VIRUS SCREENING OF CULTURED CARP AND TILAPIA SPECIES AND THE VIRUS SENSITIVITY OF CELL CULTURES FROM INDIGENOUS FISH SPECIES

By

JUAN DEANON ALBALADEJO

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Fisheries and Marine Science, Universiti Pertanian Malaysia

March 1994

1000383186

ACKNOWLEGDEMENTS

My sincere appreciation goes to my chairman, Dr. Hassan Hj. Mohd. Daud, for his assistance and guidance throughout the study. I am also grateful to the member of my supervisory committee, Dr. Faizah Shaharom, for her valuable comments.

I am indebted to Dr. James Richard Arthur, my mentor, for all his unselfish help and encouragement. Professor Dr. Mohd. Shariff Mohd. Din, who gave his unflinching support and assistance to enable me to complete this study.

I am thankful for the financial support provided by the International Development Research Centre (IDRC) of Canada and to the Malaysian government under the Intensive Research Priority Areas (IRPA) programme, without which it would have been impossible for me to pursue this study.

The technical assistance provided by Dr. Fauziah Bte. Othman and Mr. O.K. Ho of the Electron Microscopy Unit, Faculty of Veterinary Medicine and Animal Science, UPM are

ii

gratefully acknowledged. Special thanks for the technical support extended to me by Mr. Rosli Aslim, Mr. Yusaini Ahmad, Mr. Abdullah Jaafar, Ms. Zairina Raden Zainal, Mr. Samson Soon Min Ngen and Mdm. Sharifah Mohd. Yasin.

I also wish to record my special thanks to Mr. and Mrs. Paulino L. Manalo and children for the support, motivation and guidance. Fellow Filipino friends, Dr. James L. Torres, Ms. Nerissa Salayo, Ms. Linda A. Lumayag, Mdm. Susan L. Mayo and Mdm. Erlinda C. Lacierda who gave their much needed support and concern. To my fellow graduate colleagues in UPM and co-workers in Fish Health Section, Bureau of Fisheries and Aquatic Resources, my appreciation for the support they provided is duly acknowledged.

Accomplishment of this work would not have been possible without the moral support and love of my brothers and my only sister, Marissa. I dedicate this piece of work to the memory of my mother, Leonida and my grandmother, Teodora.

iii

PERPUSTAKAAN UNIVERSITI PERTANIAN MALAYSIA TERENGGANU

TABLE OF CONTENTS

																					Page
ACK	NOWLEI	GEMEN	ITS		•	•		•	•	•	•	•	•	•	•	•			•	•	ii
LIS	T OF F	IGURE	s.		•	•	•	•	•	•	•	•	•	•	•	•	•			•	vii
LIS	TS OF	PLATE	s.		•	•	•	•	•	•	•	•	•	•	•	•	•			•	viii
LIS	T OF A	BBREV	IATI	ONS	•	•	•	•	•	•	•	•	•	•		•	•			•	xiii
LIST	I OF F	ISH S	PECI	ES	•	•	•	•	•	•	•	•	•	•	•	•	•			•	xvii
ABST	FRACT	• •	•••	• •	•	•	•	•	•	•	•	•	•	•	•	•	•			•	xxi
ABSI	TRAK	• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•				xxiv
CHAP	PTER																				
I	GENE	RAL I	NTRO	DUC	CIC	N	•	•	•	•	•	•	•	•	•	•					1
II	REVI	EW OF	LIT	ERAI	UR	E	•	•	•	•	•	•	•	•	•	•	•	•			6
		s Iso layers						is •	h •	Ce •	•	•									7
	Proto Virus	cols ses .	for							n •	of •	F	is •	h •	•			•	•		15
	Monol	lopmer	as	an	Im	po	rt	ant	t i												2.0
		rus S					•			•	•	•	•	•	•	•	•	•	•		32
III	SPECI	SCRE	MMON	ILY	CU	LT					FI]	LA)	PI	A							83
		SULAR			14		• •	• •	• •	•	• •	• •	•	•	•	•	•	•	•		36
	Intro	ducti	on .	•	•	• •	• •	•	•	• •	• •	• •	•	• •	•	•	•	•	•		36
	Mater	ials	and	Met	hoo	ls	•	•	•	• •	• •	•	•	• •	•	•	•	•	•		38
		Cell Proce						'is	h	Sa	mp	oli	ng	ł							38
		11000									•	•	•	•			•	•	•		20

