DETERMINATION OF THE RIVER FLOW IN THE KERTEH RIVER CATCHMENT AREA FROM GIS TECHNOLOGY

AMIRAH BINTI RUSLAN

FACULTY OF MARITIME STUDIES AND MARINE SCIENCE UNIVERSITI MALAYSIA TERENGGANU

2012

du: 8666

1100088873

Perpustakaan Sultanah Nur Zahirah (UM Universiti Malaysia terenggagu

JMT ST, D HA

1100088873

÷

•

-

٠

Determination of the river flow in the Kerteh River catchment area from gis technology / Amirah Ruslan.

	TAKAAN SULTANAH NUR SITI MALAYSIA TERENGGAN 21030 KUALA TERENGGAN	73
		· ,
1	L .	
	1	
	· ·	
	1	
	İ.	
•		
and the second	1	

HAK MILIK PERPUSTAKAAN SULTANAH NUR ZAHIRAH UMT

DETERMINATION OF THE RIVER FLOW IN THE KERTEH RIVER CATCHMENT AREA FROM GIS TECHNOLOGY

÷.

By

Amirah Binti Ruslan

Research Report submitted in partial fulfillment of the requirement for the degree of Bachelor of Science (Marine Science)

Department of Marine Science Faculty of Maritime Studies and Marine Science UNIVERSITI MALAYSIA TERENGGANU

2012

This project should be cited as:

Amirah, R. 2012. Determination of the river flow simulation in Kerteh River catchment area from GIS Technology. Undergraduate thesis, Bachelor of Science In Marine Science, Faculty of Maritime and Marine Science, Universiti Malaysia Terengganu, Terengganu, 99p

No part in this project report may be reproduced by any mechanical, photographic, or electronic process, or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without even written permission from the author and the supervisor (s) of the project

HU STY

2012

1100088873

DECLARATION AND VERIFICATION FORM

FINAL YEAR RESEARCH PROJECT

It is hereby declared and verified that this research report entitled:

Determination of the River Flow Simulation at Kerteh River Catchment Area Using From GIS Technology by Amirah Binti Ruslan, Matric No. UK20449 has been examined and all errors identified have been corrected. This report is submitted to the Department of Marine Science as partial fulfillment towards obtaining the Degree of Bachelor of Science (Marine Science), Faculty of Maritime Studies and Marine Science, Universiti Malaysia Terengganu.

> DR. RAZAK BIN ZAKARIYA DEPUTY DEAN (GRADUATE STUDY & RESEARCH) FACULTY OF MARITIME STUDIES & MARINE SCIENCE

> > 21030 KUALA TERENGGANU

Verified by:

UNIVERSITY MALAYSIA TERENGGANU (UMT) Principal Supervisor Name: Dr Razak Zakariya Official stamp:

18/6/12

Head of Department of Marine Science Name: Prof. Madya Dr. Rosnan Yaacob PROF. MADYA DR. ROSNAN BIN YAACOB Official stamp: Ketua Jabatan Sains Marin

Fakulti Pengajian Maritim dan Sains Marin Universiti Malaysia Terengganu 21030 Kuala Terengganu

18/8/2012 Date:

ACKNOWLEDGEMENT

Firstly, I'm grateful that my supervisor, Dr Razak Zakariya gave me such an interesting project to do. I'm very thankful for his guidance, knowledge and advices that helped me to complete my final year project in Universiti Malaysia Terengganu.

I would like to express my gratitude to all the Laboratory of Remote Sensing and GIS staff's : Encik Wan Roshairry and Encik Yuzwan for assistance and permissions for using the lab to help complete my project. Special thanks to Encik Muhammad Taufiq for his guidance and knowledge in teaching me to use the SWAT software. Without him, I may not be able to complete the project.

My gratitude also goes to Ethylene Polyethylene Malaysia Sdn Bhd for their sponsor for food, accommodation and others during my sampling days in Sungai Kerteh, Terengganu. Not forgettable, my gratitude also goes to Drainage and Irrigation Department of Malaysia and Malaysia Meteorological Department for providing the data for my project.

And finally, special thanks to my family, friends, and my roommate, Nur Aisyah Binti Abdul Rahman for her support that helped me to complete my project and studies.

