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Abstract: A topological index of graph G is a numerical parameter related to G which characterizes
its molecular topology and is usually graph invariant. In the field of quantitative structure-activity
(QSAR)/quantitative structure-activity structure-property (QSPR) research, theoretical properties
of the chemical compounds and their molecular topological indices such as the Randić connectivity
index, atom-bond connectivity (ABC) index and geometric-arithmetic (GA) index are used to predict
the bioactivity of different chemical compounds. A dendrimer is an artificially manufactured or
synthesized molecule built up from the branched units called monomers. In this paper, the fourth
version of ABC index and the fifth version of GA index of certain families of nanostar dendrimers
are investigated. We derive the analytical closed formulas for these families of nanostar dendrimers.
The obtained results can be of use in molecular data mining, particularly in researching the uniqueness
of tested (hyper-branched) molecular graphs.

Keywords: atom-bond connectivity index; geometric arithmetic index; dendrimer

1. Introduction and Preliminary Results

There is a lot of mathematics involved in electrical and electronic engineering. Moreover, this
depends on what area of electrical and electronic engineering: for example, there is a lot of abstract
mathematics in communication theory, signal processing, networking and others. Networks involve
nodes communicating with each other. A number of computers linked together form a network.
Cell phone users form a network. Networking involves the study of the best way of implementing a
network. Chemists are now equipped with a number of useful tools because of the merging branch
of graph theory called chemical graph theory, e.g., molecular topological descriptors, indices and
molecular topological polynomials. Many chemical structures and chemical compounds are usually
modeled by a molecular graph to analyze underlying theoretical properties. A molecular graph
is a pictorial diagram of the structural formula of a chemical structure in terms of graph theory,
where the vertices represent the atoms of the given chemical compound and the edges represent
the chemical bonds between the atoms. Cheminformatics is new subject which is a combination of
chemistry, mathematics and information science. It studies Quantitative structure-activity (QSAR) and
structure-property (QSPR) relationships that are used to predict the biological activities and properties
of different chemical compounds. In the field of QSAR/QSPR research, theoretical properties of the
chemical compounds and their molecular topological indices such as the Wiener index, Szaged index,
Randić index, Zagreb index and ABC index are used to predict bioactivity of the chemical compounds.
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For more details about how to use the topological indices in predicating the bioactivity of chemical
compounds, we refer the readers to consult [1,2]. For further details of the utilization of the topological
indices and better understanding of the topic of research, the readers are hereby referred to the [3–5]
for references on polymers.

A graph can be recognized by a numeric number, a polynomial, a sequence of number or a
matrix. A topological index is a numeric number associated to a graph which completely describes
the molecular topology of graph and this quantity is invariant under the automorphism of graphs.
Among the interesting and most studied classes of topological indices in chemical graph theory
are topological indices, which use the concept of distance called distance-based topological indices.
The topological indices defined on the grounds of vertex degrees in a graph are called degree-based
topological indices and the topological indices defined on the bases of counting are called counting
related topological indices of graphs. Among these classes of topological indices described above, the
degree-based topological indices have many more correlations to the chemical properties. In other
words, a molecular topological index Top(G) of a graph is the number with the property that for
each given graph H which is isomorphic to the graph G, we have Top(H) = Top(G). The concept of
topological indices came from Wiener [6] when he was studying the boiling point of a member of
alkane family, called paraffin. He named this topological index the path number. With the increase
of research in chemical graph theory, the path number was given the name Wiener index later on.
The Wiener index is the most investigated molecular topological index in chemical graph theory
because of its interesting theoretical properties and wide range of applications, and because it is
equal to the sum of the graph-theoretic distances between every pair of vertices in a graph G, see for
details [7,8].

Dendrimers are among the most complex chemical and interesting structures and hyper-branched
macromolecules, with a precise tailored architecture. Dendrimers have gained a wide range of
application in supra-molecular chemistry, particularly in host guest reactions and the self-assembly
process. Their application in chemistry, biology and nano-science are unlimited. Recently,
the topological indices of certain families of dendrimers have been investigated in [9–15].

