my sincere appreciation and thankfulness to my supervisors, Assoc. Prof. Madya Dr. Rosnan Yaacob and Dr. Mohd Fadzil bin Mohd Akhir for their professional guidance, concerned advice and constructive comments from the beginning of the research till the final submission of the thesis.

Special thanks also been dedicated to Mr. Effi, assistants of Oceanography Laboratory, Mr. Sulaiman, Mr. Raja and Mr. Kamarun for allowing me to use and borrow the equipment's during my lab work. Thanks also to Science Officer, Mr. Sainol who had believed in me to operate the equipment's in Oceanography Lab all by myself.

The greatest thanks go to Khairul Rijal, Amirul Razak and Haziq Zainol for their priceless assists and involvement during the sampling sessions. Last, but not least, my sincere gratitude to my beloved family and to all my friends whom are not mentioned here, for their continuous and support to do the best. This project will not be able to be completed without the help of everyone mentioned above.

TABLE OF CONTENTS

Con	tent		page
API	PROVA	AL FORM	ii
AC	KNOW	LEDGEMENT	iii
LIS	T OF 1	TABLES	vii
LIS	T OF I	FIGURES	ix
LIS	T OF I	FORMULA	xi
AB	BREVI	ATIONS	xii
AB	STRAC	CT CT	xiii
AB	STRAH	K	xiv
СН	APTEI	R 1: INTRODUCTION	1
1.1	I Importance of study		
1.2	2 Objective		
1.3	Justifi	cations	6
СН	APTEI	R 2: LITERATURE REVIEW	9
2.1	Coasta	al environment and studies	9
2.2	State o	of beach erosion	11
2.3	Beach		12
	2.3.1	Backshore	12
	2.3.2	Sandy beach	13
	2.3.3	Coastal dunes	14
2.4	Beach	profile	14
2.5	Sediments		16
	2.5.1	Sediment sources	16
2.6	Beach	profiles and sediment connection relationship	18
2.7	Sediment transportation and Net shore drift (NSD)		
2.8	Physical processes on coastal 22		

	2.8.1	Currents	23	
	2.8.2	Waves	25	
	2.8.3	Winds	26	
	2.8.4	Geomorphology processes	26	
	2.8.5	Tides	27	
2.9	Denud	ation and deposition	28	
2.10	Monso	oon	29	
CH	APTEF	R 3: METHODOLOGY	31	
3.1 1	Researc	ch location	31	
3.21	Beach p	profile data	33	
3.3 1	Beach s	steepness	33	
3.4 5	Sedime	nt sampling	34	
3.5	Dry sie	ving method	35	
3.6	Statistic	cal analysis	36	
	3.6.1	Mean	36	
	3.6.2	Standard deviation	37	
	3.6.3	Skewness	37	
	3.6.4	Kurtosis	38	
3.71	Net sho	ore drift	39	
3.8 Ground survey		40		
3.9 Physical parameters			41	
CH	APTEI	R 4: RESULTS	42	
4.1F	hysical	l parameters analysis	42	
	4.1.	1 Rain distribution	42	
	4.1.	2 Wind	43	
	4.1.	3 Water level	44	
4.2	Beach 1	profile data analysis	45	
	4.2.	1 Beach profile	45	
	4.2.	2 Beach slope	51	
4.3 Grain size analysis			54	
	4.3.	1 Mean	54	

4	.3.2	Standard deviation	57
4	.3.3	Skewness	60
4	.3.4	Kurtosis	63
4.4 Net s	shore o	drifts	66
4	.4.1	Grain size distribution	67
4	.4.2	Beach slope	73
CHAPT	ER 5:	DISCUSSION	75
5.1 Beac	h prof	file	75
5.2 Grain	n size	analysis	80
5	.2.1	Mean	80
5	.2.2	Standard deviation	82
5	.2.3	Skewness	85
5	.2.4	Kurtosis	88
5.3 Net shore drifts		drifts	90
5	.3.1	Grain size distribution	90
5	.3.2	Beach slope	92
CHAPT	ER 6	: CONCLUSION	93
REFER	ENCI	ES	95
APPENDICES		99	
VITAE			102

