

HEN SIEW PENA

FADIONFICE ON EDITED TO MILLOR ANDARI 190101787 MAD SUNAS TIKRENI IN LEIDN

Perpustakaan Kolaj Univalsiti Sains Dan Teknologi Malaysia (KUSTEA) 1688

211

1100028940

1100028940

Geochemical elements of sediments in South China Sea off Pahang / Han Siew Peng.

1	10002	RENGGANU	
	LUUUA	0040	
			1.1.1.1
	N ICHINAL		
			_
			_
			-

HAK MIL K PERPUSTAKAAN KUSTEM

GEOCHEMICAL ELEMENTS OF SEDIMENTS IN SOUTH CHINA SEA OFF PAHANG

By

HAN SIEW PENG

Research report submitted in partial fulfillment of the requirements for the degree of Bachelor of Science (Marine Science)

Department of Marine Science Faculty of Science and Technology KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA 2004

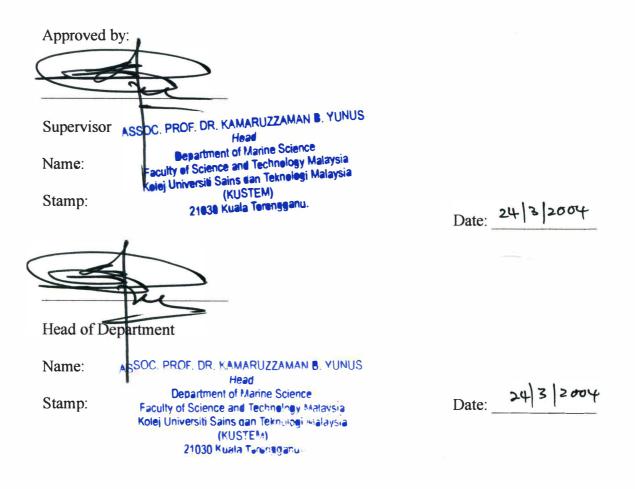
01 1 . H13

This project report should be cited as:

Han, S. P. 2004. Geochemical elements of sediments in South China Sea off Pahang. Undergraduate thesis, Bachelor of Science (Marine Science), Faculty of Science and Technology, Kolej Universiti Sains dan Teknologi Malaysia, Terengganu.

No part of this project may be reproduced by any mechanical, photographic, or electronic process, or in the form of photographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public or private use, without written permission from the author and the supervisor of the project.

1100028940


\$ 3

DEPARTMENT OF MARINE SCIENCE FACULTY OF SCIENCE AND TECHNOLOGY KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA

APPROVAL AND CERTIFICATION FORM RESEARCH PROJECT I AND II

I certify that the research report entitled: Geochemical elements of Sediments In South China Sea Off Pahang by HAN SIEW PENG, Matric No. UK5540 have been read and all corrections recommended by the examiners have been done. This research report is submitted to the Department of Marine Science in partial fulfillment of the requirements for the degree of Bachelor of Science in Marine Science, Faculty of Science and Technology, Kolej Universiti Sains dan Teknologi Malaysia.

ACKNOWLEDGEMENTS

I am grateful to my fantastic friend, Dor Jia, for her support, patience and assistance with the English language. Thanks for sharing the most valuable ideas with me. I am blessed to have you here.

I would also like to thank my supervisor, Prof. Madya Dr. Kamaruzzaman Bin Hj. Yunus for his guidance and support throughout the project. I really appreciate his encouragement and exposed me to this great research. I am fortunate to be able experience the research work. Thanks to Dr. Antonina for reviewing the manuscript and giving advice on the text.

Not forgetting my course mates, Meng Ho, Rohana Tair, Zairil Fahairi, Nizam and Dor Jia) for helping me in the analysis. My appreciation also goes to my seniors (Willie, Jan, Wak and Ong) for the guidance and criticisms during lab works and the preparation of this thesis cum the sacrifices for bringing our samples to MINT. For sure, never forget how you guys pulled my leg twice. It is great to know and have you guys here.

