SED MENTICLOSM AND SEDIMENT AGGREENON RATE THE FRINGING MANGROME OF SETU METLAND

COOPERED FILTE B MOTATED KHASSIM

VEQLOUNDET CHA EQUERQE FO MILLIORF NEQLOUNDET CHA EQUERQE FO EELLICO MITRFENIMU

Peroustakaan Kotel Universiti Sains Dan Teknologi Malaysia (KUSTEN)

1100034633

NºLa In-

1100034633 Sedimentology and sediment accretion rate in the fringing mangroveof Setiu Wetland / Mohamed Hilmi Mohamed Khassim.

PERPUSTAKAAN

KOLEJ UNIVER 210	SITI SAINS & TEKNO 30 KUALA TERENGO	LOGI MALAYSIA GANU
	1000346	33
	-	
		Lihat sebela

HAK MILIK PERPUSTAKAAN KUSTEM

SEDIMENTOLOGY AND SEDIMENT ACCRETION RATE IN THE FRINGING MANGROVES OF SETIU WETLAND

BY

MOHAMED HILMI B MOHAMED KHASSIM

A Project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Biology)

FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY MALAYSIA 2005

1100034633

This project report should be cited as follows :

Hilmi, M.K. 2005. Sedimentology and sediment accretion rate in the fringing mangroves of Setiu wetland. Undergraduate thesis, Bachelor of Science in Marine Biology. Faculty of Science and Technology, University College of Science and Technology Malaysia.

No part of this project report may be reproduced by any mechanical, photographic, electronic processes or in the form of phonographic recording, nor may it be stored in a retrieval system, transmitted or otherwise copied for public or private use, without written permission from the author and the supervisor(s) of the project.

JABATAN SAINS SAMUDERA FAKULTI SAINS DAN TEKNOLOGI KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA

PENGAKUAN DAN PENGESAHAN LAPORAN PROJEK PENYELIDIKAN I DAN II

Adalah ini diakui dan disahkan bahawa laporan penyelidikan bertajuk:

Sedimentology and sediment accretion rate in the fringing mangroves of Setiu wetland. Oleh Mohamed Hilmi b Mohamed Khassim, Nombor Matrik UK 6831 telah diperiksa dan semua pembetulan dan semakan telah dilakukan. Lapoaran ini dikemukakan kepada Jabatan Sains Samudera sebagai memenuhi sebahagian daripada keperluan memperolehi ijazah Sarjana Muda Sains (Biologi Marin), Fakulti Sains dan Teknologi, Kolej Universiti Sains dan Teknologi Malaysia.

Disahkan oleh:

Penyelia Utama

Nama : Prof.Dr. Mohd Lokman B. Husain

Cop Rasmi: PROF. DR. MOHD LOKMAN HUSAIN Pengarah Institut Oseanografi Kolej Universiti Sains dan Teknologi Malaysia 21030 Kuala Terengganu, Terengganu.

SFE d

Ketua Jabatan Sains Samudera

Nama : Dr Ahmad Shamsuddin B. Ahmad

Cop Rasmi: DR. AHMAD SHAMSUDDIN B. AHMAD Ketua Jabatan Sains Samudera Fakulti Sains dan Teknologi Kolej Universiti Sains dan Teknologi Malaysia 21030 Kuala Terenggana

os lot for Tarikh:

Tarikh: 4/4/05

ACKNOWLEDGEMENTS

Alhamdulillah, praise to Allah for His blessing which enabled me to finish this project. I would like to take this opportunity to express my sincere gratitude and appreciation to those who had helped me to make this project running smoothly.

First of all, I would like to express my greatest appreciation to my supervisor, Prof. Dr. Mohd Lokman B. Husain for his help, encouragement, advice and patience in my entire disposition throughout this study. He has inspired me along the way.

I am indebted to Mr. Nasir and Mr. Fathi for their guidance, assistance and suggestion during the data analysis and processing is working. I am also grateful to the lecturer and staffs of INOS, Dr. Sulong, Mr. Kasawani, Mr. Habir, Mr. Rudila and Mr. Karthigayen who are always assisted me throughout the period of the project.

Special appreciation is dedicated to my final year project team, Nursaifullah, Nurhanis and NurIzeanty for their undivided support and unselfish sacrifice of time and effort. Thanks to my housemate, Amri, Hazren and Epool for their moral support. I am truly grateful and wish you the best in your undertaking.