iv

	Viral Isolation Procedure	4 (
	Electron Microscopy Examination	42
	Results	42
	Virus Screening on Carp Species	43
	Virus Screening on Tilapia Species	53
	Discussion	63
IV	QUANTIFICATION OF VIRUS ISOLATES USING TISSUE CULTURE INFECTIVE DOSE AT 50% END-POINT (TCID ₅₀)	72
	Introduction	72
	Materials and Methods	74
	Cell Culture and Virus Preparation	74
	Virus Quantification Procedure	75
	Cell Culture Staining Procedure (May-Grunwald/Giemsa)	76
	Results	76
	Discussion	79
,	EXPERIMENTAL INFECTION VIA CO-HABITATION	
	AND PARENTERAL INOCULATION OF THE VIRUS	88
	Introduction	88
	Materials and Methods	93
	Experimental Set-up	93
	Cohabitation Trials	
		94
	Parenteral Inoculation	95
	Results	95
	Discussion	00
I	MORPHOLOGICAL DESCRIPTION OF PRIMARY MONOLAYERS DEVELOPED FROM SOME COMMONLY CULTURED FRESHWATER	
	FISHES IN MALAYSIA 1	09

V

VI

v

	Introduction	109
	Materials and Methods	112
	Fish Selection	112
	Tissue Sampling Procedure	112
	Growth Media Preparation	113
	Culturing of Primary Monolayers	114
	Subculturing and Staining of the Cell Monolayers	114
	Results	114
	Discussion	121
VII	DETERMINATION OF CELL MONOLAYERS OPTIMUM GROWTH REQUIREMENTS AND VIRUS SUSCEPTIBILITY STUDIES	123
	Introduction	123
	Materials and Methods	125
	Cell Monolayers Used	125
	Growth Requirements Determination Fetal Bovine Serum Concentrations Optimum Incubation Temperature	126 126 126
	Virus Susceptibility Studies Viruses Used	127 127 127 127
	Results	127
11	162 Colls Growth Corver at Different	
	Discussion	138
VIII	GENERAL DISCUSSION AND CONCLUSION	142
REFER	ENCES	150
BIOGR	APHICAL SKETCH	175

LIST OF FIGURES

Figure		Page
1	Mean Virus Titre Of Birnavirus-like Isolates Against BB Cells Over 7-Day Observation Period	. 78
2	Mean Virus Titre Of Herpesvirus-like Isolates Against BB Cells Over 7-Day Observation Period	. 78
3	Mean Virus Titre Of Iridovirus-like Isolates Against BB Cells Over 7-Day Observation Period	. 79
4	ONB Cells Growth Curve At Different Incubation Temperatures	. 133
5	PSH Cells Growth Curve At Different Incubation Temperatures	133
6	PSSn Cells Growth Curve At Different Incubation Temperatures	134
7	PGH Cells Growth Curve At Different Incubation Temperatures	134
8	PGP Cells Growth Curve At Different Incubation Temperatures	135
9	PSH Cells Growth Curve At Different Serum Concentrations	135
10	PSSn Cells Growth Curve At Different Serum Concentrations	136
11	PGP Cells Growth Curve At Different Serum Concentrations	136
12	ONB Cells Growth Curve At Different Serum Concentrations	137
13	PGH Cells Growth Curve At Different Serum Concentrations	137

