

1100038659

1100038659

1. 2162

The corrosion behavior of aisi 1018 mild steel in presence of palm olein and lubricating mineral oil.

	ENGGAL	0003		<u>8</u> .
)	000			
				_
				1
	-			
	-	1	- Second	
	- 1			
	-			

HAK MILIK

PERPUSTAKAAN KUSTEM

PERPUSTARAAN

t p 15 (7 27 0.05

THE CORROSION BEHAVIOR OF AISI 1018 MILD STEEL IN PRESENCE OF PALM OLEIN AND LUBRICATING MINERAL OIL

By

Ong Tang Hong

Thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Chemical Sciences)

Department of Chemical Sciences Faculty of Science and Technology KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA 2005

1100038659

11 1 13

JABATAN SAINS KIMIA FAKULTI SAINS DAN TEKNOLOGI KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA

PENGAKUAN DAN PEGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk: The Corrosion Behavior of AISI 1018 Mild Steel in Presence of Palm Olein and Lubricating Mineral Oil Oleh Ong Tang Hong No. Matrik UK 7571 telah diperiksa dan semua pembetulan yang disarankan telah dilakukan. Laporan ini dikemukakan kepada Jabatan Sains Kimia sebagai memenuhi sebahagian daripada keperluan memperolehi Ijazah Sarjana Muda Sains Sains Kimia. -Fakulti Sains dan Teknologi, Kolej Universiti Sains dan Teknologi Malaysia.

Disahkan oleh:

1. Mitch

Penyelia Utama Nama: (Associate Prof. Dr. Misbahul Mohd Amin) Cop Rasmi:

PROF. MADYA Dr. MISBAHUL MOHD AMIN M.Sc.M Phill., Ph.D. LMPMAI, MIIM, MNYAS(USA) Department of Chemistry Faculty of Science & Technology University College of Science & Technology Malaysia (KUSTEM) Meng. Telipot 21030 Kuala Terengganu

WAN MOHD NORSANI WAN NIK

Penyelia Kedua

Pensyarah Kejuruteraan MakanikalNama: (Dr. Wang Norsani Want Nikan Sains KejuruteraanCop Rasmi:Fakulti Sains dan TeknologiKolej Universiti Terengganu21030 Kuala Terengganu.

Ketua Jabatan Sains Kimia

Nama: (Associate Prof. Dr. Ku Halim Ku Bulat) PROF. MADYA DR. KU HALIM KU BULAT Cop Rasmi: Jabatan Sains Kimia Fakulti Sains dan Teknologi Kolej Universiti Sains dan Teknologi Malaysia 21030 Kuala Terengganu. Tel: 09-6683257

Tarikh: 7.4.2000

Tarikh: 7.4.05

Tarikh:

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude to my main supervisor, Associate Professor Dr. Misbahul Mohd. Amin for his fullest support, guidance and valuable advices. Without his guidance, I would not be able to learn so much in the progress of completing this final year project. Not forgetting also Dr. Wan Norsani Wan Nik, my associate supervisor whom has helping me to solve the problem during the progress of completing this final year project.

Besides that, I would like to thank Dr. Jurrifah as our coordinator who always tolerance and give us enough time to complete our final year project.

Not forgetting, special thank to Mr. Mohamad Nasir Abdullah whom teach me the actual way to operate the scanning electron microscope (SEM) and energy dispersive analysis of *X*- ray (EDAX). Appreciate is also extend to Mrs. Asbah, Mr. Jamal, Mr. Asrul, Mr. Mohamad Zin and others laboratory assistance their advices and help.

Finally, I would also like to recite full appreciation for my loving family members and friends for their support and encouragement.

TABLE OF CONTENTS

э

	Page
APPROVAL FORM	ii
ACKNOWLEDGEMENTS	iii
LIST OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiii
LIST OF APPENDICES	xv
ABSTRAK	xvi
ABSTRACT	xvii

CHAPTER 1: INTRODUCTION

1.1	Background of the Study	1
1.2	Corrosion of Metal	3
	1.2.1 Introduction of Corrosion1.2.2 Corrosion Theory	3 3
1.3	Properties of Palm Oil	5
	1.3.1 Introduction of Palm Oil	5
	1.3.2 Chemicals Properties of Palm Oil	5
1.4	Properties of Lubricating Oil	7
	1.4.1 Introduction of Lubricating Oil	7
	1.4.2 Physical Properties of Lubricating Oil	8
	1.4.3 Chemicals Properties of Lubricating Oil	8

