SHALLOW WATER DEPTH DETERMINATION BY USING REMOTE SENSING AT LANG TENGAH ISLAND, TERENGGANU

AW PEI RUI

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

2012

1100088876

Perpustakaan Sultanah Nur Zahirah (UMT) Universiti Malaysia Terengganu

1100088876

Shallow water depth determination by using remote sensing at Lang Tengah Island, Terengganu / Aw Pei Rui.

	USTAKAAN SULTANAH RSITIMALAYSIA TEREP 21030 KUALA TEREN 1100088	875	
	1.1.1		•
	-	1	
		1	
	1.		
	Ī		
	+		
	1		-
			-
	<u> </u>		
	[
	a a a a a a a a a a a a a a a a a a a		
	l.	· · · ·	
·····		1 .	-
•	1 .	-	-
······································		-	
	1		2
		+	_

HAK MILIK PERPUSTAKAAN SULTANAH NUR ZAHIRAH UMT

SHALLOW WATER DEPTH DETERMINATION BY USING REMOTE

SENSING AT LANG TENGAH ISLAND, TERENGGANU

By

Aw Pei Rui

Research Report submitted in partial fulfillment of

the requirement for the degree of

Bachelor of Science (Marine Science)

Department of Marine Science

Faculty of Maritime Studies and Marine Science

UNIVERSITI MALAYSIA TERENGGANU

2012

This project report should be cited as:

Aw, P. R. 2012. Shallow water depth determination by using remote sensing at Lang Tengah Island, Terengganu. Undergraduate thesis, Bachelor of Science in Marine Science, Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu, Terengganu, 60p.

No part of this project report may be reproduced by any mechanical, photography, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project.

1100088876

DECLARATION AND VERIFICATION FORM

FINAL YEAR RESEARCH PROJECT

It is hereby declared and verified that this research report entitled:

Shallow Water Depth Determination by Using Remote Sensing at Lang Tengah Island, Terengganu by Aw Pei Rui, Matric No. UK 20363 has been examined and all errors identified have been corrected. This report issubmitted to the Department of Marine Science as partial fulfillment towards obtaining the Degree of Bachelor of Science (Marine Science), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu.

Verified by:

Official stamp:

DEPUTY DEAN (GRADUATE STUDY & RESEARCH) FACULTY OF MARITIME STUDIES & MARINE SCIENCE UNIVERSITY MALAYSIA TERENGGANU (UDate: ... 21030 KUALA TERENGGANU

12/6/12

Head of Department of Marine Science Name: Prof. Madya Dr. Rosnan Yaacob Official stamp:

Date:

ACKNOWLEDGEMENT

First and foremost I offer my sincerest gratitude to my first supervisor, Prof. Madya Dr. Aidy @ M. Shawal bin M. Muslim, for his supervision, advice, and guidance to my project with patience and knowledge. He had given me a lot of suggestion and opinion during the laboratory and thesis work. Without him, this thesis would not have been completed in time. I would also like to thanks Dr. Razak bin Zakariya, my co-supervisor, for his support and knowledge in my final year project.

I grateful acknowledge Mohd Kaharudin bin Mat Zin and Naieman bin Muhamad for their guiding during the laboratory session. They had sacrificed valuable time to teach me everything I know about remote sensing software. I would like to thanks my coordinator of final year report, Dr. Nor Antonina Abdullah, thanks for her help and care during the project. I would also like to thanks my faculty, Faculty of Maritime Studies and Marine Science for allow me do this final year project.

Special thanks also to all my course mates and friends, especially; Goh Wei Sin, Pek Yen Lee, Sim Eik Ee, and Teow Boon Shyan for sharing the literature and invaluable assistance. It would have been a lonely lab without them.

Last but not least, I would like to express my appreciation to my beloved family for their supporting and caring through the duration of my study.

iii

TABLE OF CONTENTS

D

		Page
THESIS QUA	LIFICATION AND VERTIFICATION FORM	ii
ACKNOWLE	DGEMENT	iii
TABLE OF CO	ONTENT	iv
LIST OF TAB	LES	vi
LIST OF FIG	URES	vii
LIST OF EQU	ATIONS	ix
LIST OF APP	ENDICES	x
LIST OF ABB	RERIATION	xi
ABSTRACT		xiii
ABSTRAK		xiv
CHAPTER 1	INTRODUCTION	1
1.1	Introduction	1
1.2	Justification	3
1.3	Objective	4
CHAPTER 2	LITERATURE RIVIEW	5
2.1	Study Area	5
	2.1.1 South China Sea	5
	2.1.2 Lang Tengah Island	6
2.2	Remote Sensing	7
2.3	QuickBird Satellite	8
2.4	Satellite Remote Sensing Technology and Multibeam Echo	9
	Sounder	
2.5	Benny and Dawson (1983) Method	10
2.6	Ratio Method	11
2.7	Accuracy Assessment	11

