THE ROLE OF MEMBRANE SURFACE CHAPGE ON PROPERTIES AND THE PERFORMANCES OF POLYMERIC MEMBRANES FOR PROTEM APPLICATION

AR D/O BASKARAN

TERENGGANU

Perpustakaan 1.100051102 niversiti Malaysia Terengganu (UMT)

1100051102

The role of membrane surface charge on properties and the performances of polymeric membranes for protein application / Panimalar d/o Baskaran.

PERPUSTAKAAN UNIVERSITI MALAYSIA TERENGGANU (UMT)

11000	ENGGANU 51102
_	

elsys/ 2107 Perpustaka

HAK MILIK PERPUSTAKAAN UMT

THE ROLE OF MEMBRANE SURFACE CHARGE ON THE PROPERTIES AND THE PERFORMANCES OF POLYMERIC MEMBRANES FOR PROTEIN APPLICATION

By Panimalar D/O Baskaran

Research report submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology (Environmental Technology)

Department Of Engineering Science Faculty of Science and Technology UNIVERSITY MALAYSIA TERENGGANU SESSION 2007

1100051102

JABATAN SAINS KEJURUTERAAN FAKULTI SAINS DAN TEKNOLOGI UNIVERSITI MALAYSIA TERENGGANU

PENGAKUAN DAN PENGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk: THE ROLE OF MEMBRANE SURFACE CHARGE ON THE PROPERTIES AND PERFORMANCES OF POLYMERIC MEBRANES FOR PROTEIN APPLICATION oleh PANIMALAR A/P BASKARAN No.Matrik UK7714 telah diperiksa dan semua pembetulan yang disarankan telah dilakukan. Laporan ini dikemukakan kepada Jabatan Sains Kejuruteraan sebagai memenuhi sebahagian daripada keperluan memperolehi Ijazah SARJANA MUDA TEKNOLOGI (ALAM SEKITAR), Fakulti Sains dan Teknologi , Universiti Malaysia Terengganu.

Disahkan oleh:

Penyelia Utama Nama: En. Asmadi Ali

Cop Rasmi:

ASMADI ALI @ MAHMUD Pensyarah Jabatan Sains Kejuruteraan Fakulti Sains dan Teknologi Universiti Malaysia Terengganu ·21030 Kuala Terengganu.

Penyelia Kedua

Nama:Dr. Amiza bt Mat Amin PROF. MADYA DR. AMIZA MAT AMIN Cop Rasmi: Jabatan Sains Makanan Fikutti Agroteknologi dan Sains Makanan

Universiti Malaysia Terengganu 21030 Mengabang Telipot Kuala Terengganu, Terengganu.

(Mars of

Penyelia Ketiga

Nama: Dr. Nora'aini bt Ali

Cop Rasmi: DR. NORA'AINI BINTI ALI Ketua Jabatan Sains Kejuruteraan Fekulti Sains dan Teknologi Universiti Malaysia Terengganu 21030 Kuala Terengganu 24.5. %

Tarikh: 04.5.2007

Tarikh: 27/5/07.

ii

.

Ketua Jabatan Sains Kejuruteraan

Nama: Dr. Nora'aini bt Ali

Cop Rasmi:

DR. NORA'AINI BINTI ALI Ketua Jabatan Sains Kejuruteraan Pekutti Sains dan Teknologi Universiti Metaysia Terengganu 21030 Kuala Terengganu

Tarikh:..2.7./5/07.....

ACKNOWLEDGEMENT

I would like to express my appreciation and gratitude to my supervisor, En.Asmadi Ali for his guidance and invaluable assistance. I would also like to thank my cosupervisors, Dr. Amiza Mat Amin and Dr. Nora'aini Ali for their guidance. My heartfelt gratitude is forwarded to En.Rahman, En.Razali, En.Razman and all the staffs of Engineering Department, KUSTEM.

Not forgetting my thanks to my parents for their support to build confidence in me to carry out this project. I would also like to thank my coursemates Suryani and Mardiah and all those who had contributed directly and indirectly in helping me to carry out and to complete my research project.

Thank You.

Perpustakaan Universiti Malaysia Terenggánu (UMT)

TABLE OF CONTENTS

CONTENTS	PAGE
TITLE PAGE	
CONFORMATION AND APPROVAL OF REPORT	11
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS	xi
LIST OF APPENDIX	xii
ABSTRACT	xiii
ABSTRAK	xiv

CHAPTER I INTRODUCTION

1.1	Definition of Membrane	1
1.2	Membrane Separation Process	2
1.3	Basic Application of Membrane Technology	3
1.4	Problem Statement	5
1.5	Research Objective	8
1.6	Research Scope	8

CHAPTER II LITERATURE REVIEW

2.1	Ultrafiltration Membrane	10
2.2	Membrane Surface Charge	12
2.3	Zeta Potential	15
2.4	Bovine Serum Albumin	18
2.5	Protein Separation	19
2.6	Application of Ultrafiltration Membrane	
	In Protein Separation	20

