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The aim of this study is to develdwo mathematical models with nhonhomogene
moving boundary condition. The main conceghind the solution is to separate
mathematical model based on the region wheparéicular release mechanism ta
place. The first region represents the sweltogtrolled proces; while the second
representsthe diffusion-controlled process. Vaediabhnsformationhas had a great

Keywords: impact onthis study. The advection term in the advec-diffusion equation was
moving boundary, swelling, advection, removed using Landau transformation in theellinc-controlled model. In the
diffusion diffusion-controlled model, the moving boundamgddion was transformed to a fixed

boundary condition. Finally, theonhomogeneous moving boundary conditwas
reduced to the homogeneous boundary condition wsstgady-state solution in both

models.
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INTRODUCTION

The development of amnalytical method c
solution of diffusion and advecti-diffusion
equation processes is criticér the analysis of
phenomenaoccurring in numeroudields,including
bio-medical science, material science, enginee
and pharmaceutical problem$he termadvection-
diffusion equation refers to the solute transparé
to the combined effect of diffusion and convect
within a medium (Kumar, A.,2009). The main
motivation for this study is the swelling and d#fon
of hydrogel in a finite volume liqu (Bierbrauer, F.,
2005; Wang, S., X. Lou, 2009).

However, the moving boundary proble
wastaken into consideratioin this studyThis is a
particular kind of boundary value problem for pair
differential equations (PDEsand isadapted to the
case in which a phase boundary can move with 1
It occurs in numeroughysical applications involvin
diffusion, including: heat transfe, where a phase
transition occursnoisture transport such as swell
grains or polymerand deformale porous media
problems,where the solid displacement is goveri
by diffusion Barry, S.I., J. Caunce, 20). Moving
boundary value problems have also been consic
in the body of literaturen polymer swellin, with
particular relevance to drug delry systems. In
these systemsthe boundary may move due a

swelling and dissolution procesfor an overall
summary of this, refer tqKanjickal, D.G., S.T.
Lopina, 2004 Siepmann, J., A. Gopferich, 2().

We present amathematical model for tt
changing of the hydrogel in the finite volume lidy
which takes into accountpot only a moving
boundary for the swelling controlled, but also
diffusion controlled, which is the second mov
boundary. The motion of the former boundary
governed bya swelling controlled proce;while the
motion of the latter boundary is governed a
diffusion controlled process.

Mathematical models for diffusi-controlled
drug release have been developedprior studies
(Doumenc, F., B. Guerrier, 20; Colin, R., 1998;
Lu, S., 1998). Fick's lavhas commonly beeused as
the base equation for models with suitable ingiadl
boundary conditions. The analytical solution foe
diffusion-controlled drug release models for regt
geometries (MohdMahali, S2011; Wang, S., 2009;
Wang, S., X. Lou, 2009as been derivein some
ideal conditions. The diffusi-controlled model with
a simplified geometry thahas been analytically
solved was provento be comparable with tt
numerical solution of the same mc, with 3D
geometry. Despite the availability of the analyiti
solution for diffusioneontrolled drug delivery i
various conditions, the analytical solution for gl
delivery involving a swelling effect remains
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restricted. Various mathematical theories have beerhydrogel surface to the boundary of the container
proposed in developing models for drug deliveries (X(t) < t < X,). In region 1, we assume the release

involving swelling devices. mechanism is swelling-controlled. On the other hand
the release mechanism is assumed to be diffusion-
Mathematical Model: controlled in region 2.

Drug delivery scientists encounter challengesin
developing safe and effective oral delivery methods Swelling-controlled model:
for therapeutic proteins. Hydrogels were investdat In region 1, the drug diffuses out of the domain
to overcome this problem for their potential useaas at the boundaries, and may swell as fluids are
oral delivery system for protein. Hydrogels are 3D absorbed. The situation can be expressed in tefms o
polymeric networks that imbibe a large volume of an advection-diffusion equation, as follows:
water, while remaining insoluble, due to the phgbic 9c _ D 9%¢c; 9y ou Q)

or chemical cross-linking of individual polymer at 19 " ox T ax O<x<

chains [5,9]. Stimuli-responsive hydrogels undergo X(@), t>0

dramatic changes in swelling and network structureﬁ(o t)=0 (2)

in response to environment stimuli such as pH, 0x '

temperature, ionic strength, enzymes and light. c(X(0),6) = ¢, (X(0), 6) (3)
We consider a device of cylindrical geometry c(x0)=10< x <X() ) . (4)

with heighth,loaded with a certainamount of drug. where, (x,t) is the concentration inside the

This device is placed in a cylindrical containethwi derogel withD; as the constant diffusion coefficient,
height h, filled with unstirred liquid (Note that % is the local rate of change of concentration over

hy = h, ). An assumption is made thatthe expected .. 8%c, e
diffusion is in an axial direction. The cross-sentof time, ax? ;epresents the diffusion c;f the
the set-up is shown in Figs. 1 and 2. concentration—u is the dilution term, and, i is

X
due to local volume change. For the initial cormtiti
the concentration is uniform in the device, andzer
in the liquid.