In this article, G is considered to be a simple and connected graph with vertex set V pGq
and edge set E pGq, d puq is the degree of vertex u P V pGq and Su “

ř

vPNGpuq
d pvq where

NG puq “ tv P V pGq|uv P E pGqu. All notations in this paper are standard and mainly taken from
books [8,16].

The very first and oldest degree based topological index is Randić index denoted by χ pGq
introduced by Milan Randić in 1975 [17]. It is defined as

χ pGq “
ÿ

uvPEpGq

1
a

d puq d pvq
(1)

One of the well-known degree based topological indices is atom-bond connectivity (ABC) index
introduced by Estrada et al. in [18], which was defined for modeling the enthalpy of formation of
alkanes and was defined as follows:

ABC pGq “
ÿ

uvPEpGq

d

d puq ` d pvq ´ 2
d puq d pvq

(2)

Another well-known connectivity topological descriptor is the geometric-arithmetic (GA) index,
which was introduced by Vukičević et al. in [19]. It was shown that its predictive power is somewhat
better than the Randić index for many physicochemical properties like boiling point, entropy, enthalpy
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of vaporization, standard enthalpy of vaporization, enthalpy of formation and acentric factor, and it
was defined as follows:

GA pGq “
ÿ

uvPEpGq

2
a

d puq d pvq
d puq ` d pvq

(3)

The fourth version of ABC index is introduced by Ghorbani et al. [20] and defined as:

ABC4 pGq “
ÿ

uvPEpGq

d

Su ` Sv ´ 2
SuSv

(4)

Recently fifth version of GA index is proposed by Graovac et al. [21] and defined as:

GA5 pGq “
ÿ

uvPEpGq

2
?

SuSv

Su ` Sv
(5)

Thus, the goal of this paper is to structurally characterize some dendrimers by investigations into
these topological indices. The obtained results can be of use in molecular data mining, particularly in
researching the uniqueness of tested (hyper-branched) molecular graphs.

Recently, there has been a huge amount of research activity about the ABC and GA topological
indices, and their variants, for example, see [22,23]. The structure-sensitivity of degree-based molecular
topological indices has been discussed in detail in [22]. ABC4 and GA5 indices for some families of
nanostar dendrimers and polyphenylene dendrimers are discussed in [20,21,24]. For a detailed
description, their properties and bounds of the molecular topological indices of various classes of
graph, see [24–32]. In this paper, we give an explicit formula of the ABC4 and GA5 indices for certain
nanostar dendrimers, namely PAMAM, tetrathiafulvalene and POPAM dendrimers.

2. Results and Discussion

In this section, we study the ABC4 and GA5 indices of some families of dendrimers. We first
consider the PAMAM dendrimer of generation Gn with n growth stages, denoted by PD1 rnswhere
n ě 0. The number of vertices and edges in PD1 rns are 12ˆ 2n`2 ´ 23 and 12ˆ 2n`2 ´ 24 (see [13]).
Denote an edge connecting a vertex i to a vertex j by pi, jq´edge, where ni denote the vertex i and sij is
the number of pi, jq´edges. The graph PD1 r3s is shown in Figure 1.
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In the following theorem, the exact formula of ABC4 index for PAMAM dendrimer is computed.

Theorem 1. Consider the PAMAM dendrimer PD1 rns. The ABC4 index of PD1 rns is equal to:

ABC4 pPD1 rnsq “
´

87
?

2
10 `

?
15
2 ` 6

b

2
5 `

9
2

b

7
5 `

9
?

30
10

¯

2n ´ 3
´
b

2
5 `

b

7
5 `

6
?

2
5 `

2
?