TABLE OF CONTENTS

2	Page
DECLARATION AND VERIFICATION REPORT FINAL YEAR RESEARCH PROJECT	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF PHOTOGRAPHS	xi
LIST OF DEFINITIONS	xii
LIST OF ABBREVIATIONS	xiii
LIST OF APPENDICES	xiv
ABSTRACT	xv
ABSTRAK	xvi
CHAPTER 1 : INTRODUCTION	

1.1	Study background	1
1.2	Justification of study	2
1.3	Objectives	5

CHAPTER 2 : LITERATURE REVIEW

2.1	River system and river flow	6
2.2	Influence of tidal to river flow	9
2.3	River catchment area	10
2.4	AVSWAT	12

CHAPTER 3 : METHODOLOGY

3.1	Study area	16
3.2	Materials	19
3.3	General methodology	21
3.4	Ground survey measurement	
	3.4.1 Flow measurement	23
	3.4.2 River volume measurement	24
3.5	Data input AVSWAT simulation	25
	3.5.1 Land cover	25
	3.5.2 Digital Elevation Model and Stream Network	29
	3.5.3 Soil and Land Use data	33
	3.5.4 Weather data	36
	3.5.5 Run Simulation	39
	3.5.6 Accuracy Assessment	40
	3.5.7 Prediction of the river flow	46

CHAPTER 4 : RESULTS

4.1	Ground survey	47
	4.1.1 River flow of the Kerteh River catchment area	48
	4.1.2 Estimation of the acceptable river flow direction	54
	4.1.3 Tide reading for both stations and sampling	55
	4.1.4 River volume	56
4.2	Land cover	58
4.3	Sub basin of Kerteh River catchment area	63
4.4	Soil distribution	65
4.5	SWAT simulations	67
	4.5.1 River flow out	67
	4.5.2 Accuracy Assessment	69
	4.5.3 Prediction of the river flow	71

CHAPTER 5 : DISCUSSION

5.1	River velocity and directions	73
5.2	River velocity, direction and the tide table	74
5.3	River depth and velocity	74
5.4	Effects on the land cover on the river flow	75
5.5	Sub basin slope	76
5.6	River flow and stations	77
5.7	AVSWAT simulation	77
5.8	Accuracy Assessment	78
5.9	Prediction of the river flow	79

CHAPTER	6	:	CONCL	JUSION
----------------	---	---	-------	---------------

REFERENCES	8	1
APPENDICES	9	3
VITAE	9	9

80

vi

LIST OF TABLES

Table	•	Page
Table 3.1	Suggested Manning 'n' for natural streams	38
Table 3.2	Effects on simulation when parameter value increases (Abraham et al., 2007)	44
Table 4.1	Area of cross-section at each station	56
Table 4.2	The percentage of the land cover in Kerteh River catchment area	58
Table 4.3	Area, elevation, sub basin slope on each sub basin	63
Table 4.4	Soil distribution at Kerteh River catchment area	65
Table 4.5	River flow AVSWAT simulations value	67
Table 4.6	River flow from AVSWAT simulation and in-situ data for sub basin 13 (Station 1) and sub basin 28 (station 2)	69
Table 4.7	Type of accuracy analysis and its value	70
Table 4.8	Classification of model efficiencies for different parameters (Moriasi et al., 2007)	71
Table 4.9	Prediction of the river flow out for year 2013-2033	71

LIST OF FIGURES

Page

Figure	с.	Page
Figure 2.1	Processes in river catchment system	11
Figure 3.1	Map of the Kerteh river catchment area	17
Figure 3.2	Sampling station map in Kerteh river catchment area	18
Figure 3.3	General methodology to determine river flow rates at Kerteh River catchment area	22
Figure 3.4	Valeport 106 current meter	23
Figure 3.5	FlowQuest 2000 was towed across the river	24
Figure 3.6	FlowQuest 2000 measure the river discharge and banks distance	24
Figure 3.7	Flow chart showing procedures to produce a land cover map	28
Figure 3.8	The 'Watershed Delineation' box in AVSWAT used to insert DEM, boundary and stream network	30
Figure 3.9	Image showing the watershed after 'Watershed Delineation' process	30
Figure 3.10	Digital Elevation Model of Kerteh River catchment area	31
Figure 3.11	Watershed and Stream Network at Kerteh River catchment area	32
Figure 3.12	'Edit SWAT Database' dialog box	33
Figure 3.13	'User Soils' Box in AVSWAT that was used to key in the soil data	33
Figure 3.14	Definition of Land Use and Soil Themes used to insert the classified land use and soil data	34