Diffusion-controlled model:
In region 2, the release mechanism is governed
by the following equation:

%2 _p, %% ¥y <x<X,t>0 5
ot - P2 9x2 ( ) X c’ ( )
(X(6),t) = c; (X(8), 0) (6)
22 (X t) =0 )
0: centre of hydrogel 6, (x,0) =0, X(t) <x<X, 8)

X(t): boundary of hydrogel

X, boundary of container where, (x,t) is the concentration outside the

hydrogel withD,as the constant diffusion coefficient.

Fig. 1: The 2D geometry of a disc device in a Methodology:

cylindrical container. Variable Transformation:
For the mathematical model in region 1, a
We firstconsider the case of 2D disc geometry. | andau transformation will be used in order to
However, for simplicity, we consider a one remove the advection term. However, for this
dimensional space wheve= 0 refers to the centre particular mathematical model, this transformation
of the hydrogek = X(¢) refers to the boundary of only takes place after the steady state solutidriofw
the hydrogel moving with respect to time;ane Xc  will be introduced in the next section of this pgps

shows the boundary of the container. applied to this model. The Landau transformation is
defined by:
__x _
¢ = X0 T=t
According to Bierbrauer, when the Landau
Fig. 2: Geometry of disc device in the form of 1D.  transformation is applied, Equation (1) then
becomes:
Mathematical Formulation: dc _ D d%c X
oy 0<{<LT>0 9)

In order to develop a suitable mathematical ¢ . . .
model for this problem, we consider two For region 2, the domain for the mathematical

regions:region 1 and region 2. Region 1 refersetoth model will be changed by using the following

region inside the hydrogel device0 € x < trans):‘grﬂ;atlon:

X(t));while region 2 refers tothe region between the ¥ = Xoox(0)’ T=1t
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The new domain is now < x < 1,7 > 0. By
using chain rule, we have
dc,

at
_0c,0x0X  0Oc, 01
=9z ox ot ot ot

dc, X dc,
S ax (X —x@) ot
whereX = ‘;—f
dc,
9x.
06 0% 0cy 1

T ox ox  9x (X, — X(0)
d%c,

1
d0x d0x (X, —X(t))
1 d dc,
(X, —X(t))0x 0x
_ 1 9%c,
T Xo-x()2 9x2"
This equation is then been substituted to

Equation 5 to have
ez _ L 2o X g
ot 2 (Xc—X(£)2 9x%  (X—X(t) 0%

Whereas, the no flux boundary condition (7)

becomes ! aL_Z(l, T) = 0.Since——— # 0,
(Xc—X(t)) ox (X=X (1))

we can simply put the boundary condition as
%(1,@:0.
Then, Equations 5-8are changed into a new

system of equations, as follows:
dcy 1 d%c, X

dcy

% Do rxmar 0 <F<

L,7>0 (10)
¢,(0,7) = ¢,(0,7) (12)
2(10=0 (12)
c,(x,0) =0, 0<x<1. (13)

Steady-state solution:
Most of the mathematical models related to the

which varies witht. We note the fact that it is a
function of x alone, yet it must satisfy the heat
equation. Sincev,, = v" and v, = 0, substituting
into the heat equation givesi’v,, = 0.After
dividingboth sides byi? and integratingtwice with
respect toc, we found thav(x) = Ax + B.

We then rewrite the boundary condition in terms of
v:u(0,t) =v(0) =T,, andu(L,t) =v(L) =T,.
The two conditions are applied to obtain the
following:

v(0)=T, =A(0)+B=B —B =T
v(L)=T,=AL+B=AL+T, —A =
T2—T1)
—
Therefore, the steady state solutiorv(s) =
Loh +T
1-

We can then set aside the steady state solution
and proceed to find the transient solutiorx, t).
First, we rewrite the initial-boundary value prable
In order to do so, we subtract oufx) from the
initial and boundary values. Sinde,t) = v(x) +
w(x,t), the results will be the conditions that the
transient solutiomv(x, t) alone must satisfy.

Changingthe boundary conditions resultsin:
u(0,t)

=T, =v(0) +w(0,t)

—w(0,t)

=T, —v(0)

=0

u(L,t)

=T, =v(L) +w(L,t)
—w(L,t)

=T, —v(l)=0

Changingthe initial condition resultsin:
u(x,0) = f(x) = v(x) + w(x, 0)
— w(x,0) = f(x) —v(x)

RESULTS AND DISCUSSION

We know that from steady state solution, the
solution can be expressed @éc) = A(x) + B, and
it's derivative would be v'(x) =A. From the
boundary conditions (2) and (3), we have:
dcy

drug release mechanism in previous studiescomea(O. t) =v'(0) =0

with a homogeneous boundary condition. However,
in the present research, we encounter the
nonhomogeneous moving boundary condition in the

mathematical models.The steady state solution is

applied to both the swelling-controlled model ahd t
diffusion controlled model in order to transformeth
nonhomogeneous moving boundary condition to a
homogeneous boundary condition. In this solution,
we first assume that it will be written as a
combination of steady state and transient solution.
c(x,t) =v(x) +w(x,t)

wherev(x) is the steady state solution which is
independent of andw(x, t) is the transient solution

a(X(®),t) = v(X () = ¢, (X (), 1)
v'(0)=0=A
v(X(t) = A(X(®) + B = c,(X(£), 1)
Therefore, our steady state solution is:
v(x) = 0x + ¢, (X(¢),1).
Sincec(x,t) = v(x) + w(x, t), we may rewrite
the boundary condition as follows:

axl 0,6) = 0= v'(0) + w, (0, )

