COASTAL CIRCULATION OFF KUALA TERENGGANU

MAGED MAHMOUD MARGHANY

MASTER OF SCIENCE UNIVERSITI PERTANIAN MALAYSIA

PDF processed with CutePDF evaluation edition www.CutePDF.com

10: 3107

tesis

LAK: 25276

1000381318 Coastal circulation off Kuala Terengganu / Maged Mahmoud Marghany.

l ihat cahalah

- 3101

UNIVERS	PERPUSTAKAAN SULTANAH NUR ZAHIRAH UNIVERSITI MALAYSIA TERENGGANU (UMT) 21030 KUALA TERENGGANU		

66 228.6 - Ţ i. M3

1994

HAK MILIK PERPUSTAKAAN KUSTEM

1000381318

COASTAL CIRCULATION OFF KUALA TERENGGANU

By

MAGED MAHMOUD MARGHANY

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master Science in the Faculty of Fisheries and Marine Science, Universiti Pertanian Malaysia

September 1994

1000381318

HADIAH

M 3 1994

TY

GC

228.6

ACKNOWLEDGEMENTS

The author would like to thank the Almighty Allah for making him be the first Arab, to do research on physical oceanography in this part of the South China Sea, which has been ignored by scientists. Everything has been done by the action of Allah, who has given patience to the author for continuing his study to a desire goal.

The author wants to express his gratitude and thanks to his committee members Dr. Mohd. Nasir Saadon, Dr. Mohd. Lokman Husain and Professor Dr. Mohd. Ibrahim B.Hj. Mohamed for their all-round support, valuable suggestions and encouragement without which would not have been made possible.

The author also extends his thanks to the staff of UNIPERTAMA I and UNIPERTAMA III boats especially Encik Mohammed Embong and Captain Rahman Muda who helped him to collect the data under bad weather conditions of the sea.

ii

1000381318

The support from the staff of the Faculty of Fisheries and Marine Science, Universiti Pertanian Malaysia in Kuala Terengganu are also acknowledged especially Encik Sukiman Sengat who supported him with basic programmes to calculate temperature and salinity. Thanks are also to Encik Suliman Kassim and Johari Mohamed.

The author thanks his friends Muhamad Saini, Mustapha Othman and Kamel Bahrin who prepare the figures in this thesis. He also thanks his friend Rosland Salim who translated the abstract to the Bahasa Malaysia.

Finally the author wants to express his deep gratitude to Mr Cornelius Anwar Abdullah of Kolej Agama Sultan Zainal Abidin in Kuala Terengganu who edited this thesis.

iii

TABLE OF CONTENTS

Field Fork and Observational	Page
ACKNOWLEDGMENTS	
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF PLATES	xiii
ABSTRACT	xiv
ABSTRAK	xvi
CHAPTER	
CHAFIER	
I INTRODUCTION	1
Factors Inducing Water Circulation	1
Water Circulation in the South China Sea	3
Problem and Importance of Water Circulation in Kuala Terengganu	8
Objectives	12
II LITERATURE REVIEW	14
Previous Work in the Study Area	14
Features of Water Circulation	21
Upwelling	23
Tidal Current	23
Residual Current	24
III MATERIALS AND METHODS	26
Study Area	26
Sampling Design	29

Data Collection	32
Field Work and Observational Procedure	32
Temperature Measurements	32
Salinity Measurements	36
Sampling Methods	40
Temperature and Salinity Distributions	42
Current Measurements	42
Meteorological Data	50
Tidal Data	51
RESULTS AND ANALYSIS	52
Temperature and Salinity	52
Temperature Distribution	58
Salinity Distribution	61
Surface Current	64
South-west Monsoon	64
Transition Period	68
Subsurface Current	70
Scatter Plots	72
Progressive Vector Plots	81
Component of Current Velocity	84
Tidal Current Ellipses	90
Residual Current	90
DISCUSSION	101
Temperature Differences	101
Temperature Stratification	104