30
10

¯

(6)

Proof. Let G be the graph of PAMAM dendrimer PD1 rns. We have |V pPD1 rnsq| “ 12ˆ 2n`2´ 23
and |E pPD1 rnsq| “ 12ˆ 2n`2 ´ 24. We find the edge partition of the form p2, 3q, p3, 4q, p3, 5q, p4, 5q,
p5, 5q, p5, 6q for PAMAM dendrimer PD1 rns based on the degree sum of vertices lying at unit distance
from end vertices of each edge. Table 1 explains such partition for PD1 rns.

Table 1. Edge partition of PAMAM dendrimer, PD1 rns based on degree sum of neighbors of end
vertices of each edge.

pSu, SvqWhere uv P E pGq Number of Edges

p2, 3q 3ˆ 2n

p3, 4q 3ˆ 2n

p3, 5q 6ˆ 2n ´ 3
p4, 5q 9ˆ 2n ´ 6
p5, 5q 18ˆ 2n ´ 9
p5, 6q 9ˆ 2n ´ 6

Now by using the partition given in Table 1, we can compute the ABC4 index for PD1 rns. Since:

ABC4 pGq “
ÿ

uvPEpGq

d

Su ` Sv ´ 2
SuSv

(7)

this implies that:

ABC4 pPD1 rnsq “ p3ˆ 2nq
b

2`3´2
2ˆ3 ` p3ˆ 2nq

b

3`4´2
3ˆ4

`p6ˆ 2n ´ 3q
b

3`5´2
3ˆ5 ` p9ˆ 2n ´ 6q

b

4`5´2
4ˆ5

`p18ˆ 2n ´ 9q
b

5`5´2
5ˆ5 ` p9ˆ 2n ´ 6q

b

5`6´2
5ˆ6

(8)

After an easy simplification, we obtain:

ABC4 pPD1 rnsq “

´

87
?

2
10 `

?
15
2 ` 6

b

2
5 `

9
2

b

7
5 `

9
?

30
10

¯

2n

´3
´
b

2
5 `

b

7
5 `

6
?

2
5 ` 2

10

?
30
¯ (9)

This completes the proof.
The following theorem computes the GA5 index of PAMAM dendrimer PD1 rns.

Theorem 2. Consider the PAMAM dendrimer PD1 rns. The GA5 index of PD1 rns is equal to:

GA5 pPD1 rnsq “

´

6
?

6
5 `

12
?

3
7 `

3
?

15
2 ` 4

?
5` 18` 18

?
30

11

¯

2n

´

´

3
?

15
4 `

8
?

5
3 ` 9` 12

?
30

11

¯ (10)

Proof. Let G be the graph of the PAMAM dendrimer PD1 rns. The edge partition of PAMAM
dendrimer PD1 rns based on the degree sum of vertices lying at unit distance from end vertices of each
edge is given in Table 1. Now we apply the formula of GA5 index for PD1 rns. Since:
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GA5 pGq “
ÿ

uvPEpGq

2
?

SuSv

Su ` Sv
(11)

this implies that:

GA5 pPD1 rnsq “
2
?

2ˆ3
2`3 p3ˆ 2nq ` 2

?
3ˆ4

3`4 p3ˆ 2nq ` 2
?

3ˆ5
3`5 p6ˆ 2n ´ 3q

`
2
?

4ˆ5
4`5 p9ˆ 2n ´ 6q ` 2

?
5ˆ5

5`5 p18ˆ 2n ´ 9q ` 2
?

5ˆ6
5`6 p9ˆ 2n ´ 6q

(12)

After an easy simplification, we get:

GA5 pPD1 rnsq “

´

6
?

6
5 `

12
?

3
7 `

3
?

15
2 ` 4

?
5` 18` 18

?
30

11

¯

2n

´

´

3
?

15
4 `

8
?

5
3 ` 9` 12

?
30

11

¯ (13)

This completes the proof.
Now we shall compute the ABC4 and GA5 indices of tetrathiafulvalene dendrimer of generation

Gn with n growth stages, denoted by TD2 rnswhere n ě 0. The graph of TD2 rns contains 31ˆ2n`2´74
vertices and 35ˆ 2n`2 ´ 85 edges as shown in Figure 2 (see [15]). Table 2 shows the partition of edge
set of tetrathiafulvalene dendrimer TD2 rns based on the degree sum of vertices lying at unit distance
from end vertices of each edge, and by using this partition we compute the ABC4 and GA5 indices of
tetrathiafulvalene dendrimer TD2 rns.
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Figure 2. Tetrathiafulvalene dendrimer with 2-growth stages, TD2 r2s.