(X, 1) = c;(X(6),£) = v(X(©)) + w; (X(t), 1)
Then the new boundary conditions are obtained:
w; (0,6) =0—-v'(0)=0
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wi(X(6),8) = (X (), 1) —v(X(1)) = 0

After that, the new initial condition is changed by
subtracting the steady state solutiofx) from the
original value of initial condition.

¢ (x,0)=1=v(x)+w(x0)

wi(x,0) =1—c,(X(¢),t).

Therefore, equations(1)-(4), are transformed to the

new system of equations:

owy _ p Pwi 9wy 0w (14)
at 1 ax2 ax 4T W15,
0<x<X(t), t>0

0 15
M 00 =0 (15)
ox

wi(X(2),t) =0 (16)
wi(x,0) =1 —c,(X(t), 1), (17)

0<x<X(t)
By using Landau transformation, the advection
term is removed so that the system (14)-(17) is,now

dwi _ D 9wy _ x0wy

S TP ror 0<{<1,t>0 (18)
"’a—“?(o, =0 (19)
w;(1,7) =0 (20)
Wl((,0)= 1_C2(1'T)'0<(<1 (21)

After obtaining the homogenous boundary
condition, we proceed to find the analytical salati

for this problem. We may refer and compare the 0 <x <1.

analytical solution to previous studies. In Bier®a

Before we proceed to find the transient part
w(x,t), we first need to rewrite the boundary
condition.
¢,(0,7) = ¢,(0,7) = v(0) + w,(0,7)

dc, , ,
E(LT) =0=v'(1) +w;'(1,7)

The new boundary condition are obtained after
v(x) is subtracted.

w,(0,7) = ¢,(0,7) —v(0) =0
w,'(1,7) =0—-v'(1) =0.

The new initial condition is obtained by
applying the same step(x)is subtracted from the
original value of initial condition.

c,(%,0) =0 =v(x) +w,(%,0)
w,(X,0) = 0 — ¢, (0, 7).

Hence, the new system of equation for diffusion-
controlled model would be as the following:
ow, 1 0%w, X  ow,

ot~ P(X,—X(t)? ax2  X.—X(t) 0%

0<x<1, >0
(26)
w,(0,7) =0 (27)
22(1,1) =0 (28)
w,(%,0) = 0—¢,(0,7)
(29)

As for comparison for a further analytical

[3], the boundary concentration is assumed to be ssolution for this model, we refer to the analytical

sink condition, to obtain the following:

%= %—CZ—Z—uZ—; 0<x<Xx®),t> 22
0
c(x,0)=1 0<x<X(0) (23)
X(0) = (24)
Z—; ,t) = } t>0 (25)
c(X(t),t)=0
with the final solution expressed as:
c(x,t)
o0 (=D"L 2n + Dnx

4 cos
= _Z 2n+ DX 2X(0)

T e—D(—(Z”;'l)’T)2 Jy X"y 2at’

For a diffusion-controlled model, the same

steady state method is applied to equation (10)-(13

solution todiffusion-controlled drug releasefound i
Wang and Lou. The model is presented in polar

coordinates, with a homogeneous boundary
condition.

ac(rt) _ 92¢c(rt) | 19c(rt)

at ( arz ' r or )

O0<r<ry,t>0

mzo t>0
or ’

C(r,0) = N, 0<r<mn
0, n<r<n

which has the following solution:

MO%q?
C(r,t) = +
d
2M0%0 o J1(oap)
Va Zn:O an)2 ]O(M)E—Da%t/r%'

r2

to reduce the nonhomogeneous moving boundaryyheray® is the initial loading and, is the volume
condition to homogeneous boundary condition. Sincegf the device.

v(x) = A(x) + Bandv'(x) = A, we would have the
following:
¢2(0,7) = v(0) = ¢,(0,7)
dc,
ﬁ(l,‘r) =v'(1)=0
The following equation gives us the value of A
and B.
v(0) = ¢;(0,7) = A(0) + B
V(1) =0=A
whered = 0 andB = ¢,(0, 7).
Hence, the steady state solution would be:
v(x) = 0x + ¢, (0, 7).

Conclusion

The swelling-controlled and diffusion-controlled
processeshavebeen represented by the advection-
diffusion equation and the diffusion equation,
respectively, with a nonhomogeneous moving
boundary condition. The analytical solutions from
the proposed mathematical models will be further
developed in the next phase of this study. Thishdll
suitable for the swelling hydrogel problem. In athe
words, it can be used to estimate the effective
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diffusion coefficient of a drug from a delivery de&
with a 2D disc geometry, to an external finite
volume,as well as for similar cases.
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