




### 1100092909





#### 1100092909

The impact of elevated carbon dioxide on the stress tolerance of selected vegetable crops / Razifah Mohd Razali.




|       | ·     |               |
|-------|-------|---------------|
|       | STA S |               |
|       | A.    |               |
| :     |       |               |
|       |       |               |
|       |       |               |
| 1     |       |               |
|       |       |               |
|       |       |               |
|       |       |               |
|       |       |               |
|       |       |               |
| i     | -     |               |
| I · · |       | Lihat Sebelah |
|       | •     |               |

HAK MILIK

# The impact of elevated carbon dioxide on the stress tolerance of selected vegetable crops

#### **Razifah Mohd Razali**





#### Te Whare Wānanga o Otāgo

#### November 2014

#### Table of Content

| Table of Content                                             |  |
|--------------------------------------------------------------|--|
| Abstract                                                     |  |
| Acknowledgmentsix                                            |  |
| List of Abbreviationsx                                       |  |
| List of Figuresxi                                            |  |
| List of Tablesxvii                                           |  |
| List of Appendicesxix                                        |  |
| Introduction                                                 |  |
| Literature review                                            |  |
| 1.1 Climate Change                                           |  |
| 1.1.1 What is climate change?                                |  |
| 1.1.2 Impacts of climate change on plant and food production |  |
| 1.2 Carbon dioxide (CO <sub>2</sub> )                        |  |
| 1.2.1 Effects of CO <sub>2</sub> on plants                   |  |
| 1.2.2 CO <sub>2</sub> and photosynthesis                     |  |

| 1.2.2          | CO <sub>2</sub> and photosynthesis                       | .6 |
|----------------|----------------------------------------------------------|----|
| 1.2.3          | CO <sub>2</sub> and crop water use                       | .9 |
| 1.2.4          | CO <sub>2</sub> and crop yield                           | .9 |
| 1.2.5          | CO <sub>2</sub> and weeds, diseases and insect pest      | 10 |
| 1.3 Irr        | igation Water                                            | 12 |
|                |                                                          |    |
| 1.3.1          | Irrigation water quality                                 | 12 |
|                | Irrigation water quality<br>Water blooms (Cyanobacteria) |    |
| 1.3.2          |                                                          | 12 |
| 1.3.2<br>1.3.3 | Water blooms (Cyanobacteria)                             | 12 |

1 4 1 Introduction

| 1.4.1   | Introduction       | 15 |
|---------|--------------------|----|
| 1.4.2   | Chemical compounds | 16 |
| 1.4.3   | Health benefits    | 17 |
| 1.5 Let | ttuce              | 18 |
| 1.5.1   | Introduction       | 18 |
| 1.5.2   | Chemical compounds | 18 |
| 1.5.3   | Health benefits    | 19 |

•

| 1.6  | Sp  | inach                                                 | .20 |
|------|-----|-------------------------------------------------------|-----|
| 1.6  | 5.1 | Introduction                                          | .20 |
| 1.6  | 5.2 | Chemical compounds                                    | .20 |
| 1.6  | 5.3 | Health benefits                                       | .21 |
| 1.7  | Sw  | iss chard                                             | .22 |
| 1.7  | 7.1 | Introduction                                          | .22 |
| 1.7  | 7.2 | Chemical compounds                                    | .22 |
| 1.7  | 7.3 | Health benefits                                       | .22 |
| 1.8  | Bea | ans                                                   | .23 |
| 1.8  | 3.1 | Introduction                                          | .23 |
| 1.8  | 3.2 | Health benefits                                       | .23 |
| 1.9  | Ox  | idative stress                                        | .24 |
|      |     | Reactive oxygen species (ROS) and oxidative stress    |     |
| 1.9  | 9.2 | Oxidative stress and acclimation mechanisms in plants | .25 |
| 1.10 | F   | Antioxidants                                          | .26 |
| 1.1  | 0.1 | Introduction                                          | .26 |
| 1.1  | 0.2 | Chemical properties and biosynthesis                  | .27 |
| 1.1  | 0.3 | Antioxidant metabolism                                | .29 |
| 1.1  | 0.4 | Antioxidant enzyme                                    | .30 |
| 1.1  | 0.5 | Non-enzymatic antioxidant                             | .31 |
| 1.11 | P   | Phenolic Compounds                                    | .32 |
| 1.1  | 1.1 | Introduction                                          | .32 |
| 1.1  | 1.2 | Chemical and physical properties                      | .32 |
| 1.1  | 1.3 | Biosynthesis                                          | .34 |
| 1.1  | 1.4 | Function in humans                                    |     |

| 1.12   | Polyamines                         |    |
|--------|------------------------------------|----|
| 1.12.1 | 1 Introduction                     |    |
| 1.12.2 | 2 Chemical and physical properties |    |
| 1.12.3 | 3 Biosynthesis                     |    |
| 1.12.4 | 4 Polyamine degradation            |    |
| 1.12.5 | 5 Polyamines in stressed plants    | 40 |
| 1.12.6 | 6 Function in humans               | 40 |
|        | ii                                 |    |