I would also like to express my deep appreciation to the lab assistants of Oceanography Laboratory for allowing me to use the apparatus and instruments inside for my experiments. Special appreciation to En. Kamarie for spending his time to accompany Rohana and I to finish our column exchange until late in the night.

Thank you very much.

ACKNOWLEDGEMENTS

I am grateful to my fantastic friend, Dor Jia, for her support, patience and assistance with the English language. Thanks for sharing the most valuable ideas with me. I am blessed to have you here.

I would also like to thank my supervisor, Prof. Madya Dr. Kamaruzzaman Bin Hj. Yunus for his guidance and support throughout the project. I really appreciate his encouragement and exposed me to this great research. I am fortunate to be able experience the research work. Thanks to Dr. Antonina for reviewing the manuscript and giving advice on the text.

Not forgetting my course mates, Meng Ho, Rohana Tair, Zairil Fahairi, Nizam and Dor Jia) for helping me in the analysis. My appreciation also goes to my seniors (Willie, Jan, Wak and Ong) for the guidance and criticisms during lab works and the preparation of this thesis cum the sacrifices for bringing our samples to MINT. For sure, never forget how you guys pulled my leg twice. It is great to know and have you guys here.

I would also like to express my deep appreciation to the lab assistants of Oceanography Laboratory for allowing me to use the apparatus and instruments inside for my experiments. Special appreciation to En. Kamarie for spending his time to accompany Rohana and I to finish our column exchange until late in the night.

Thank you very much.

i

LIST OF CONTENTS

CONTENTS P			PAGES
	ACH	KNOWLEDGEMENT	i
	LIST	T OF FIGURES	v
	LIS	T OF TABLES	vii
	LIS	T OF ABBREVIATION	viii
	LIS	T OF APPENDICES	ix
	ABS	STRAK	x
	ABS	STRACT	xi
1.0	INT	RODUCTION	1
	1.1	Objectives	3
2.0	LIT	ERATURE REVIEW	4
	2.1	Marine Sediments	4
	2.2	Geochemical of Elements Study	5
		2.2.1 Copper	5
		2.2.1 Lithium	5
		2.2.3 Cobalt	6
		2.2.4 Lead	6
		2.2.5 Zinc	7
		2.2.6 Uranium	7
		2.2.7 Thorium	8
	2.3	Organic Matter	8
	2.4	Sediment Dating	9
	2.5	Sedimentation rate	11

	2.6	ICP-MS	12	
3.0	ME	METHODOLOGY		
	3.1	Research Location	13	
	3.2	Sampling	15	
	3.3	Apparatus Preparation	15	
	3.4	Sample Preparation	16	
	3.5	Organic Carbon Analysis	16	
	3.6	Heavy Metals Analysis	18	
		3.6.1 Chemical Solution Preparation	18	
		3.6.2 Digestion Sample Using Teflon Bomb Method	19	
	3.7	Radiochemical Analysis Method	20	
		3.7.1 Sample Digestion Method	20	
		3.7.2 Cation Exchange Column	21	
	-	3.7.3 Sedimentation Rate Determination	22	
4.0	RES	SULTS	24	
	4.1	Standard Solution	24	
0	4.2	Recovery Test	27	
	4.3	Sedimentation Rate Determination	28	
	4.4	Sediment's Age	29	
	4.5	Heavy Metal Analysis	30	
		4.5.1 Cobalt	32	
		4.5.2 Copper	34	

		4.5.3	Zinc	36
		4.5.4	Lead	38
		4.5.5	Lithium	40
		4.5.6	Uranium	42
		4.5.7	Aluminium	44
	4.6	Organ	ic Carbon	46
5.0	DIS	CUSSI	ONS	49
	5.1	Norma	alization	49
	5.2	Enrich	nment Factor	55
21	5.3	Correl	lation	56
	5.4	Sedim	nentation Rate	62
	5.5	Depth	Distribution of Heavy Metals	63
	5.6	Organ	ic Carbon	65
6.0	CO	NCLUS	SIONS	67
	REI	FEREN	ICES	69
	API	PEDIXI	ES	74