vii

LIST OF PLATES

Plate	Page
1	Isolate A Cytopathic Effect (CPE) in TmB Cells. Development of the Necrotic Foci (Phase Contrast X 250)
2	Stained Normal TmB Cells (May- Grunwald/Giemsa X 250) 45
3	Stained Preparation of TmB Cells Showing Extensive CPE Induced by Isolate A (May-Grunwald/Giemsa X 100) 46
4	Isolate A Stages of Cellular Necrosis. Pyknosis (PK), and Karyolysis (KL) (May-Grunwald/Giemsa X 500)
5	Micrograph of Cell Culture Inoculated with Positive Filtrate of Isolate A Virus – like Particle Appeared Translucent and Ovoid in Shape (X 53,730)
6	Extensive Ballooning in Live TmB Cell Preparation Induced by Isolate B (DIC X 250) 47
7	Phase Contrast of Live Cell Preparation Showing Balloning of TmB Cells Infected with Isolate B (X 250) 48
8	Advance Stage of Cytopathic Effect Attributed to Isolate B Manifested as Well Demarcated Necrotic Foci of Live TmB Cell Preparation (DIC X 250) 48
9	Stained Normal EPC Cells (May-Grunwald/ Giemsa X 250) 49
10	Extensive Vacuolation of EPC Cells Infected with Isolate B (May- Grunwald/Giemsa X 500) 49

viii

11	Higher Magnification of Isolate B Shown as Virus-like Particle Ovoid in Shape with a Electron Dense Inner Core and Translucent Capsid (X 150,000)	50
12	Live EPC Cells Showing Ballooning and Cellular Granulation of Infected Cells with Isolate C (DIC X 500)	51
13	Micrograph of Isolate C Virus-like Particle Prepared from Infected EPC Cells (X 192,500)	52
14	Ultra thin Section of Infected EPC Cells with Isolate C Particle Showing an Electron Dense Inner Core and a Double Membrane Structure (X 250,000)	52
15	A Virion Seen Budding from the Surface of the Cell Membrane (X 192,500)	53
16	Isolate D Infected TmB Cells Showing Rounding (Ro), Granulation (Gr) and Vacuolation (Va) in the Cytoplasm (DIC X 500)	54
17	Second Stage Cytolytic Changes to TmB Cell Infected with Isolate D (Phase Contrast X 250)	55
18	Stained TmB Cell Sheet Showing the Vacuolation (Va), Rounding (Ro) and Karyolysis (KL) Induced by Isolate D (May-Grunwald/Giemsa X 500)	55
19	Electron Micrograph of the Virion in Semithin Cell Culture Section Infected with Isolate D Showing a Roundish Viral Particles with Fringes Suggestive of the Capsomeres (X 150,000)	56
20	Capsomeres of the Virion Clearly Visible from the Surface of the Particle (X 250,000)	6

ix

21	Corkscrew Swimming Behaviour Of Red Tilapia Hybrid
22	Ulceration of the Skin and Underlying Musculature
23	Marked Exophthalmia in Red Tilapia Hybrid Observed from Clinical Case 59
24	Live TmB Cell Sheet Showing Extensive Vacuolation of Affected Cells Infected with Isolate E (DIC X 250)
25	Necrotic Foci Shown in TmB Cells Infected with Isolate E (Phase Contrast X 500)60
26	Stained TmB Cells Showing Vacuolation and Rounding of Individual Cells (May-Grunwald/Giemsa X 500)
27	Margination of Chromatin Material in Stained TmB Cell Preparation (May- Grunwald/Giemsa X 1000)
28	Intranuclear Inclusion Bodies [Arrow] of Infected TmB Cells with Isolate E (May-Grunwald/Giemsa X 1000)62
29	Higher Magnification Virus - like Particle Showing Icosahedral Shape and Electron Dense Inner Core from Ultra thin Section of Infected TmB Cells with Isolate E (X 250,000)
30	Vegetative Stages of the Virus with Empty Capsids (X 250,000) 63
31	Coloured Common Carp from Experimental Test Fish Group Presented with Extensive Ecchymotic Haemorrhages of
	Outer Skin Surface