CHAPTER 3	METHODOLOGY	12
3.1	Material	12
3.2	Study Area	13
3.3	Procedure Flow Chart Summary	
3.4	Atmospheric Correction	15
3.5	Geometric Correction	16
3.6	Masking	16
3.7	Bathymetry	16
	3.7.1 Benny and Dawson (1983) Method	17
	3.7.2 Ratio Method	18
3.8	Accuracy Assessment	19
CHAPTER 4	RESULT	20
4.1	Atmospheric Correction	20
4.2	Masking	22
4.3	Benny and Dawson Method	25
4.4	Ratio Method	28
4.5	Accuracy Assessment	29
CHAPTER 5	DISCUSSION	32
5.1	Atmospheric Correction	32
5.2	Masking	34
5.3	Bathymetry Mapping	34
	5.3.1 Benny and Dawson Method	35
	5.3.2 Ratio Method	36
5.4	Comparison of Methods	38
CHAPTER 6	CONCLUSION AND SUGGESTIONS	40
REFERENCE		41
APPENDICES		45
CURRICULUM VITAE		60

LIST OF TABLE

.....

Page

1.	Table 2.1 QuickBird Spacecraft Characteristics	8
2.	Table 4.1 Attenuation coefficient, k, for each band	25
3.	Table 4.2 Attenuation coefficient, k, for each band	29
4.	Table 4.3 RMSE values of Benny and Dawson method and ratio method	31
5.	Table 5.1 New assign value for reclassification	34
6.	Table 5.2 Attenuation coefficient, k, and Pearson Product Moment Correlation, R^2 , for each band	35
7.	Table 5.3 Accuracy for Benny and Dawson method	36
8.	Table 5.4 The m_1 , m0 and Pearson Product Moment Correlation, R^2 for ratio method	37
9.	Table 5.5 Accuracy for ratio method	38
10	Table 5.6 Accuracy Assessment	38
11.	Table 5.7 RMSE values of Benny and Dawson method and ratio	39
	method	

LIST OF FIGURES

		Page
1.	Figure 2.1 Location of South China Sea	6
2.	Figure 2.2 Study area: Lang Tengah Island	6
3.	Figure 3.1 Lang Tengah Island	13
4.	Figure 3.2 Collection of in situ water depth using a GPS enabled echo	14
	sounder in constructing the estimation model	
5.	Figure 3.3 An overview of the main step in bathymetry	14
6.	Figure 3.4 Flowchart of the steps for Benny and Dawson method	17
7.	Figure 3.5. Flowchart of the steps for Ratio method	18
8.	Figure 4.1 Atmospheric correction of Band 1	20
9.	Figure 4.2 Atmospheric correction of Band 2	21
10.	Figure 4.3 Atmospheric correction of Band 3	21
11.	Figure 4.4 Image of RGB band after atmospheric correction	22
12.	Figure 4.5 New reclass image with only two classes, where 0 for land	23
	and 1 for water	23
13.	Figure 4.6 Masking image of Band 1	23
14.	Figure 4.7 Masking image of Band 2	24
15.	Figure 4.8 Masking image of Band 3	24
16.	Figure 4.9 Regression graph for log depth from field data against log	25
	DN values of Band 1	25
17.	Figure 4.10 Regression graph for log depths from field data against	25
	log DN values of Band 2	23
18.	Figure 4.11 Regression graph for log depths from field data against	26
	log DN values of Band 3	20
19.	Figure 4.12 Benny and Dawson method Band 1	26
20.	Figure 4.13 Benny and Dawson method Band 2	27

21.	Figure 4.14 Benny and Dawson method Band 3	27
22.	Figure 4.15 Ratio Method	28
23.	Figure 4.16 Regression graph for ratio of Band 1 to Band 2 against	29
	depth from field data (m)	29
24.	Figure 4.17 Graph of actual depth (m) against predicted depth of	30
	Band 1 for Benny and Dawson Method	30
25.	Figure 4.18 Graph of actual depth (m) against predicted depth of	30
	Band 2 for Benny and Dawson Method	30
26.	Figure 4.19 Graph of actual depth (m) against predicted depth of	30
	Band 3 for Benny and Dawson Method	30
27.	Figure 4.20 Graph of actual depth (m) against predicted depth for	31
	Ratio Method	51
28.	Figure 4.21 RMSE values of Benny and Dawson method and ratio	31
	method	51
29.	Figure 5.1 Image of RBG band before (left) and after (right)	32
	atmospheric correction	52
30.	Figure 5.2 Regression graph for ratio of Band 1 to Band 2 against	37
	depth from field data (m)	51

LIST OF EQUATION

		Page
1.	Equation 2.1	10
2.	Equation 2.2	 11
3.	Equation 3.1	15
4.	Equation 3.2	15
5.	Equation 5.1	33
6.	Equation 5.2	36
7.	Equation 5.3	39

LIST OF APPENDICES

		Page
1.	Appendix A: Metadata of Image	45
2.	Appendix B: Input Parameters for Atmospheric Correction	51
3.	Appendix C: Raw Data	52
4.	Appendix D: Calculated Regression Data	55
5.	Appendix E: Accuracy Assessment Data	57