Table 2. Edge partition of tetrathiafulvalene dendrimer TD2 rns based on degree sum of neighbors of
end vertices of each edge.

pSu, SvqWhere uv P E pGq Number of Edges

p2, 4q 2n`2

p3, 6q 2n`2 ´ 4
p4, 6q 2n`2

p5, 5q 7ˆ 2n`2 ´ 16
p5, 6q 11ˆ 2n`2 ´ 24
p5, 7q 3ˆ 2n`2 ´ 8
p6, 6q 2n`2 ´ 4
p6, 7q 8ˆ 2n`2 ´ 24
p7, 7q 2ˆ 2n`2 ´ 5
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In the following theorem, the exact formula of ABC4 index for tetrathiafulvalene dendrimer
TD2 rns is computed.

Theorem 3. Consider tetrathiafulvalene dendrimer TD2 rns. The ABC4 index of TD2 rns is equal to

ABC4 pTD2 rnsq “

ˆ

33
?

2
10 ` 1

3

b

7
2 `

19
?

3
21 ` 11

b

3
10 ` 3

b

2
7 `

?
10
6 ` 8

b

11
42

˙

2n`2

´

ˆ

4
3

b

7
2 `

32
?

2
5 ` 24

b

3
10 ` 8

b

2
7 `

2
?

10
3 ` 24

b

11
42 `

10
?

3
7

˙ (14)

Proof. Let G be the graph of tetrathiafulvalene dendrimer TD2 rns. We have
|V pTD2 rnsq| “ 31ˆ 2n`2 ´ 74 and |E pTD2 rnsq| “ 35ˆ 2n`2 ´ 85 . We find the edge partition of the
form p2, 4q, p3, 6q, p4, 6q, p5, 5q, p5, 6q, p5, 7q, p6, 6q, p5, 7q, p7, 7q for tetrathiafulvalene dendrimer TD2 rns
based on the degree sum of vertices lying at unit distance from end vertices of each edge. Table 2
explains such partition for TD2 rns.

Now by using the partition given in Table 2, we can compute the ABC4 index for TD2 rns. Since

ABC4 pGq “
ÿ

uvPEpGq

d

Su ` Sv ´ 2
SuSv

(15)

this implies that

ABC4 pTD2 rnsq “
`

2n`2˘
b

2`4´2
2ˆ4 `

`

2n`2 ´ 4
˘

b

3`6´2
3ˆ6 `

`

2n`2˘
b

4`6´2
4ˆ6

`
`

7ˆ 2n`2 ´ 16
˘

b

5`5´2
5ˆ5 `

`

11ˆ 2n`2 ´ 24
˘

b

5`6´2
5ˆ6

`
`

3ˆ 2n`2 ´ 8
˘

b

5`7´2
5ˆ7 `

`

2n`2 ´ 4
˘

b

6`6´2
6ˆ6

`
`

8ˆ 2n`2 ´ 24
˘

b

6`7´2
6ˆ7 `

`

2ˆ 2n`2 ´ 5
˘

b

7`7´2
7ˆ7

(16)

After an easy simplification, we have

ABC4 pTD2 rnsq “

ˆ

33
?

2
10 ` 1

3

b

7
2 `

19
?

3
21 ` 11

b

3
10 ` 3

b

2
7 `

?
10
6 ` 8

b

11
42

˙

2n`2

´

ˆ

4
3

b

7
2 `

32
?

2
5 ` 24

b

3
10 ` 8

b

2
7 `

2
?

10
3 ` 24

b

11
42 `

10
?