LIST OF FIGURES

FIGU	FIGURE		
3.1:	Map of sampling site		14
4.1:	Uranium standard graph		24
4.2:	Lithium standard graph		24
4.3:	Lead-208 standard graph		25
4.4:	Zinc-64 standard graph		25
4.5:	Copper-63 standard graph		25
4.6:	Cobalt standard graph		26
4.7:	Aluminium standard graph		26
4.8:	Thorium-230 standard graph		26
4.9:	Thorium-232 standard graph		27
4.10:	²³⁰ Th _{excess} versus depth graph for core PHAD 4		28
4.11:	$^{230}\text{Th}_{ex}$ / $^{232}\text{Th}_{ex}$ versus depth graph in core PHAD 4		28
4.12:	²³⁰ Th _{excess} versus depth graph for core PHAD 13		29
4.13:	230 Th _{ex} / 232 Th _{ex} versus depth graph in core PHAD 13		29
4.14:	Cobalt versus depth graph		33
4.15:	Copper versus depth graph		35
4.16:	Zinc versus depth graph		37
4.17:	Lead versus depth graph		39
4.18:	Lithium versus depth graph		41
4.19:	Uranium versus depth graph		43
4.20:	Aluminium versus depth graph		45

FIGURE PAGE		
4.21:	Percentage of organic carbon with depth	48
5.1:	Graph of cobalt normalization for core PHAD 4	50
5.2:	Graph of cobalt normalization for core PHAD 13	51
5.3:	Graph of copper normalization for core PHAD 4	51
5.4:	Graph of copper normalization for core PHAD 13	52
5.5:	Graph of zinc normalization for core PHAD 4	52
5.6:	Graph of zinc normalization for core PHAD 13	53
5.7:	Graph of lead normalization for core PHAD 4	53
5.8:	Graph of lead normalization for core PHAD 13	54
5.9:	Graph of uranium normalization for core PHAD 4	54
5.10:	Graph of uranium normalization for core PHAD 13	55
5.11:	Cobalt versus organic carbon for PHAD 4 graph	57
5.12:	Cobalt versus organic carbon for PHAD 13 graph	58
5.13:	Copper versus organic carbon for PHAD 4 graph	58
5.14:	Copper versus organic carbon for PHAD 13 graph	59
5.15:	Zinc versus organic carbon for PHAD 4 graph	59
5.16:	Zinc versus organic carbon for PHAD 13 graph	60
5.17:	Lead versus organic carbon for PHAD 4 graph	60
5.18:	Lead versus organic carbon for PHAD 13 graph	61
5.19:	Uranium versus organic carbon for PHAD 4 graph	61
5.20:	Uranium versus organic carbon for PHAD 13 graph	62

LIST OF TABLES

TAB	BLE	PAGE
2.1:	Naturally-occuring radioactive isotopes of radium	10
2.2:	Half-lives and decay constants of the daughters of uranium	11
3.1:	Coordinates of sampling location	13
4.1:	Results of analysis of Estuarine Sediment (NBS 1646a)	27
4.2:	The sediment's age of marine sediment cores of Pahang	30
4.3:	Concentration of selected heavy metal in core PHAD 4	31
4.4:	Concentration of selected heavy metal in core PHAD 13	31
4.5:	· Percentage of organic carbon in two cores	47
5.1:	Calculated values of EF for selected element in 2 cores	56
5.2:	Pearson correlation of analysis elements in core sediments	56
5.3:	Pearson correlation of analysis elements with organic carbon content	57
	in core sediments	

x

LIST OF ABBREVIATIONS

%	Percentage
°C	Degree Celsius
²³⁰ Th	Thorium-230
²³² Th	Thorium-232
Со	Cobalt
Cu	Copper
Zn	Zinc
Pb	Lead
Li	Lithium
U	Uranium
Al	Aluminium
b	Best fit slope
cm	Centimeter
Cmy ⁻¹	Centimeter per year
dpm	Disentrigated per million
μg.g ⁻¹	Microgram per gram
g	gram
EDTA	Ethylenediamenetetra Acidic
ICP-MS	Inductively Coupled Plasma-Mass Spectrometer
L	Liter
mL	Mililiter
m	meter
Pa	Protactinium
Ă.	