Figure 3.15	Dialog box to determine HRU in AVSWAT	35
Figure 3.16	'User Weather Stations' dialog box	37
Figure 3.17	'Weather data definition' dialog box	37
Figure 3.18	'Edit Sub basin Inputs' dialog box	39
Figure 3.19	'Set Up and Run SWAT model prediction' dialog box	40
Figure 3.20	'Calibration Set Up' dialog box	42
Figure 3.21	The manual model calibration used in this study in the SWAT manual. Diagram taken from Abraham et al., (2007)	43
Figure 4.1	Flow velocity & direction vs time for station 1 on 26 June 2011	48
Figure 4.2	Flow velocity & direction vs. time for station 1 on 27 June 2011	49
Figure 4.3	Flow velocity & direction vs. time for station 2 on 27 June 2011	49
Figure 4.4	Flow velocity & direction vs. time for station 1 on 2 June 2011	50
Figure 4.5	Flow velocity & direction vs. time for station 2 on 28 June 2011	50
Figure 4.6	Flow velocity & direction vs. time for station 2 on 15 February 2012	51
Figure 4.7	Flow velocity & direction vs. time for station 1 on 16 February 2012	52
Figure 4.8	Flow velocity & direction vs. time for station 2 on 16 February 2012	52
Figure 4.9	Flow velocity & direction vs. time for station 1 on 17 February 2012	53
Figure 4.10	Flow velocity & direction vs. time for station 2 on 17 February 2012	53

Figure 4.11	Assumption of the acceptable range of river velocity	54
Figure 4.12	Tide table first sampling (26-28 June 2011)	55
Figure 4.13	Tide table second sampling (15-17 February 2012)	55
Figure 4.14	The interface of the FlowQuest 2000 Discharge Measurement	56
Figure 4.15	The shape of river cross-section and velocity of the river (mm/s) in station 1 from FlowQuest 2000 Discharge Measurement software	57
Figure 4.16	The shape of river cross-section and velocity of the river (mm/s) in station 2 from FlowQuest 2000 Discharge Measurement software	57
Figure 4.17	The pie chart of percentage land cover in Kerteh River catchment area	59
Figure 4.18	Land use classification map of Kerteh River catchment area	62
Figure 4.19	Sub basins map of Kerteh River catchment area	64
Figure 4.20	Percentage of the soil type in Kerteh River catchment area	65
Figure 4.21	Soil map of Kerteh River catchment area	66
Figure 4.22	AVSWAT simulation river flow out for 5 days sampling	68
Figure 4.23	Correlation between river flow simulation vs. In-situ data for Station 1	70
Figure 4.24	Prediction of the river flow for 20 years	72
Figure 5.1	The figure of how rainfall could affect the discharge	75

LIST OF PHOTOGRAPHS

Photograph		Page
Photograph 4.1	Oil Palm (Young)	60
Photograph 4.2	Oil Palm (Matured)	60
Photograph 4.3	Oil Palm (Old)	60
Photograph 4.4	River	60
Photograph 4.5	Rubber tree	61
Photograph 4.6	Mangrove	61
Photograph 4.7	Forest	61
Photograph 4.8	Grassland	61

LIST OF DEFINITIONS

Definition		Page
Definition 3.1	River Discharge Equation	41
Definition 3.2	Nash-Sutcliffe coefficient, E_{NS}	45
Definition 3.3	Root-mean-square error (RMSE)	45
Definition 3.4	RSR, ratio of RMSE and standard deviation of observed data	46