3
7

˙ (17)

This completes the proof.
Following theorem computes the GA5 index of tetrathiafulvalene dendrimer TD2 rns.

Theorem 4. Consider the tetrathiafulvalene dendrimer TD2 rns. The GA5 index of PD1 rns is
equal to

GA5 pTD2 rnsq “

´

4
?

2
3 `

2
?

6
5 ` 9` 2

?
30`

?
35
2 `

16
?

43
13

¯

2n`2

´

´

8
?

2
3 ` 25` 48

?
30

11 `
4
?

35
3 `

48
?

43
13

¯ (18)

Proof. Let G be the graph of tetrathiafulvalene dendrimer TD2 rns. The edge partition of
tetrathiafulvalene dendrimer TD2 rns based on the degree sum of vertices lying at unit distance
from end vertices of each edge is given in Table 2. Now we apply the formula of GA5 index for
TD2 rns. Since:

GA5 pGq “
ÿ

uvPEpGq

2
?

SuSv

Su ` Sv
, (19)
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this implies that:

GA5 pTD2 rnsq “
2
?

2ˆ4
2`4

`

2n`2˘` 2
?

3ˆ6
3`6

`

2n`2 ´ 4
˘

`
2
?

4ˆ6
4`6

`

2n`2˘

`
2
?

5ˆ5
5`5

`

7ˆ 2n`2 ´ 16
˘

`
2
?

5ˆ6
5`6

`

11ˆ 2n`2 ´ 24
˘

`
2
?

5ˆ7
5`7

`

3ˆ 2n`2 ´ 8
˘

`
2
?

6ˆ6
6`6

`

2n`2 ´ 4
˘

`
2
?

6ˆ7
6`7

`

8ˆ 2n`2 ´ 24
˘

`
2
?

7ˆ7
7`7

`

2ˆ 2n`2 ´ 5
˘

(20)

After an easy simplification, we have:

GA5 pTD2 rnsq “

´

4
?

2
3 `

2
?

6
5 ` 9` 2

?
30`

?
35
2 `

16
?

43
13

¯

2n`2

´

´

8
?

2
3 ` 25` 48

?
30

11 `
4
?

35
3 `

48
?

43
13

¯ (21)

This completes the proof.
We shall now determine the ABC4 and GA5 indices of POPAM dendrimers, denoted by POD2 rns

where n ě 0. The number of vertices and edges in POD2 rns are 2n`5 ´ 10 and 2n`5 ´ 11, respectively
(see [14]). Figure 3 shows the graph of POPAM dendrimer POD2 rns with 2 growth stages. Table 3
shows the partition of edge set of POPAM dendrimer POD2 rns based on the degree sum of vertices
lying at unit distance from end vertices of each edge, and by using this partition we compute the ABC4

and GA5 indices of POPAM dendrimer POD2 rns.Molecules 2016, 21, 821 8 of 11 
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Figure 3. POPAM dendrimer of generations Gn with two growth stages, POD2 r2s.

Table 3. Edge partition of POPAM dendrimer, POD2 rns based on degree sum of neighbors of end
vertices of each edge.

pSu, SvqWhere uv P E pGq Number of Edges

p2, 3q 2n`2

p3, 4q 2n`2

p4, 4q 1
p4, 5q 3ˆ 2n`2 ´ 6
p5, 6q 3ˆ 2n`2 ´ 6
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In the following theorem, the exact formula of ABC4 index for POPAM dendrimer POD2 rns
is computed.

Theorem 5. Consider POPAM dendrimer POD2 rns. The ABC4 index of POD2 rns is equal to

ABC4 pPOD2 rnsq “

˜?
2

2
`

?
15
6
` 3

c

3
10

¸

2n`2 `

˜?
6

4
` 6

c

7
5

¸

2n ´

˜

6

c

7
5
` 6

c

3
10

¸

(22)

Proof. Let G be the graph of POPAM dendrimer POD2 rns. We have |V pPOD2 rnsq| “ 2n`5 ´ 10
and |E pPOD2 rnsq| “ 2n`5 ´ 11. We find the edge partition of the form p2, 3q, p3, 4q, p4, 4q, p4, 5q and
p5, 6q for POPAM dendrimer POD2 rns based on the degree sum of vertices lying at unit distance from
end vertices of each edge. Table 3 explains such partition for POD2 rns.