IV

v

	Salinity Differences	106
	Water Salinity Distribution	113
	Upwelling and Downwelling	113
	Surface Current	121
	Surface Water Flow	121
	Meander	123
	Subsurface Current	124
	Subsurface Water Flow	124
	Tidal Current	126
VI	SUMMARY AND CONCLUSION	129
	Temperature and Salinity Distribution	129
	Temperature Differences	130
	Salinity Differences	130
	Water Stratification	131
	Upwelling and Downwelling	132
	Surface Current	132
	Surface Current Flow	133
	Meander	133
	Subsurface Current	133
	Subsurface Current Flow	133
	Tidal Current	134
BIBLIOGRA	арну	136
APPENDIX		
A	Basic Computer Programs Used to Calculate True Temperature and Salinity	143

В	Fortran Computer Program Used to Draw Isothermal and Isohaline Contours 148
С	Fortran Computer Program Used to Draw Progressive Vector Plots
BIOGF	RAPHICAL SKETCH 159

LIST OF TABLES

Table

Page

 Maximum Current Speed during the Rising and Falling Tide for Each Observation Period 76
 Summary of Average Major Axis Speed and Minor Axis Speed for Each Observation Period
3. Average Range of Residual Flow in the South-west and North-east Monsoon Periods
4. Temperature Differences (°C) and their Average Value (°C) for Each Transect
5. Salinity Differences (ppt) and their Average Value (ppt) for Each Transect
viii

LIST OF FIGURES

Figure	e he	age
1.	Geographical Location of South China Sea (From Pohlmann, 1987)	4
2.	Wind Stress Distribution in January (From Hellerman, 1968)	6
3.	Wind Stress Distribution in July (From Hellerman, 1968)	7
4.	Surface Current in the South China Sea in the Month of February (From Morgan and Valencia, 1983)	. 9
5.	Surface Current in the South China Sea in the Month of August (From Morgan and Valencia, 1983)	10
6.	Study Areas Showing the Bottom Topography in Kuala Terengganu Water	27
7.	The Location of Stations in Phase 1 for Collection of Temperature, Salinity, Current Meter and Drogue Deployment from May 1992 to February 1993	30
8.	The Location of Stations Phase 2 for Temperature, Salinity and Current Measurements in the Month of March 1993	
9.	Current Meter Deployment System	45
10.	Drogue Deployment System	49
11.	Temperature and Salinity Profiles in Transect 1 for Each Observation	53
12.	Temperature and Salinity Profiles in Transect 2 for Each Observation	54
13.	Temperature and Salinity Profiles in Transect 3 for Each Observation	55
14.	Temperature and Salinity Profiles in Transect 4 for Each Observation	56

15.	Temperature and Salinity Profiles in Transect 5 for Each Observation	57
16.	The Track of a Drifting Drogue Released on 20th June 1992	65
17.	The Track of a Drifting Drogue Released on 21th June 1992	66
18.	The Track of a Drifting Drogue Released on 19th September 1992	67
19.	The Track of a Drifting Drogue Released at Station 3 from 4th to 6th April 1993	69
20.	The track of a drifting drogue released at Station 5 from 7th to 9th April 1993	71
21.	Scatter Plots of Current Speed against Direction during South-west Monsoon Period	73
22.	Scatter Plots of Current Speed against Direction during North-east Monsoon Period	74
23.	A Plot of Maximum Current Speed against Tidal Height during the Rising Tide	77
24.	A Plot of Maximum Current Speed against Tidal Height during the Falling Tide	77
25.	Scatter Plots of Wind Stress during the South-west Monsoon Season	79
26.	Scatter Plots of Wind Stress during the North-east Monsoon Season	80
27.	Progressive Vector Plots during the South- west Monsoon Season	82
28.	Progressive Vector Plots during the North- east Monsoon Season	83
29.	U and V Current Speeds Components during the South-west Monsoon Season	86
30.	U and V Current Speeds Components during the North-east Monsoon Season	87
31.	A Plot of Variance U Component against the Variance of Tidal Elevation	88