2

1.5	Carbon Steel (Mild Steel)	9
1.6	Objectives	10

CHAPTER 2: LITERATURE REVIEW

*

2.1	General	11
2.2	Corrosion Behavior of Carbon Steel 2.2.1 Weight Changes Measurement 2.2.2 Corrosion Rate of Reaction	12 12 13
2.3	 Metal Oxidation and Corrosion 2.3.1 Oxidative Reaction of Metals with Oxygen, Sulfur and Halogens 2.3.2 Thermodynamics of Metal Oxidation 2.3.3 Oxidation Rate 	13 14 15 16
2.4	The Degradation Involving Petroleum Product and Corrosion 2.4.1 Sulfur Content of Petroleum Product	16 16
2.5	Component Effecting Changes on Palm Oil	17
2.6	Corrosion of Carbon Steel2.6.1 Formation Rates of Rust Layers2.6.2 Chemical Mechanism of Carbon Steel Corrosion	17 18 19
2.7	Types of Corrosion2.7.1Uniform Corrosion2.7.2Intergranular Corrosion2.7.3Galvanic Corrosion2.7.4Crevice Corrosion2.7.5Pitting Corrosion2.7.6Erosion Corrosion2.7.7Stress Corrosion Cracking2.7.8Biological Corrosion2.7.9Selective Leaching	 19 19 20 20 21 22 22 23 23 24
2.8	Types of Corrosion for Mild Steel 2.8.1 Passivity	24 25
2.9	Corrosion Metallographic Specimen Preparation 2.9.1 Sampling	26 26

2.9.2	Mounting	26
2.9.3	Grinding	27
2.9.4	Polishing	27
2.9.5	Etching	27

.

CHAPTER 3: METHODOLOGY

3.1	Metal	Preparation	28
	3.1.1	Scope	28
	3.1.2	Apparatus and Reagents	28
	3.1.3	Procedure	28
3.2	Corros	sion Test	30
	3.2.1	Scope	30
	3.2.2	Apparatus and Reagents	30
	3.2.3	Procedure	31
3.3	Total	Acid Number (TAN) Test	33
	3.3.1	Scope	33
	3.3.2	Apparatus and Reagents	33
	3.3.3	Test Procedure	34
	3.3.4	Calculation of Total Acid Number	35
3.4	Metal	Analysis	36
	3.4.1	Scope	36
	3.4.2	Metal Preparation for SEM, EDAX and Polarized	36
	90	Microscope	

CHAPTER 4: EXPERIMENTAL RESULT AND DISCUSSION -

4.1	Weight Loss	39
4.2	Corrosion Rate of Mild Steel 4.2.1 Effect of Heat Treatment	44 45
4.3	Total Acid Number (TAN)4.3.1 Increased of TAN in Palm Base Oil4.3.2 Increased of TAN in Commercial Lubricant Oil	52 53 53
4.4	Morphological Study 4.4.1 Pitting Mechanism	60 63

4.4.2	Mild Steel in Palm Base Oil	64
4.4.3	Mild Steel in Lubricant Oil	70
4.4.4	Oil with Compressed Oxygen Supply	74
4.4.5	Oil Supply with Water Containing Aeration	76
4.4.6	Oil in Presence of Water	79

CHAPTER 5: CONCLUSION AND SUGGESTIONS

5.1	Conclusion	81
5.2	Suggestion for Future Work	82

83

85

90

REFERENCES

APPENDICES

CURRICULUM VITAE

LIST OF TABLE

Table		Page
Table 1.1	List of component fatty acids in most commercial palm oil.	6
Table 1.2	List of chemical composition in mild steel	9

LIST OF FIGURES

Figure		Page
Figure 4.1	Variation of weight loss with exposure time for AISI 1018 mild steel with coated RBD palm olein oil and used hydraulic oil at the temperature of 150°C and in different environment condition.	41
Figure 4.2	Variation of weight loss with exposure time for AISI 1018 mild steel with coated Marvel Engine oil and Shell Tellus 46 oil at the temperature of 150°C and in different environment condition.	42
Figure 4.3	Variation of weight loss with exposure time for AISI 1018 mild steel with coated both palm based oil and commercial lubricant oil at the temperature of 60°C and in different environment condition.	43
Figure 4.4	Variation of corrosion rate with exposure time for AISI 1018 mild steel total immersed in both palm based oil and lubricant oil at the temperature of 150°C.	46
Figure 4.5	Variation of corrosion rate with exposure time for AISI 1018 mild steel with oil containing aeration in both palm based oil and lubricant oil at the temperature of 150°C.	47
Figure 4.6	Variation of corrosion rate with exposure time for AISI 1018 mild steel with water containing aeration in both palm based oil and lubricant oil at the temperature of 150°C.	48
Figure 4.7	Variation of corrosion rate with exposure time for AISI 1018 mild steel immersed in both palm based oil and lubricant oil at the temperature of 60°C.	49
Figure 4.8	Variation of corrosion rate with exposure time for AISI 1018 mild steel in presence of 5% of water both palm based oil and lubricant oil at the temperature of 60°C.	50