ppb	Part per billion
ppm	Part per million
S	Sedimentation rate
Ti	Titanium
δ	Delta
λ_{230}	²³⁰ Th decay constant
OC	Organic carbon
mmy ⁻¹	Millimeter per year

ABSTRAK

Kajian ini telah dijalankan di Laut China Selatan, Pahang. 2 sedimen teras (PHAD 4 dan PHAD 13) telah diambil pada bulan Oktober 2003. Sampel telah dianalisis untuk kadar sedimentasi, usia sedimen, kepekatan logam berat dan kandungan organik karbon. Daripada profil ²³⁰Th_{excess}, kadar sedimentasi bagi PHAD 4 dan PHAD 13 adalah kedua-dua sama iaitu 0.27 mmy⁻¹. Manakala daripada graf ²³⁰Th_{excess} / ²³²Th_{excess}, kadar sedimentasi bagi PHAD 4 dan PHAD 13 yang dikira masing-masing ialah 0.28 mmy⁻¹ dan 0.27 mmy⁻¹. Pada kedalaman 22 cm, usia sedimen yang ditentukan ialah 794.22 tahun manakala usia PHAD 13 pada kedalaman 24 cm ialah 885.61 tahun. Kepekatan purata yang dikira bagi elemen Co, Cu, Zn, Pb dan U dalam PHAD 4 ialah 5.34 µg.g⁻¹, 11.97 µg.g⁻¹, 14.28 µg.g⁻¹, 31.29 µg.g⁻¹ dan 15.26 µg.g⁻¹ masing-masing. Manakala kepekatan purata bagi elemen-elemen tersebut dalam PHAD 13 ialah 4.20 µg.g⁻¹, 10.55 µg.g⁻¹, 9.28 µg.g⁻¹, 40.66 µg.g⁻¹ dan 7.78 µg.g⁻¹ masing-masing. Julat organik karbon dalam PHAD 4 yang ditentukan ialah 0.63 % ± 0.04 % hingga 1.17 % \pm 0.30 % manakala dalam PHAD 13 nilai yang diperolehi ialah $0.39 \% \pm 0.25 \%$ hingga $1.40 \% \pm 0.02 \%$. Graf-graf normalisasi dan faktor pengkayaan menunjukkan elemen Co, Cu, Zn, Pb dan U berasal dari sumber semulajadi.

Х

ABSTRACT

This study was carried out from the South China Sea off Pahang, Malaysia. Two sediment cores (PHAD 4 and PHAD 13) were collected during October 2003. The sediment samples were analyzed for organic carbon content, heavy metals, sedimentation rate and sediments age. The profiles of ²³⁰Th_{excess} suggested that the sedimentation rate of PHAD 4 and PHAD 13 cores are the same, with values of 0.27 mm.y⁻¹. By using ²³⁰Th_{excess} / ²³²Th_{excess} graphs, the sedimentation rate for PHAD 4 and PHAD 13 were counted as 0.28 mm.y⁻¹ and 0.27 mm.y⁻¹, respectively. The sediment's age for PHAD 4 is 794.22 years at a depth of 22 cm while PHAD 13 sediment's age is 885.61 years at a depth of 24 cm. The average concentration of Co, Cu, Zn, Pb and U in PHAD 4 core were 5.34 µg.g⁻¹, 11.97 µg.g⁻¹, 14.28 µg.g⁻¹, 31.29 $\mu g.g^{-1}$ and 15.26 $\mu g.g^{-1}$, respectively while in PHAD 13 were 4.20 $\mu g.g^{-1}$, 10.55 $\mu g.g^{-1}$, 9.28 $\mu g.g^{-1}$, 40.66 $\mu g.g^{-1}$ and 7.78 $\mu g.g^{-1}$, respectively. The percentage of organic carbon in PHAD 4 ranged from $0.63 \pm 0.04\%$ to $1.17 \pm 0.30\%$ and for PHAD 13 varied from $0.39 \pm 0.25\%$ to $1.40 \pm 0.02\%$. The normalization graphs and enrichment factors showed that all the studied elements (Co, Cu, Zn, Pb and U) in sediment cores were derived from natural sources.