Now, by using the partition given in Table 3, we can compute the ABC4 index for POD2 rns. Since:

ABC4 pGq “
ÿ

uvPEpGq

d

Su ` Sv ´ 2
SuSv

(23)

this implies that

ABC4 pPOD2 rnsq “
`

2n`2˘
b

2`3´2
2ˆ3 `

`

2n`2˘
b

3`4´2
3ˆ4 ` p1q

b

4`4´2
4ˆ4

`
`

3ˆ 2n`2 ´ 6
˘

b

4`5´2
4ˆ5 `

`

3ˆ 2n`2 ´ 6
˘

b

5`6´2
5ˆ6

(24)

After an easy simplification, we get

ABC4 pPOD2 rnsq “

˜?
2

2
`

?
15
6
` 3

c

3
10
`

3
2

c

7
5

¸

2n`2 ´

˜

6

c

7
5
` 6

c

3
10
´

?
6

4

¸

(25)

This completes the proof.
Following theorem computes the GA5 index of POPAM dendrimers POD2 rns.

Theorem 6. Consider POPAM dendrimers POD2 rns. The GA5 index of POD2 rns is equal to:

GA5 pPOD2 rnsq “
ˆ

2
?

6
5
`

4
?

3
7
`

4
?

5
3
`

6
?

30
11

˙

2n`2 ´

ˆ

8
?

5
3
`

12
?

30
11

´ 1
˙

(26)

Proof. Let G be the graph of POPAM dendrimers POD2 rns. The edge partition of POPAM
dendrimers POD2 rns based on the degree sum of vertices lying at unit distance from end vertices of
each edge is given in Table 3. Now we apply the formula of GA5 index for POD2 rns. Since:

GA5 pGq “
ÿ

uvPEpGq

2
?

SuSv

Su ` Sv
(27)

This implies that:

GA5 pPOD2 rnsq “
2
?

2ˆ3
2`3

`

2n`2˘` 2
?

3ˆ4
3`4

`

2n`2˘` 2
?

4ˆ4
4`4 p1q

`
2
?

4ˆ5
4`5

`

3ˆ 2n`2 ´ 6
˘

`
2
?

5ˆ6
5`6

`

3ˆ 2n`2 ´ 6
˘

(28)

After an easy simplification, we get:

GA5 pPOD2 rnsq “
ˆ

2
?

6
5
`

4
?

3
7
`

4
?

5
3
`

6
?

30
11

˙

2n`2 ´

ˆ

8
?

5
3
`

12
?

30
11

´ 1
˙

(29)

This completes the proof.
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3. Conclusions

Molecular topology (or topological indices) has widely demonstrated its high performance in
the discovery and design of new drugs. With this paper we seek to contribute to a better knowledge
of molecular topology among mathematicians. Moreover: molecular topology can be employed to
look for drugs that heal, in principle, any disease, based on the structural information provided by
known active compounds. Once more, ‘pure’ mathematics comes to the rescue in practical problems,
this time in the form of graph theory. If the book of nature is written with numbers, then molecular
topology is certainly one way of reading it. Particularly, in this paper, we have considered some
families of dendrimers, namely, PAMAM, tetrathiafulvalene and POPAM dendrimers, and studied
their topological indices. The analytical closed formulas of the fourth version of atom-bond connectivity
index ABC4 and the fifth version of geometric-arithmetic index GA5 for these families of dendrimers are
determined. The obtained results can be of useful in molecular data mining, particularly in researching
the uniqueness of tested (hyper-branched) molecular graphs. In the future, we are interested to study
and compute topological indices of various families of dendrimers/networks which will be quite
useful in understanding their underlying topologies.
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