х

32	Experimental Fish with Active Infection Showing Pronounced and Numerous Epidermal Hyperplasia 98
33	Ecchymoses is Confined to Smaller Area of the Skin in Bigger Size Experimental Test Fish 98
34	Sparse Development of Petechial Haemorrhages and Presence of a Few Raised Scales were the Obvious Aberration Seen in Javanese Carp 99
35	Raised Sanguinous Mass Along Dorso- Lateral Surface and the Aberration Filled with Sanguinous Fluid was Noted
	in Tin-Foiled Barb
36	Fibroblast Type Cell from the Brain of Nile Tilapia, Representing the
	Stout and Large Subtype of the Fibroblastoid Origin (X 250) 116
37	Stained Preparation Showing Morphological Details of the Fibroblast Subtype (May-Grunwald/Giemsa X 250) 117
38	Live Cell Preparation of Javanese Carp Brain Belonging to the Fusiform and Small Fibroblast Subtype (X 250) 117
39	Stained Preparation of Fusiform Subtype (May-Grunwald/Giemsa X 250) 118
40	Live Preparation-Epithelial Type Cell Monolayer (X 250) 118
41	Stained Preparation - Granulated Epithelial Type Cell (May-Grunwald/ Giemsa X 250) 119
42	Stained Preparation - Agranular Epithelial Cells (May-Grunwald/Giemsa X 250)

xi

43	Mixed Epithelial and Fibroblast Type Live Cell Preparation from Red Tilapia Hybrid Peduncle (X 250)	120
44	Stained Preparation of the Mixed Type of Cell Monolayer (May-Grunwald/ Giemsa X 250)	120
45	Stained Epithelial Cell Monolayer from Tin-Foiled Barb Initiated from the Snout (May-Grunwald/Giemsa X 250)	130
46	Epithelial Cell Monolayer Started from the Peduncle Tissue of Javanese Carp (May-Grunwald/Giemsa X 250)	131
47	Distinct Epithelial Cells Originated from the Heart Tissue of Javanese Carp (May-Grunwald/Giemsa X 250)	131
48	Fibroblastic Cells Initiated from the Brain of Nile tilapia (May-Grunwald/ Giemsa X 250)	132
49	A Fibroblastic Cell Monolayer Started from the Heart Tissue of Tin-Foiled Barb (May-Grunwald/Giemsa X 250) 1	132

xii

LIST OF ABBREVIATIONS

AS Atlantic Salmon Gonad
BGV Blue Gill Virus
BB Brown Bullhead Trunk
BF-2 Bluegill Fry
CAR Fin
CCO Channel Catfish Ovary
CCVD Channel Catfish Virus Disease
CHSE-214 Chinook Salmon Embryo
cm Centimeter
cm ² Centimeter Square
CO ₂
CPE Cytopathic Effect
CRV Channel Catfish Reovirus
DNA Deoxyribonucleic Acid
EBSS Earle's Balanced Salt Solution
EDTA Ethylenediaminetetraacetate
EHNV · · · · · Enzootic Haemopoietic Necrosis Virus
EK-1
ELISA Enzyme-linked Immunosorbent assay
EQ-2 Eel Ovary
EPC Epithelioma Papulosum Cyprini

xiii

1

EUS Epizootic Ulc	erative Syndrome
EV-2	. Eel Virus-2
EVA Ee	l Virus American
EVE	l Virus European
EVEX Eel Virus Europ	pean Rhabdovirus
FAT Fluorescence And	tibody Technique
FBS Foet	tal Bovine Serum
FHM Fathead	Minnow Peduncle
FUDR	2'-deoxyuridine
GCK-84 Gras	ss Carp Kidney
GCRV Gras	s Carp Reovirus
GNV	Necrosis Virus
[³ H] Radio-	isotope Uridine
HEPES (N-[2-hydroxyethyl] [2-ethanesulfonic	
IC	Intracranial
IFAT Indirect Fluorescence Ant	ibody Technique
IHNV Infectious Haemopoietic	Necrosis Virus
IP	Intraperitoneal
IPNV Infectious Pancreatic	Necrosis Virus
IPT Immunoperoxidase Anti	body Technique
IU/ml International Units	per Milliliter
n	Meter

xiv

I

MEM •••••••••••••••• Minimum Essential Medium
MEM-4 ••••••••••••••••••••••••••••••••••••
MEM-10 Minimum Essential Medium with 10 % Serum
ml Milliliter
mM Millimolar
mm Millimeter
MOI Multiplicity of Infection
nm Nanometer
OMV Virus
ONB Brain
PFRVD Pike Fry Rhabdovirus Disease
pH Negative logarithm of Hydrogen Ion
PG Pike Gonad
PGH Puntius gonionotus Heart
PGP Puntius gonionotus Peduncle
PSH Puntius schwanenfeldii Heart
PSSn Puntius schwanenfeldii Snout
PTA Phosphotungstic Acid
RNA Ribonucleic Acid
rpm Revolution per minute
RTG-2 · · · · · · · · · · · · · · Rainbow trout Gonad
SDS-PAGE Sodium Dodecyl Sulfate- Polyacrylamide Electrophoresis