Lastly, I would like to express my deep thanks to my beloved family for their prayers and motivation throughout my study at Kolej Universiti Sains & Teknologi Malaysia (KUSTEM). Thank you very much and may Allah bless all of you.

i

TABLE OF CONTENTS

			PAGE
ACK	NOWL	EDGEMENT	i
TAB	LE OF (CONTENTS	ii
LIST	OF TA	BLES	v
LIST	OF FIC	JURES	vi
LIST	OF AP	PENDIXES	viii
LIST	OF AB	BREVIATIONS	x
ABS	TRACT		xi
ABS	TRAK		xii
CHA	PTER		
1.0	INTE	RODUCTION	1
	1.1	Introduction	1
	1.2	Objectives	3
2.0	LITE	ERATURE REVIEW	4
	2.1	Mangrove	4
		2.1.1 Mangrove Distribution in Malaysia	4
		2.1.2 Mangrove Classification	5
		2.1.3 Fringing Mangrove	8
	2.2	Mangrove Sediment	9

	2.3	Sediment Movement 1		11
	2.4	Mangrove Sedimentation		13
	2.5	Import	ant of Mangroves	15
		2.5.1	Indirect Importance	15
		2.5.2	Direct Importance	18
3.0	MAT	ERIAL	S AND METHOD	20
	3.1	Descri	ption of Study Area	20
	3.2	Field S	Sampling	22
		3.2.1	Surface Sediment Collection	22
		3.2.2	Sediment Marker	23
		3.2.3	Accretion Rate	23
	3.3	Labora	atory Analysis	24
		3.3.1	Sample Preparation	24
		3.3.2	Grain Size Analysis	24
		3.3.3	Fine Particle Size Analysis	25
		3.3.4	Sedimentological Characteristic	25
			3.3.4.1 Mean	26
			3.3.4.2 Standard Deviation	26
			3.3.4.3 Skewness	26
			3.3.4.4 Kurtosis	27

4.0 **RESULTS**

28

	4.1	Sediment Accretion Rate	28
	4.2	Sediment Texture	32
	4.3	Particle Grain Size	34
		4.3.1 Mean	35
		4.3.2 Standard Deviation	40
		4.3.3 Skewness	45
		4.3.4 Kurtosis	50
5.0	DISC	USSION	54
	5.1	General	54
	5.2	Sediment Accretion Rate	56
	5.3	Particle Grain Size	60
		5.3.1 Mean	60
		5.3.2 Standard Deviation	64
		5.3.3 Skewness	67
		5.3.4 Kurtosis	69
	5.4	Texture of Sediment	71
6.0	CON	CLUSION	74
REFERENCES		76	
APPENDIX		80	
CURRICULUM VITAE		106	

LIST OF TABLES

Table		Page
3.1	Global Positioning System (GPS) locations of sampling station	22
4.1	The accretion rate at Fringing Mangrove	28
4.2	The average of accretion rate at fringing mangrove according	31
	to location	
4.3	The percentage of clay, silt and sand during non-monsoon season	33
4.4	The mean, sorting, skewness and kurtosis value of surface	34
	sediment	
4.5	Value of mean in non-monsoon season (June) and	37
	monsoon season (November)	
4.6	Value of sorting in non-monsoon season (June) and	42
	monsoon season (November)	
4.7	Value of skewness in non-monsoon season (June) and	47
	monsoon season (November)	
4.8	Value of kurtosis in non-monsoon season (June) and	50
	monsoon season (November)	

LIST OF FIGURES

Figure		Page
3.1	Map of research location, Setiu lagoon	21
4.1	The accretion rate among location for both the non-monsoon	30
	and monsoon period.	
4.2a	The accretion rate on non-monsoon period (June), fringing	31
	mangroves	
4.2b	The accretion rate on Monsoon period (November), fringing	32
	mangroves	
4.3	The percentage of clay, silt and sand during non-monsoon season	33
4.4	The mean particle size of surface sediment among location in	38
	both non-monsoon and monsoon period	
4.5a	Particle mean size of surface sediment in non-monsoon period	39
	(June)	
4.5b	Particle mean size of surface sediment in Monsoon period	39
	(November)	
4.6	The standard deviation value of surface sediment among location	43
	in both non-monsoon and monsoon period	
4.7a	The standard deviation of surface sediment in non-monsoon season	44
	(June)	
4.7b	The standard deviation of surface sediment in monsoon season	44
	(November)	
4.8	The skewness value of surface sediment among location for both	48

non-monsoon and monsoon period.