LIST OF TABLES

Table	Page
3.1: Longitude and latitude of the sampling stations	32
4.1: Summary of rainfall in Kuala Terengganu and Kuantan 2011	42
4.2: Average of wind speed in Kuala Terengganu and Kuantan 2011	43
4.3: Tidal range in Kuala Terengganu and Tanjung Gelang, Pahang 2011	44
4.4: Steepness value and cost degree steepness at Penarik beach	53
4.5: Steepness value and cost degree steepness at Tanjung Lumpur beach	53
4.6: Mean data for May 2011 at Penarik beach	55
4.7: Mean data for December 2011 at Penarik beach	55
4.8: Mean data for May 2011 at Tanjung Lumpur beach	56
4.9: Mean data for December 2011 at Tanjung Lumpur beach	56
4.10: Standard deviation data for May 2011 at Penarik beach	58
4.11: Standard deviation data for December 2011 at Penarik beach	58
4.12: Standard deviation data for May 2011 at Tanjung Lumpur beach	59
4.13: Standard deviation data for December 2011 at Tanjung Lumpur beach	59
4.14: Skewness data for May 2011 at Penarik beach	61
4.15: Skewness data for December 2011 at Penarik beach	61
4.16: Skewness data for May 2011 at Tanjung Lumpur beach	62
4.17: Skewness data for December 2011 at Tanjung Lumpur beach	62
4.18: Kurtosis data for May 2011 at Penarik beach	64
4.19: Kurtosis data for December 2011 at Penarik beach	64
4.20: Kurtosis data for May 2011 at Tanjung Lumpur beach	65
4.21: Kurtosis data for December 2011 at Tanjung Lumpur beach	65
4.22: Order of beach slope degree at Penarik beach	74
4.23: Order of beach slope degree at Tanjung Lumpur beach	74
5.1: Comparison of slope degree in two month at Penarik beach	78
5.2: Comparison of slope degree in two month at Tanjung Lumpur beach	78
5.3: Comparison of mean value in mid tide at Penarik beach	81
5.4: Comparison of mean value in mid tide at Tanjung Lumpur beach	81
5.5: Comparison of sorting value in mid tide at Penarik beach	84

5.6: Comparison of sorting value in mid tide at Tanjung Lumpur beach	84
5.7: Comparison of skewness value in mid tide at Penarik beach	86
5.8: Comparison of skewness value in mid tide at Tanjung Lumpur beach	87
5.9: Comparison of kurtosis value in mid tide at Penarik beach	88
5.10: Comparison of kurtosis value in mid tide at Tanjung Lumpur beach	89
5.11: Order of station according to average mean value at Penarik beach	90
5.12: Order of station according to average mean value at Tanjung Lumpur	91
5.13: Order of station according to average sorting value at Penarik beach	91
5.14: Order of station according to average sorting value at Tanjung Lumpur	92

LIST OF FIGURES

Figure	Page
3.1: Penarik beach, Terengganu	31
3.2: Tanjung Lumpur beach, Pahang	31
4.1: Differences between monthly for station 1, 2 and 3 at Penarik beach	47
4.2: Differences between monthly for station 4, 5 and 6 at Penarik beach	48
4.3: Differences between monthly for station 1, 2 and 3 at TanjungLumpur	49
4.4: Differences between monthly for station 4, 5 and 6 at Tanjung Lumpur	50
4.5: Coast degree steepness at Penarik beach	53
4.6: Coast degree steepness at Tanjung Lumpur beach	54
4.7: Mean average for May and December 2011 at Penarik beach	57
4.8: Mean average for May and December 2011 at Tanjung Lumpur beach	57
4.9: Standard deviation average for May and December 2011 at Penarik beach	60
4.10: Standard deviation average for May and December 2011 at Tanjung beach	60
4.11: Skewness average for May and December 2011 at Penarik beach	63
4.12: Skewness average for May and December 2011 at Tanjung Lumpur	63
4.13: Kurtosis average for May and December 2011 at Penarik beach	66
4.14: Kurtosis average for May and December 2011 at Tanjung Lumpur	66
4.15: Percentage of mean values in the mid tide on May of the Penarik beach	67
4.16: Percentage of mean values in the mid tide on December of the Penarik	68
4.17: Percentage of mean value in the mid tide on May of the Tanjung Lumpur	68
4.18: Percentage of mean in the mid tide on December of the Tanjung Lumpur	68
4.19: Percentage of sorting in the mid tide on May of the Penarik	69
4.20: Percentage of sorting in the mid tide on December of the Penarik	69
4.21: Percentage of sorting in the mid tide on May of the Tanjung Lumpur	69
4.22: Percentage of sorting in the mid tide on December of the Tanjung Lumpur	70
4.23: Percentage of skewness in the mid tide on May of the Penarik beach	70
4.24: Percentage of skewness in the mid tide on December of the Penarik	70
4.25: Percentage of skewness in the mid tide on May of the Tanjung Lumpur	71
4.26: Percentage of skewness in the mid on December of the Tanjung Lumpur	71
4.27: Percentage of kurtosis in the mid tide on May of the Penarik beach	71
4.28: Percentage of kurtosis in the mid tide on December of the Penarik beach	72

4.29: Percentage of kurtosis in the mid tide on May of the Tanjung Lumpur	72
4.30: Percentage of kurtosis in the mid on December of the Tanjung Lumpur	72
5.1: Comparison slope degree in two month at Penarik beach	79
5.2: Comparison slope degree in two month at Tanjung Lumpur beach	7 9
5.3: Mean values in the mid tide of the Penarik beach	82
5.4: Mean values in the mid tide of the Tanjung Lumpur beach	82
5.5: Sorting values in the mid tide of Penarik beach	85
5.6: Sorting values in the mid tide of Tanjung Lumpur beach	85
5.7: Skewness values in the mid tide of Penarik beach	87
5.8: Skewness values in the mid tide of Tanjung Lumpur beach	87
5.9: Kurtosis values in the mid tide of Penarik beach	89
5.10: Kurtosis values in the mid tide of Tanjung Lumpur beach	89