Figure

Figure 4.9	Variation of corrosion rate with exposure time for AISI 1018 mild steel in presence of 10% of water in both palm based oil and lubricant oil at the temperature of 60°C.	51
Figure 4.10	Total Acid Number (TAN) changes when AISI 1018 mild steel immersed in both palm based oil and lubricant oil at the temperature of 60°C.	55
Figure 4.11	Total Acid Number (TAN) changes when AISI 1018 mild steel immersed with oil content 5% of water in both palm based oil and lubricant oil at the temperature of 60°C.	56
Figure 4.12	Total Acid Number (TAN) changes when AISI 1018 mild steel immersed in both palm based oil and lubricant oil at the temperature of 150°C.	57
Figure 4.13	Total Acid Number (TAN) changes when AISI 1018 mild steel immersed with oil containing aeration in both palm based oil and lubricant oil at the temperature of 150°C.	58
Figure 4.14	Total Acid Number (TAN) changes when AISI 1018 mild steel immersed with water containing aeration in both palm based oil and lubricant oil at the temperature of 150°C.	59
Figure 4.15	AISI 1018 mild steel immersed in used hydraulic oil at the temperature of 150°C for 700 hours with magnification 200x.	61
Figure 4.16	AISI 1018 mild steel immersed in RBD palm olein oil with water containing aeration at the temperature of 150°C for 600 hours with magnification 200x.	61
Figure 4.17	AISI 1018 mild steel immersed in used hydraulic oil in presence of 5% water at the temperature of 60°C for 168 hours with magnification 500x.	62
Figure 4.18	SEM microphotograph of mild steel immersed with aeration in RBD palm olein oil for 700 hours at the temperature of 150°C.	66

Figure

Figure 4.19	EDAX spectrum for a precipitate formed of mild steel coupon in RBD palm olein oil with aeration supply at the temperature of 150°C for 700 hours.	67
Figure 4.20	SEM microphotograph of a stress cracking formed on mild steel in immersed palm based oil with water containing aeration supply at the temperature of 150°C for 600 hours.	68
Figure 4.21	EDAX spectrum for a precipitate formed of mild steel coupon with immersed in palm based oil with water containing aeration supply at the temperature of 150°C for 600 hours.	69
Figure 4.22	SEM microphotograph of mild steel immersed in used hydraulic oil for 700 hours at the temperature of 150°C with magnification of 2000x.	71
Figure 4.23	EDAX spectrum for a precipitate of mild steel coupon in immersed in used hydraulic oil for 700 hours at temperature of 150°C.	72
Figure 4.24	Microphotograph shown AISI 1018 mild steel immersed in used hydraulic oil at the temperature of 60°C for 168 hours with magnification 200x.	73
Figure 4.25	Microphotograph shown AISI 1018 mild steel immersed in Shell Tellus 46 lubricant oil with compressed oxygen supply at the temperature of 150°C for 700 hours.	75
Figure 4.26	Microphotograph shown AISI 1018 mild steel immersed in Marvel Engine lubricant oil with water containing aeration supply at the temperature of 150°C for 600 hours.	76
Figure 4.27	Microphotograph shown AISI 1018 mild steel immersed in used hydraulic oil with water containing aeration supply at the temperature of 150°C for 600 hours.	77
Figure 4.28	Microphotograph shown AISI 1018 mild steel immersed in Marvel Engine oil in presence of 5% water at the temperature of 60°C for 168 hours.	79

Figure

Page

Figure 4.29	Microphotograph shown AISI 1018 mild steel immersed in	
	used hydraulic oil in presence of 10% water at the	
	temperature of 60°C for 168 hours with magnification 500x.	80