## Effect of elevated carbon dioxide (CO<sub>2</sub>) on growth, development, chlorophyll fluorescence and photosynthetic pigments of selected vegetable crops: a preliminary

| study | y4                                                                                    | 1          |
|-------|---------------------------------------------------------------------------------------|------------|
| 2.1   | Introduction4                                                                         | 1          |
| 2.2   | Materials and methods                                                                 | 2          |
| 2.2   | 2.1 Experimental design and growth conditions                                         | 2          |
| 2.2   | 2.2 Plant material and seed selection                                                 | 2          |
| 2.2   | 2.3 Sampling and frozen-technique                                                     | 2          |
| 2.2   | 2.4 Measurement of chlorophyll <i>a</i> fluorescence                                  | 3          |
| 2.2   | 2.5 Measurement of plant height, leaf area, number of leaves, leaf fresh matte        | r          |
| (ed   | lible part), root fresh matter, shoot dry matter and root dry matter                  | 3          |
| 2.2   | Leaf pigment measurement                                                              | 4          |
| 2.2   | 2.7 Statistical analysis                                                              | 4          |
| 2.3   | Results4                                                                              | 5          |
| 2.3   | .1 Effect of elevated CO <sub>2</sub> on chlorophyll fluorescence                     | 5          |
| 2.3   | .2 Effect of elevated CO <sub>2</sub> on photosynthetic pigments                      | 6          |
| 2.3   | .3 Effect of elevated CO <sub>2</sub> on plant height                                 | 7          |
|       | .4 Effect of elevated CO <sub>2</sub> on total leaf area                              |            |
| 2.3   | .5 Effect of elevated CO <sub>2</sub> on shoot dry matter                             | 9          |
| 2.4   | Discussion                                                                            | 0          |
| The   | influence of elevated CO <sub>2</sub> on growth and antioxidant metabolism in Lettuce | <b>`</b> , |
| Spina | ach and Swiss chard plants exposed to cyanobacterial toxins (Microcystins)5           | 2          |
| 3.1   | Introduction                                                                          | 2          |
| 3.2   | Materials and methods5                                                                | 6          |

| 3.2.2 | Microcystin extraction, purification and application |  |
|-------|------------------------------------------------------|--|
| 3.2.3 | Plant materials and growth study                     |  |
| 3.2.4 | Lipid extraction and analysis                        |  |
| 3.2.5 | Glutathione extraction and determination             |  |
| 3.2.6 | Ascorbate extraction and determination               |  |
| 3.2.7 | Extraction and assay of antioxidant enzymes          |  |
| 3.2.8 | Storage and handling of reagents and extracts        |  |
| 3.2.9 | Statistical analysis                                 |  |
|       |                                                      |  |

| 3.3   | Results                                   |    |
|-------|-------------------------------------------|----|
| 3.3.  | 1 Leaf microcystin concentration          | 64 |
| 3.3.  | 2 Growth Parameters                       |    |
| 3.3.  | 3 Oxidative damage to proteins and lipids |    |
| 3.3.4 | 4 Antioxidant metabolism                  |    |
| 3.3.  | 5 Key trends                              |    |
|       |                                           |    |

#### 

| 3.4 | .1     | Microcystins accumulation112                            |
|-----|--------|---------------------------------------------------------|
| 3.4 | .2     | Plant growth and development                            |
| 3.4 | .3     | Cell damage                                             |
| 3.4 | .4     | Protection by antioxidant metabolism                    |
| 3.5 | Con    | clusions and future work                                |
| The | effect | t of microcystin induced stress on polyamine metabolism |
| 4.1 | Intro  | oduction                                                |
| 4.2 | Mat    | erials and methods                                      |
|     | ~      |                                                         |