LIST OF ABBREVIATIONS

AVSWAT	- Arc View Soil and Water Assessment Tool
CN	- Curve Number
DEM	- Digital Elevation Model
E _{NS}	- Nash-Sutcliffe coefficient
ET	- Evapotranspiration
GCP	- Ground Control Point
GIS	- Geographic Information System
GPS	- Global Positioning System
GPP	- Gas Processing Plant
HRU	- Hydrological Response Unit
km ²	- Kilometer square
m ³ /s	- Meter cubic per second
m/s	- Meter per second
MUSLE	- Modified Universal Loss Soil Equation
R ²	- Coefficient of determination
RMSE	- Root mean square error
RSR	- Ratio of RMSE & standard deviation observed data
SPOT-5 (satellite)	- Système Pour l'Observation de la Terre-5
SWAT	- Soil and Water Assessment Tool
US	- United States
USLE	- Universal Loss Soil Equation
USGS	- United States Geological Survey

LIST OF APPENDICES

Appendix	2	Page
Appendix I	Soil map of Kemaman district	92
Appendix II	Soil name and data in Kerteh River catchment area used as an input data in AVSWAT	92
Appendix III	Soil variable name and its description in user soil input data	94
Appendix IV	Weather parameter and description in the weather input database	96
Appendix V	Tide Table at Kerteh, Terengganu Darul Iman	97

ABSTRACT

The Soil and Water Assessment Tool (SWAT) has been used to predict upcoming 20 years river flow at the Kerteh River catchment area. The Kerteh River catchment area, was located at the Kerteh River catchment area to the base operation of petroleum processing in Malaysia. Kerteh River was flow to the South China Sea and thus, sometimes the river flow was affected by tides. Kerteh river was exposed to the Northeast Monsoon, on November until March. This catchment area has the area approximately 27,000 hectares. 28 sub basin was created by using AVSWAT and only two sub basin was used in this study which was sub basin 13 (Station 1) and sub basin 28 (Station 2). This model has been evaluated by using the Nash-Sutcliffe efficiency value, E_{NS}, Root mean square error (RMSE), coefficient of determination, R² and RSR, ratio of the RMSE and standard deviation observed data. The value for R⁴ for are 0.82. For E_{NS}, the value obtained are 0.98 which is, classified as excellent value. Value for RMSE and RSR is 0.56 and 0.44, which is very good value. 11 years of weather data (2000-2011) has been used in this study. Overall, the results indicated that the SWAT model can be an effective tool for prediction the river flow

SIMULASI ALIRAN SUNGAI DI KAWASAN TADAHAN SUNGAI KERTEH DARIPADA TEKNOLOGI GIS

ABSTRAK

Soil and Water Assessment Tool (SWAT) telah digunakan untuk meramal aliran sungai di kawasan tadahan Sungai Kerteh. Kawasan tadahan Sungai Kerteh terletak di daerah Kemaman dan sungai ini juga terletak berdekatan dengan pusat operasi pemprosesan petroleum di Malaysia. Sungai Kerteh mengalir ke Laut China Selatan dan kadangkala, bacaan kelajuan aliran sungai dipengaruhi oleh pasang surut laut. Sungai Kerteh juga terdedah kepada monsoon timur laut yang berlaku dari November hingga Mac. Kawasan tadahan Sungai Kerteh mempunyai luas kawasan sebanyak 27,000 hektar. 28 sub-tadahan telah dihasilkan dengan menggunakan perisian AVSWAT dan hanya sub-tadahan 13 dan sub-tadahan 28 digunakan untuk kajian ini. Model ini telah diuji dan dinilai dengan menggunakan nilai kecekapan Nash-Sutcliffe, E_{NS} , RMSE, pekali penentuan, R², dan RSR, nisbah RMSE dan sisihan piawai data pemerhatian. Nilai untuk R² ialah 0.82. Untuk E_{NS}, nilai yang diperolehi adalah 0.98 iaitu diklasifikasikan sebagai cemerlang. Nilai untuk RMSE dan RSR ialah 0.56 dan 0.44, iaitu nilai sangat baik. 11 tahun data cuaca (2000-2011) telah digunakan dalam kajian ini. Secara rumusannya, keputusan menunjukan model SWAT boleh dijadikan model efektif untuk meramal kelajuan aliran sungai.