LIST OF ABBREVIATIONS

Abbreviation

AISI		American Iron and Steel Institute
С	-	Carbon
CuO ₂	-	Copper Oxide
EDAX	-	Energy Dispersive Analysis of X-rays
Fe	-	Iron
Fe ²⁺	-	Ferrous Ions
Fe ³⁺	-	Ferric Ions
FeO ₂	(-	Ferrous Oxide [Iron (II) Oxide]
Fe ₂ O ₃	-	Ferric Oxide [Iron (III) Oxide]
Fe(OH) ₂	-	Iron Hydroxide
g	-	Gram
H ₂ O	÷	Water
HCI	-	Hydrochloric Acid
КОН		Potassium Hydroxides
mg KOH/g	-	Milligram Potassium Hydroxides per gram
Mn	-	Manganese
ml	-	Milliliter
O ₂		Oxygen

Abbreviation

Р	-	Phosphorus
PORIM	-	Palm Oil Research Institute of Malaysia
R	÷	The Corrosion Rate of Reaction
RH	÷	High Relative Humilities
S	æ.	Sulfur
SEM	-	Scanning Electron Microscope
SiO ₂	-	Silica
t	-	Time of the Exposure in Hour
TAN	-	Total Acid Number
TI	()	Total Immersion
WA	-	Immersion with Aeration
WB	-	Immersion with Water Containing Aeration
wt%		Weight of water
°C	-	Celsius
ΔG	-	Free Energy Changes
ΔH	-	Enthalpy
%	÷	Percentage

LIST OF APPENDICES

Appendix		Page
Appendix 1	Data for weight change measurement	85
Appendix 2	Data for Total Acid Number (TAN)	86
Appendix 3	Microphotograph for morphological study	88
Appendix 4	Data for energy dispersive analysis of X-rays	89

PRESTASI PENHAKISAN KELULI LEMBUT SISI 1018 DENGAN KEHADIRAN MINYAK SAYURAN DAN MINYAK PELINCIR GALIAN

ABSTRAK

Minyak berasaskan kelapa sawit dan minyak pelincir telah digunakan untuk menyelidik kelakuan pengaratan logam 'mild steel' berjenis AISI 1018 dalam keadaan yang berlainan pada suhu 150°C (misalnya i. rendaman dalam minyak sahaja, ii. rendaman dengan memperanginkan dan rendaman dengan kehadiran air dan memperanginkan) dan dengan kehadiran air dalam minyak pada suhu 60°C. Logam berkarat itu diselidik dengan menggunakan kaedah penentuan kehilangan jisim kepingan logam. Dengan pengunaan kaedah ini didapati berat susut semua logam sampel bertambah adalah bergantung kepada masa pendedahan. 'Polarized Microscope' dan 'Scanning Electron Microscope' (SEM) telah digunakan untukmenentukan benda morfologi yang hadir pada permukaan logam 'mild steel' berjenis AISI 1018. Manakala energy dispersive X-rays (EDAX) digunakan untuk mengesankan kehadiran bahan yang mendap daripada larutan yang telah dilekatkan pada permukaan logam. Pada suhu 60°C, mendapan pada permukaan logam adalah mudah disingkirkan daripada permukaan logam. Sebaliknya, ia adalah kekal pada permukaan logam pada suhu 150°C. Keputusan EDAX menunjukkan pengoksidaan logam berlaku pada kedua-dua suhu dengan kehadiran minyak kelapa sawit dan minyak pelincir. Manakala bawah SEM lubang kecil dapat diperhatikan pada logam yang rendam dalam 'Used Mineral Oil'.

ABSTRACT

The corrosion behavior of A1S1 1018 mild steel in presence of palm olein, synthetic palm oil, mineral oil and used mineral oil was investigated. Metal coupons were subjected to different environment conditions such as i. total immersion, ii. immersion with aeration and iii. immersion with water containing aeration. The test temperatures were 60°C and 150°C. The weight change measurement was used to determine the corrosion rate. Polarized microscope and scanning electron microscope (SEM) were used to determine scale morphologies of mild steel surface. Precipitate formed on the mild steel surface were detected using energy dispersive *X*-rays (EDAX). The weight lost of all coupons increased with exposure period. At the temperature of 60°C, the deposits formed on the mild steel were easily removed from metal surface, while the deposits film was much more adherent for 150°C case. Referring to EDAX results, it was found that the deposits film of mild steel in presence of used mineral lubricating oil and palm olein were consist largely of oxidized metal at both temperatures. From SEM microphotograph, severe pitting was observed for metals immersed in used mineral oil.