| 4.2   | 2.2   | Extraction and assay of enzymes involved in polyamine biosynthesis                 | 3 |
|-------|-------|------------------------------------------------------------------------------------|---|
|       |       | ults                                                                               |   |
|       |       | Polyamines and plants                                                              |   |
| 4.4   | .2    | How do polyamines protect plants from stress?15:                                   | 5 |
| 4.5   | Con   | nclusions and future work                                                          | 3 |
| Char  | nges  | of growth and antioxidant content in response to elevated CO <sub>2</sub> and viru | S |
| infec | tion  | in the leaves of <i>Phaseolus vulgaris</i> L. cv. Top Crop                         | 4 |
| 5.1   | Intre | oduction                                                                           | 4 |

| 5.2 Ma | aterials and methods168                                                  |
|--------|--------------------------------------------------------------------------|
| 5.2.1  | Experimental design and growth conditions168                             |
| 5.2.2  | Top Crop beans growth168                                                 |
| 5.2.3  | Purification of RCNMV168                                                 |
| 5.2.4  | Virus Inoculation                                                        |
| 5.2.5  | Extraction of virus for determination of viral titre using Enzyme-linked |
| immun  | osorbent assay (ELISA)169                                                |
|        | iv                                                                       |

| 5.2.6                                         | Virus titre determination using Enzyme-linked immunosorbent assay (ELISA)169 |    |  |
|-----------------------------------------------|------------------------------------------------------------------------------|----|--|
| 5.2.7 Virus infection survey                  |                                                                              |    |  |
| 5.2.8 Measurement of plant height and biomass |                                                                              |    |  |
| 5.2.9 Sampling for antioxidant analyses       |                                                                              | 70 |  |
| 5.3 Re                                        | esults1'                                                                     | 71 |  |
| 5.3.1                                         | Effect of elevate $CO_2$ for virus infection and plant growth1'              | 71 |  |
| 5.3.2                                         | Effect of elevated CO <sub>2</sub> on virus replication1'                    | 73 |  |

| 5.3.3                                                                                         | Effect of elevated CO <sub>2</sub> and virus replication on antioxidant metabolism.                                                                                               | 174                                                |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 5.4 Dis                                                                                       | scussion                                                                                                                                                                          | 187                                                |
| 5.4.1                                                                                         | Plant growth and development                                                                                                                                                      | 187                                                |
| 5.4.2                                                                                         | Virus infection                                                                                                                                                                   | 187                                                |
| 5.4.3                                                                                         | Cell damage by virus infection                                                                                                                                                    | 188                                                |
| 5.4.4                                                                                         | Protection by antioxidant metabolism                                                                                                                                              | 191                                                |
| 5.5 Co                                                                                        | nclusions and future work                                                                                                                                                         | 194                                                |
| Relative                                                                                      | changes in levels of polyamines and activities of their biosynthe                                                                                                                 | etic and                                           |
| degradative enzymes in <i>Phaseolus vulgaris</i> L. cv. Top Crop infected with the <i>Red</i> |                                                                                                                                                                                   |                                                    |
| degradat                                                                                      | tive enzymes in <i>Phaseolus vulgaris</i> L. cv. Top Crop infected with                                                                                                           | the <i>Red</i>                                     |
|                                                                                               | ecrotic mosaic virus (RCNMV) that was grown at ambient and                                                                                                                        |                                                    |
| <i>clover ne</i><br>carbon d                                                                  | <i>ecrotic mosaic virus</i> (RCNMV) that was grown at ambient and lioxide (CO <sub>2</sub> ) levels                                                                               | elevated                                           |
| <i>clover ne</i><br>carbon d                                                                  | ecrotic mosaic virus (RCNMV) that was grown at ambient and                                                                                                                        | elevated                                           |
| <i>clover ne</i><br>carbon d<br>6.1 Intr                                                      | <i>ecrotic mosaic virus</i> (RCNMV) that was grown at ambient and lioxide (CO <sub>2</sub> ) levels                                                                               | elevated<br>195                                    |
| <pre>clover ne carbon d 6.1 Inte 6.2 Ma</pre>                                                 | ecrotic mosaic virus (RCNMV) that was grown at ambient and<br>lioxide (CO <sub>2</sub> ) levels                                                                                   | <b>elevated</b> 195198                             |
| clover ne<br>carbon d<br>6.1 Intr<br>6.2 Ma<br>6.2.1                                          | ecrotic mosaic virus (RCNMV) that was grown at ambient and<br>lioxide (CO <sub>2</sub> ) levels                                                                                   | elevated<br>195<br>198<br>198                      |
| <i>clover ne</i><br>carbon d<br>6.1 Intr<br>6.2 Ma<br>6.2.1<br>6.2.2                          | ecrotic mosaic virus (RCNMV) that was grown at ambient and<br>lioxide (CO <sub>2</sub> ) levels<br>roduction<br>aterials and methods<br>Experimental design and growth conditions | elevated<br>195<br>198<br>198<br>198               |
| <i>clover ne</i><br>carbon d<br>6.1 Intr<br>6.2 Ma<br>6.2.1<br>6.2.2<br>6.2.3                 | ecrotic mosaic virus (RCNMV) that was grown at ambient and<br>lioxide (CO <sub>2</sub> ) levels                                                                                   | elevated<br>195<br>195<br>198<br>198<br>198<br>198 |