32.	A Plot of Variance V Component against the Variance of Tidal Elevation	88
33.	Tidal Current Ellipses in the Month of May 1992	90
34.	Tidal Current Ellipses in the Month of June 1992	91
35.	Tidal Current Ellipses in the Month of July 1992	92
36.	Tidal Current Ellipses in the Month of August 1992	93
37.	Tidal Current Ellipses in the Month of October 1992	94
38.	Tidal Current Ellipses in the Month of March 1993	95
39.	Tidal Current Ellipses in the Month of April 1993	96
40.	Residual Currents for Each Observational Period	98
41.	The Net residual Current Flow for Each Observation	100
42.	Temperature Distribution during the South-west Monsoon	105
43.	Rainfall Distribution for Each Observational Period (Malaysian Meteorological Service, 1993)	109
44.	(a) Temperature and (b) Salinity Distribution of Transect 1 in February 1993	110
45.	Temperature Distribution in Transect 5 Through August and October	112
46.	Upwelling Observation from (a) Isotherm and (b) Isohaline Contours During South-west Monsoon	115
47.	Temperature and Salinity Distribution in the Month of May 1992	117

48.	Downwelling observation from (a) Isotherm and (b) Isohaline Contours During North-east	
	Monsoon	119
49.	Temperature Distribution in the Month of February 1993	122

xii

LIST OF PLATES

Plate

page

1.	The River Mouth of Kuala Terengganu Viewed from the North	28
2.	Reversing Thermometer	33
3.	Nansen Bottle	34
4.	Inductively Coupled Salinometer Model 601 Mkv	38
5.	UNIPERTAMA III	41
6.	ONO Self Recording Current Meter	43
7.	Drogue Used in this Study	47

culty a Faculty of Fisherius and Merine Science

the air of this study was to determine the type of the current patterns in the coastal waters of Ruala Tarangganu. This study was divided in two parts. The first part was to determine the pattern of thermobaline circulation. This was done by sampling 25 stations along the coastal water of Ruale Terengganu. The second part was to measure the subsurface current by CHO-solf recording surrent seter and drogue.

The thermohaline circulation was dominated by mixing during the north-sept monsoon period (October 1992, February and Harch 1993) due to the turbulance

xiii

Abstract of thesis submitted to the Senate of Universiti Pertanian Malaysia in fulfilment of the requirements for the degree of Master of Science

COASTAL CIRCULATION OFF KUALA TERENGGANU

By Maged Mahmoud Marghany

SFPTEMBER 1994

Chairman : Mohd. Nasir Saadon, Ph.D

Faculty : Faculty of Fisheries and Marine Science

The aim of this study was to determine the type of the current patterns in the coastal waters of Kuala Terengganu. This study was divided in two parts. The first part was to determine the pattern of thermohaline circulation. This was done by sampling 25 stations along the coastal water of Kuala Terengganu. The second part was to measure the subsurface current by ONO-self recording current meter and drogue.

The thermohaline circulation was dominated by mixing during the north-east monsoon period (October 1992, February and March 1993) due to the turbulence

xiv

resulting from the action of wind and tide. A dominant feature of this study was the occurrence of upwelling during the south-west monsoon period (May to August 1992). The downwelling occurrences are in the north-east monsoon.

The study showed that the subsurface current in the coastal waters of Kuala Terengganu were influenced by the tide. The current speed throughout this study varied from 0.012 to 2.6 m/s. The tide throughout this study was diurnal in nature. A dominant feature through this study was tidal current while, the winds have no impact on the water movement. Finally the data of surface current illustrated that the water meanders in the month of April 1993. Meander rotated in clockwise direction from the north to south-west direction with an average current speed of about 0.4 m/s.

men kejian suysojang pereiren pestai Kuala Terengganu. Mylan kedue pula adalah untuk mengukur arus sub-permukaan myuhakan meter arus "ONO self recording" dan "droque".

Kitaran termehalin telah didominasikan percampuran thasnya semasa tertoh Mousun Timur Lapt (Oktober, 1992; Tebruar) dan Mac, 1993) akibat teripada penggeloraan hasil

xv