xv

SHF Striped Snakehead Fin . Sand Goby Virus SGV STE-137 Steelhead Trout Embryo . Spring Viremia of Carp Virus SVCV . or Infectious Dropsy TCID₅₀ Tissue Culture Infective Dose at 50% TEM Transmission Electron Microscopy TEV Tadpole Edema Virus . . . TK-1Tilapia kidney TmB Tilapia mossambica bulbus arteriosus TO-2 Tilapia Ovary Ulcerative Disease Rhabdovirus UDRV $\mu g/ml$ Microgram per milliliter . . VEN . Viral Erythrocytic Necrosis VHSV . Viral Haemorrhagic Septicaemia Virus or Egtved virus vsv Vesicular Stomatitis Virus WC-1 Walleye Trunk WO-1Walleye Ovary .

Diarne Pish

xvi

LIST OF FISH SPECIES

Atlantic Cod Gadus morhua
Atlantic Menhaden Brevoortia tyrannus
Atlantic Salmon Salmo salar
Ayu Plecoglossue altivelis
Bait Minnow Notemigonus crysoleucas
Barbel Barbus barbus
Bighead Carp Aristicthys nobilis
Bluegill Lepomis macrochirus
Blue-eyed Cichlid Cichlasoma spirilum
Bream Abramis abrama
Brown Bullhead Ictalurus nebulosus
Channel Catfish Ictalurus punctatus
Chinook Salmon Oncorhynchus tshawytscha
Chum Salmon Oncorhynchus keta
Cobitid Loach Misgurnus anguillacoubulatus
Common Carp Cyprinus carpio
Convict Cichlid Cichlosoma nigrofasciatum
Crucian Carp Carassius carassius
Dab Limanda limanda
Discus Fish
European Eel
European Sheatfish

xvii

Fathead Minnow Pimephales promela
Goldfish
Gold Dust Tilapia Sarotherodon aureu
Golden Ide
Grass Carp Ctenophyngodon idell
Grayling Thymallus thymallu
Gudgeon Gobio gobio
Guppy Guppy Guppy Guppy Poecilia reticulata
Japanese Eel Anguilla japonica
Japanese Flounder Paralicthys olivaceus
Javanese Carp
Lamprey
Minnows Phoxinus phoxinus
Mossambique Mouthbrooder Oreochromis mossambica
Muskellunge Esox masquinongy
Nase Chonrostoma nasus
Nile Tilapia
Northern Pike Esox lucius
Orange Chromide Cichlid Etroplus maculatus
Paradise Fish Macropodus opercularis
Pacific Cod Gadua macrocephalus
Rainbow Trout Oncorhynchus mykiss
Ramirez Dwarf Cichlid Apistogramma ramirezi

xviii

Redbelly Tilapia Tilapia zilla
Red Fin Perch Perca fluviatilis
Red-Fin Cigar Shark Leptobarbus hoevenii
Red Tilapia Hybrid Oreochromis nilotica X Oreochromis mossambica
Rio Grande Cichlid Cichlasoma cyanoguttatum
Roach Rutilus rutilus
Rudd Scardinius erytrophthalmus
Sand Goby Oxyeleotris marmoratus
Seabass Dicentrarchus labrax
Silver Bream Blicca bjoernka
Sockeye Salmon Oncorhynchus nerka
Smelt Osmerus eperlanus
Smooth Dogfish Mustelus canis
Steelhead Trout
Striped Snakehead Ophiocephalus striatus
Sucker Catostomus commersoni
Tench Tinca vulgaris
Tilapia Hybrid • • • • • • • • • Oreochromis nilotica X Oreochromis aureus
Tin-Foil Barb Puntius schwanenfeldii
Turbot
Walking Catfish
Nalleye Stizostedion vitreum vitreum

xix

V

Yamamae Oncorhynchus masou Yellow Tail Seriola quinqueradiata Zebra Fish Brachydano rerio

tentatively classified into three groupings, namely Exceptings were based on the ultrastructural morphology and syncpathology observed. Distinct virus-like cytopathic effects were noted on four established fish cell lines vis. CHEB-214, GCL-84, EPC and THB, stillzed in the stody. The virus-like particles, from pelleted infected cell cultures and clarified cell culture supermatant, were virusliked under transmission electron microscopy.