CHAPTER III METHODOLOGY

3.1	Polysulf	fone (PSF)	22
3.2	N-Methy	yl-2- Pyrrolidone	23
3.3	Water		24
3.4	Membra	ane Preparation	24
	3.4.1	Preparation of Binary Dope Formulation	25
	3.4.2	Titration	26
	3.4.3	Preparation of Ternary Dope Formulation	28
	3.4.4	Fabrication of PSF Flat Sheet Membrane	29
	3.4.5	Scanning Electron Microscopy (SEM)	30
3.5	Zeta Por	tential Measurement	31
3.6	Bovine	Serum Albumin (BSA) Solution	
	Prepara	tion	32
3.7	Membra	ane Performance Measurement	34
	3.7.1	Pure Water Permeation	34
	3.7.2	Sodium Chloride Permeation	35

BSA Protein Solution Rejection	36
	BSA Protein Solution Rejection

3.7.4 Flux Rate and Percentage of Rejection 37

CHAPTER IV RESULTS AND DISCUSSION

4.1	Pure Water Flux Measurement	39
4.2	Sodium Chloride Rejection	42
4.3	Effect of Membrane Surface Charge In	
	Separating BSA Protein	45
4.4	Effect Of Polymer Concentration	
	On Membrane Morphology Structure	51

CHAPTER V CONCLUSION AND RECOMMENDATION

5.1	Conclusion	55
5.2	Recommendation	57

REFERENCES	58
APPENDIX	63
CURRICULUM VITAE	77

LIST OF TABLES

Table No.		Page
3.1	Ternary dope prepared at different formulations	29
4.1	Permeability of membrane at different polymer concentration	41
4.2	Shows the salt rejection at different polymer concentration with different applied pressure	44
4.3	Shows the BSA protein rejection at different polymer concentration with different applied pressure	47

LIST OF FIGURES

Figure No.		Page
1.1	Basic membrane separation process.	2
1.2	Classification of membrane processes	3
2.1	Schematic representation of the change in	
	surface potential with distance.	17
3.1	Structure of Polysulfone.	23
3.2	Structure of N-methyl-2-pyrrolidone.	24
3.3	Overview of membrane preparation process	25
3.4	Apparatus used in dope preparation.	26
3.5	Apparatus set up for titration	27
3.6	Casting machine that used to fabricate membrane.	29
3.7	Full set of Scanning Electron Microscope.	31
3.8	Electro Kinetic Analyzer.	32
3.9	Apparatus set up for permeation test.	34
4.1	Permeability response regression lines and equation for membrane of different PSF formulation.	41
4.2	Graph shows flux of NaCl permeation for membranes consist of different polymer concentration.	43
4.3	Graph shows percentage of rejection for membranes consist of different polymer concentration.	43

4.3	Graph shows flux of BSA permeation for membranes consist of different polymer concentration.	46
4.4	Graph percentage of rejection for membranes consist of different polymer concentration.	46
4.5	Zeta potential value at different pH for membrane of different polymer concentration.	48
4.7	Intrinsic and self rejection of protein by membrane	51
4.8	Cross section of PSF membrane of different polymer concentration.	54

LIST OF SYMBOL/ABBREVIATIONS

Symbol/Abbreviation

PSF	-	Polysulfone
NMP	-	N-Methyl-2-Pyrrolidone
H ₂ O	E.	Water
UF		Ultrafiltration
MF	-	Microfiltration
MWCO	-	molecular weight cut off
BSA	-	Bovine Serum Albumin
EKA	-	Electro Kinetic Analyzer
RTU		Remote Titration Unit
Da	-	Dalton
mV	-	milivolt
NaCl	-	Sodium Chloride
P_m	-	Permeability
C_{p}	S	concentration of permeate
C_{f}	-	concentration of feed
Cr	-	concentration of retentate solution
C_b	-	bulk concentration

LIST OF APPENDICES

- A Preparation of Phosphate Buffer between pH 5.8 7.8
- B BSA Protein Calibration Curve
- C NaCl Calibration Curve
- D Pure water flux and Rejection data for PSF 11%
- E Pure water flux and Rejection data for PSF 13%
- F Pure water flux and Rejection data for PSF 15%
- G Pure water flux and Rejection data for PSF 17%
- H Zeta Potential Value

ABSTRACT

Ultrafiltration has become an alternative technology for protein separation over conventional bioseparation processes because of its high throughput of product. Although ultrafiltration is a useful method for protein separation, it is prone to biofouling. Fouling can be reduced by using membranes with suitable charge to the solute being filtered and this could also allow selective separation. A study to investigate the role of membrane surface charge and the influence of different polymer concentration on ultrafiltration membrane performance for protein separation has been performed. Asymmetric ultrafiltration membranes were produced using ternary composition consist of polysulfone, N-methyl-2-pyrrolidone and water by a dry/wet phase inversion using an electrically controlled flat sheet membrane casting machine. Based on BSA ultrafiltration experiment, rejection ranging from 94.3% to 100% was obtained for membranes fabricated with polymer concentrations of 11wt%, 13wt%, 15wt% and 17wt%. The optimum polymer concentration for protein separation is 17wt% which gave 100% rejection. A negative Zeta Potential (ZP) was obtained for all the membranes that consist of different polymer concentration. The most optimum ZP value for 100% BSA protein removal was -12.3mV, obtained for 17wt% membrane. This study has proposed that membrane with a higher negative charge is a suitable membrane for BSA protein separation. This research has indicated that polymer concentration and membrane surface charge affects the membrane performance and structural properties, consecutively enhancing the membranes ability for BSA separation.