ABBREVIATIONS

1.	%	Percentage
2.	$\Delta\lambda_{\text{Band}}$	Effective bandwidth for a given band
3.	B ₁	Band 1
4.	B ₂	Band 2
5.	da	Actual depth
6.	d _p	Predicted depth
7.	D	Distance
8.	D	Depth
9.	dc	Draft correction
10.	DN	Digital Number
11.	E'	Sun elevation angle adjusted for refraction through seawater
12.	E _d	Down-welling irradiance entering the water
13.	Ι	Denote visible bands
14.	IR	Near-infrared band
15.	k	Attenuation coefficients
16.	k_1	Absolute radiometric calibration factor for Band 1
17.	k ₂	Absolute radiometric calibration factor for Band 2
18.	k ₃	Absolute radiometric calibration factor for Band 3
19.	K_{Band}	Absolute radiometric calibration factor for a given band
20.	L _d	Signal receive by sensor from deep water
21.	Lo	Signal receive by sensor from shallow water
22.	L _w	Water-leaving radiance
23.	L _x	Signal receive by sensor from water depth x
24.	L_{λ} Pixel, Band	Top-of-atmosphere spectral radiance image pixels
25.	m	Meter
26.	m.s.l	Mean sea level
27.	m ₀	Offset for a depth of 0m

28.	mı	Tunable constant to scale the ratio depth
29.	n	Constant to assure the algorithm is positive under all
		circumstances
30.	n	Numbers of station
31.	Q Pixel, Band	Radio metrically corrected image pixels
32.	R ²	Correlation coefficient
33.	RGB	Red-Green-Blue
34.	RMSE	Root Mean Square Error
35.	R _w	Observed reflectance
36.	SCS	South China Sea
37.	Y	Constant to correct for spectral variation and depends on
		aerosol type
38.	Ζ	Depth
39.	λ	Wavelength of the spectral band
40.	Σ	Sum
41.	\checkmark	Square root

÷

ABSTRACTS

The traditional hydrographical surveys are conducted via shipboard echo sounding. This traditional method is able to generate accurate water depth but it is high operating cost, labor-intensive, time-consuming and inefficiency. To overcome this problem, the application of remote sensing in bathymetry study has been extensively explored in recent years. Compared to the traditional method, satellite remote sensing technique is more cost-effective, easier and quicker. Besides, bathymetric measurement via remote sensing also has the advantage that the data are collected synoptically over large areas. This study is discusses the determination of bathymetry of a shallow water area applying remote sensing techniques at Lang Tengah Island, Terengganu. There are two methods used in this study, which is linear method (Benny and Dawson method) and ratio method. Both methods require the same preprocessing process, included geometric correction, atmospheric correction, and masking. The results obtained were compared with ground truth data. The accuracy of the methods is discussed and the compared between the two methods. The result shows that Band 2 for Benny and Dawson method has the highest correlation coefficient, R^2 , among the three bands, which is 0.9533. Ratio method has a higher R^2 compared to the Band 2 for Benny and Dawson method as its R² achieve 0.9607. Ratio method is better in deriving bathymetry from satellite imagery compared to linear method. Ratio method is more robust as it only needs two tunable parameters whereas linear method requires more than two tunable parameters.

Penentuan Kedalaman Air Kawasan Cetek Dengan Menggunakan Penderiaan Jauh Di Pulau Lang Tengah, Terengganu

ABSTRAK

Penyiasatan hidrografi secara tradisioanl adalah dijalankan melalui pemerum gema. Kaedah tradisional ini mampu untuk menjana kedalaman air yang tepat tetapi kaedah ini memerlukan kos operasi yang tinggi, memerlukan sumber tenaga manusia yang banyak, memakan masa dan kurang kecekapan. Untuk mengatasi masalah ini, aplikasi penderiaan jauh dalam kajian batimetri telah diterokai dengan luas pada tahun-tahun kebelakangsn. Berbanding dengan kaedah tradisional, teknik penderiaan jauh lebih berjimat, mudah dan cepat. Di samping itu, kajian batimetri melalui penderiaan jauh juga boleh mengumpul data di kawasan yang luas secara ringkas. Kajian ini membincang tentang penentuan batimetri di kawasan air cetek dengan menggunakan teknik penderiaan jauh di Pulau Lang Tengah, Terengganu. Terdapat dua kaedah yang digunakan dalam kajian ini, iaitu kaedah linear (kaedah Benny and Dawson) dan kaedah nisbah. Kedua-dua kaedah ini mempunyai pra-pemprosesan yang sama, termasuk pembetualn geometri, pembetulan atmosfera, dan penyolekan. Keputuan yang diperolehi dari dua kaedah akan dibandingkan. Hasilannya merujukan Kaedah nisbah (0.9607) mempunyai ketepatan yang lebih tinggi daripada kaedah linear (0.9533) sedangkan kaedah nisbah hanya memerlukan dua parameter boleh laras tetapi kaedah linear memerlukan lebih dari dua parameter boleh laras.

xiv