Virus titration utilizing BB cells for the Directirus-like isolate achieved a mean titre of 7.40 X 10² TCID. val. Relatively bigh virus titres were also recorded

XX

Abstract of the thesis submitted to the Senate of the Universiti Pertanian Malaysia in partial fulfilment of the requirements for the degree of Master of Science

VIRUS SCREENING OF CULTURED CARP AND TILAPIA SPECIES AND THE VIRUS SENSITIVITY OF CELL CULTURES FROM INDIGENOUS FISH SPECIES

Ву

Juan Deanon Albaladejo

March 1994

Chairman

Faculty

:

:

Dr. Hassan Hj. Mohd. Daud Fisheries and Marine Sciences

Three virus particles were isolated in vitro and tentatively classified into three groupings, namely Herpesviridae, Birnaviridae and Iridoviridae. Virus groupings were based on the ultrastructural morphology and cytopathology observed. Distinct virus-like cytopathic effects were noted on four established fish cell lines CHSE-214, GCK-84, EPC and TmB, utilized in the viz. The virus-like particles, from pelleted infected study. cell cultures and clarified cell culture supernatant, were visualized under transmission electron microscopy.

Virus titration utilizing BB cells for the Birnavirus-like isolate achieved a mean titre of 7.40 X 10^5 TCID₅₀/ml. Relatively high virus titres were also recorded

xxi

from the other two isolants, with a mean virus titres of 7.16 X 10⁵ TCID_{so}/ml for Herpesvirus-like and 6.46 X 10⁵ TCID_{so}/ml for Iridovirus-like. Cohabitation infection of fish infected with Herpesvirus-like on naive colouredstrain common carp (Cyprinus carpio) resulted in the production of epidermal hyperplastic reaction. Correspondingly, infection was amplified in smaller fish (5-6 cm) with mortality recorded at 40% over a 21-day observation period. Epidermal hyperplasia in larger size fish (15-20 cm) was however somewhat restricted. In interspecies comparative study of Herpesvirus-like infection, atypical lesions which were seen as localized petechial haemorrhages and raised scales were noted in Javanese carp (Puntius gonionotus). In tin-foiled barb (P. schwanenfeldii) infection, the fish exhibited raised sanguinous masses along the dorso-lateral surface of the body. Results from the parenteral inoculation of virus infected cell culture filtrate was inconclusive.

A total of 18 monolayers were started from five commonly cultured species of carp and tilapia. These were grouped according to the cells type observed, i.e.

xxii

fibroblast, epithelial and mixed-type. Susceptibility to the isolated viruses and to an established fish virus, the Infectious Pancreatic Necrosis Virus (IPNV) of Sp strain, revealed that the cell monolayers from Oreochromis nilotica Brain (ONB) and P. schwanenfeldii heart (PSH) successfully supported the virus replication and produced relatively high titres. Growth requirements of the established cells, serum concentrations and incubation temperature were also examined.

dan secara tentatif diklasifikasikan kopada higa kumpulan, ikitu Merpeswiridze, Birneviridze dan Tridovirides. Gelenjan virus edalah berdasarkan kepada merfelogi atroktur titra dan pemernatian patologi sel. Kessa sitopatik myata dilihat dalam empat kultur sel ikan initu fass-214, GCI-34, EPC dan InR, yang digunakan dalam kejian ini. Partikel seskan virus dari pelet kultur sel yang dijangkiti dan juga mupernatan kultur sel yang ditapia

Titrasi terhadap isolat seakan Birnevirus menggunakan sel 88 mencapai nilai purata (7.60 X 10° DIR7,,/mly. Titer yang tinggi juga diperolehi dari dua isolat lain isitu

xxiii