4.9a	The skewness of surface sediment in non-monsoon season (June)	49
4.9b	The skewness of surface sediment in monsoon season (November)	49
4.10	The kurtosis value of surface sediment among location in both	52
	non-monsoon and monsoon period	
4.11a	The kurtosis of surface sediment in non-monsoon season (June)	53
4.11b	The kurtosis of surface sediment in monsoon season (November)	53
5.1	The accretion rate of fringing mangrove in June and November	60
5.2	Mean size variability for both sampling	63
5.3	The sand percentage for June and Novemeber	63
5.4	The standard deviation of surface sediment in June and November	66
5.5	The percentage of standard deviation in June and November	66
5.6	The skewness of surface sediment in June and November	68
5.7	The percentage of Skewness in June and November	68
5.8	The kurtosis of surface sediment in June and November	70
5.9	The percentage of kurtosis in June and November	70
5.10	Standard deviation vs mean (phi)	73
5.11	Skewness vs mean (phi)	73

LIST OF APPENDICES

Appendix		Page
A1	A view of fringing mangrove 1	80
A2	A view of fringing mangrove 2	81
A3	A view of fringing mangrove 3	82
A4	A view of fringing mangrove 4	83
A5	A view of fringing mangrove 5	84
A6	A steps how to plant the perspex and take the reading	85
A7	A way how to completed particle size analysis using the	86
	sieve and shaker.	
A8	Instruments used in particle size analysis	87
A9	Steps for the grain size analysis	88
A10	Steps taken for the digestion of sample for analysis of	89
	particle size analysis	
A11	Grain size classification based on Wentworth (1992)	90
A12	Classification of Sorting, Skewness and Kurtosis	91
A13	Category of r value	91
B1	Master Sizer result analysis report	92
B2	Aerial map of Setiu lagoon in June	93
В3	Aerial map of Setiu lagoon in November	94
C1	The Mean, Sorting, Skewness and Kurtosis of surface	95
	sediment using paired sample t-test	

C2	The Accretion Rate using Anova: Two-Factor without 97	7
	Replication	
C3	The Mean particle size using Anova: Two-Factor	98
	Without Replication	
C4	The Sorting using Anova: Two-Factor Without Replication	100
C5	The Skewness using Anova: Two-Factor Without Replication	102
C6	The Kurtosis using Anova: Two-Factor Without Replication	104

LIST OF ABBREVIATIONS

°C	degree Celsius
Ø	phi
μm	micrometer
mL	milliliter
cm	centimeter
cm.month ⁻¹	centimeter per month
cm.yr ⁻¹	centimeter per year
L	liter
st.	station
FM	fringing mangrove
TR	transect
PSA	particle size analysis
H^2O^2	Hydrogen Peroxide

ABSTRACT

Study on the grain size characteristic and distribution were carried out in the fringing mangrove forest of the Setiu lagoon. Sediment characteristic are one of the most important factors directly affecting mangrove productivity and structure. Two samplings were conducted from May 2004 until November 2004 at 43 stations. Artificial makers were used to determine whether the study areas experienced deposition or erosion during the period. Particle size analyses were done to determine the temporal sediment pattern in study area. During the non-monsoon season the sediment was found to be dominated by medium, poorly sorted and positive skewed sediment. While during the monsoon season the sediment although still dominated by medium sand but to a lesser extent compared to the non-monsoon season with characteristics of also being poorly sorted but negative skewed. There is not much variation in Kurtosis where most of the sediment is found to be very leptokurtic. The distribution of sediment were found to be mostly influenced by certain forces such as wind speed, tidal current and wave action as well as the function of mangrove forest ecosystem itself. Accretion rate data tend to be mostly positive indicating deposition of sediment rather than erosion.

ABSTRAK

Kajian terhadap saiz butiran endapan telah dilakukan disekitar pesisir hutan paya di lagun Setiu bertujuan untuk lebih memahami ciri-ciri endapan di hutan paya laut tersebut. Bentuk saiz endapan adalah antara faktor terpenting dalam pertumbuhan dan produktiviti di hutan paya laut. Penyempelan dilakukan dua kali bermula dari Mei 2004 hingga November 2004 dimana lima lokasi dengan 43 stesen kajian telah dikenalpasti. Kaedah penanda buatan digunakan untuk melihat kawasan tersebut samada mengalami penimbunan atau hakisan sepanjang aktiviti dijalankan. Sedimen permukaan setebal 1cm diambil bagi menjalankan analisa saiz partikel bagi menentukan taburan saiz partikel yang juga berkaitan dengan penimbunan dan hakisan. Kadar sedimentasi diukur bagi mengetahui kadar pemendapan sediment. Pada musim bukan monsun sedimen kebanyakannya terdiri dari pasir sederhana, bersisihan sederhana sempurna dan berkepencongan positif. Di musim monsun pula sedimen masih didominasi oleh pasir sederhana tapi bersaiz lebih kecil berbanding pada musim bukan monsoon, bersisihan sederhana sempurna tetapi berkepencongan negatif. Kurtosis paling leptokurtic paling jelas mendominasi hampir disemua stesen. Kajian ini juga menunjukkan bahawa taburan endapan adalah dipengaruhi oleh pelbagai faktor seperti kalajuan angin, arus pasangsurut, aktiviti ombak dan fungsi ekosistem hutan paya laut itu sendiri. Data menunjukkan kebanyakkan stesyen kajian menunjukkan penimbunan berbanding hakisan.