LIST OF FORMULA

Formula			Pages
(3.1)	:	Beach steepness	34
(3.2)	<u>.</u>	Profile level	34
(3.3)	:	Mean size determination	36
(3.4)	ě.	Standard deviation determination	37
(3.5)	1	Skewness determination	38
(3.6)	Œ.	Kurtosis determination	39

ABBREVIATIONS

Abbreviations

g - Gram

Km - Kilometer

m - Meter

μm - micrometer

NSD - Net shore drift

N - North

E - East

Symbols

% - Percentage

φ - phi

° Degree

ABSTRACT

Study on the beach morphology and the movement of sediments was conducted along the Penarik beach, Terengganu and Tanjung Lumpur beach, Pahang. This study mainly carried out in order to differentiate the shape of the beach and sediments characteristics between months which started from May to December 2011. The direction of the Net shore drift was also given a pattern which closely related to the sediment movement and beach profiles. Sampling was done in eight stations with the distance interval between each station range from 500 m to other station. Transit Sokkia C4₁₀ was used to measure beach profile properties. Meanwhile, method of moments was employed to calculate the sediment logical parameters. According to the beach profile analysis, 4 out of six stations at Penarik beach and one of six stations at Tanjung Lumpur beach faced drastic erosion in the month of Disember 2011. Also two stations at Penarik beach and five stations at Tanjung Lumpr beach had their beach gradient increased. However in this case of study, the mean size was increasing which shows that area is maximized with coarse sand. Sorting of sediments during the monsoon indicates that five stations experienced increasing value of sorting. Increasing value sorting indicates that sediments in station 2 and 3 at Penarik beach and station 1, 3, 4, 5 and 6 are moderately and well sorted. However, station 1, 2, 4, 5 and 6 at Penarik beach and station 2 had undergoes decreasing sorting value. These means moderate and well sorting has taken place during the monsoon season. However, since the increasing value should be showing moderate and poorly sorted rather than well sorted. This is maybe due to that source of sediments carried by the waves are fine sand. Overall studies and based on the beach width and slope define that the sediment movement was from station 1 to station 6 at Penarik and station 6 to station 1 at Tanjung Lumpur. xiii

KEPELBAGAIAN BENTUK PROFIL PANTAI DAN PERHUBUNGANNYA DENGAN PELBAGAI SEDIMEN DI PENARIK, TERENGGANU DAN TANJUNG LUMPUR, KUANTAN

ABSTRAK

Kajian mengenai profil pantai dan pergerakan sediment telah dijalankan di pantai Penarik, Terengganu dan pantai Tanjung Lumpur, Pahang. Kajian ini telah dijalankan untuk menentukan perbezaan profil pantai dan ciri-ciri sedimen antara bulan Mei hingga Disember 2011. Arah hanyutan pantai (NSD) dapat ditentukan dengan menilai ciri-ciri pergerakan sedimen dan profil pantai. Proses penyampelan telah dijalankan di enam stesen yang mempunyai jarak antara 500 meter bagi setiap stesen. Transit Sokkia C4₁₀ digunakan untuk mengukur profil pantai, manakala kaedah momen digunakan untuk mengukur parameter sedimentology. Berdasarkan analisis profil pantai, didapati bahawa empat stesen di Pantai Penarik dan lima stesen di Pantai Tanjun Lumpur telah mengalami proses hakisan semasa bulan Disember 2011. Pada bulan Disember 2011, kecerunan pantai dua buah stesen di Pantai Penarik dan lima buah stesen di Pantai Tanjung Lumpur telah meningkat. Walau bagaimanapun, dalam kes ini kajian, saiz purata telah meningkat yang menunjukkan kawasan dapat dimaksimumkan dengan pasir kasar. Nilai sisihan semasa monsun menunjukkan bahawa lima stesen mengalami peningkatan nilai daripada sishan tersebut. Peningkatkan nilai sisihan menunjukkan bahawa sedimen di stesen 2 dan 3 di pantai Penarik dan stesen 1, 3, 4, 5 dan 6 di Pantai Tanjung Lumpur berada pada tahap sederhana dan tersusun dengan baik. Walau bagaimanapun di stesen 1, 2, 4, 5 dan 6 di Penarik pantai dan stesen 2 telah mengalami penurunan nilai sisihan. Kajian berdasarkan lebar pantai dan kecerunan mentakrifkan bahawa keseluruhan pergerakan sedimen adalah dari stesen 1 ke stesen 6 di Penarik dan stesen 6 ke stesen 1 di Tanjung Lumpur. xiv