Extraction and assay of diamine oxidase (DAO) and polyamine oxidase (PAO) 6.2.5 198

| 6.3 | Results | 199 |
|-----|---------|-----|
|-----|---------|-----|

- 6.3.1
- 6.3.2
- 6.3.3
- 6.3.4

| 6.3.5  | Activities of polyamines degradative enzymes                               |
|--------|----------------------------------------------------------------------------|
| 6.4 E  | Discussion                                                                 |
| 6.4.1  | Polyamine metabolism in plant-virus infection, dealing with carbon dioxide |
| enric  | hment                                                                      |
| 6.4.2  | Polyamines and their role in protecting plants from RCNMV infection219     |
| 6.5    | Conclusions and future work                                                |
| Genera | al Discussion (Summary)                                                    |

| V MILITIPAL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A second s |  |

| Approach and methodology of the stud | / |
|--------------------------------------|---|
|--------------------------------------|---|

Plant responses to different stresses are highly complex and involve changes at both the cellular and physiological levels. The physiological interaction between carbon dioxide ( $CO_2$ ) enrichment, biotic and abiotic stressor was studied in crop plants. Metabolic acclimation through the accumulation of protective metabolites is regarded as a basic strategy for protection and survival of plants in stress environments. The aim of this study was to investigate the relations between CO<sub>2</sub> enrichment and stress-inducing microcystins or *Red* clover necrotic mosaic virus (RCNMV) replication on plant growth and physiology. A preliminary study was carried out to investigate the growth and developmental response of selected leafy vegetable crops that were exposed to elevated carbon dioxide ( $CO_2$ ). Lettuce cvs. Great Lake and Red Fire, spinach, Swiss chard and cabbage were grown under ambient (380 ppm) and elevated (760 ppm)  $CO_2$  concentrations. Elevated  $CO_2$  was positively correlated with increased plant height, number of leaves and total leaf area except in cabbage. However, the photosynthetic pigments for lettuce, Swiss chard and cabbage decreased under elevated CO<sub>2</sub>, while the photochemical efficiency of PS II ( $f_v/f_m$ ) remained unchanged under

elevated CO<sub>2</sub> except in cabbage and Swiss chard.

Microcystin contamination of soil is a widespread environmental problem. A large-scale experiment was conducted to study the mechanisms involved in plant adaptation to microcystin stress under increasing atmospheric CO<sub>2</sub> levels. Selected leafy vegetable species were grown under ambient (380 ppm) and elevated (760 ppm)  $CO_2$  concentrations. Microcystins caused oxidative damage, with increased levels of protein carbonyls and lipid hydroperoxides in microcystin-treated plants. Subsequently a significant increase in antioxidant enzymes (i.e. superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and ascorbate peroxidase) was observed. A significant increased of total ascorbate was recorded in microcystin-treated plants under elevated CO<sub>2</sub> levels, but the percentage of oxidized ascorbate increased in microcystin-treated plants at both CO<sub>2</sub> levels. The level of total glutathione increased rapidly in microcystin-treated plants under elevated CO<sub>2</sub> levels and the oxidation process increased in microcystin-treated plants. Microcystin treatments drastically influenced the accumulation of polyamine compounds especially in the plants grown at ambient CO<sub>2</sub> levels. It has been suggested that an increased ability to accumulate polyamines represents a plant defence mechanism. Results from this study provide evidence

vii

that microcystins cause oxidative stress and that exposure to microcystins through the irrigation route poses a threat to the yield and quality of leafy vegetables.

The effect of RCNMV on Top Crop beans was also investigated in this study. Following RCNMV inoculation, plants were grown at ambient (380 ppm) and elevated  $CO_2$  (760 ppm) levels. Findings suggest that,  $CO_2$  enrichment could help infected plants to survive under biotic stress (RCNMV infection). It was observed that Top Crop beans grown at elevated  $CO_2$ 

levels showed increased antioxidant and polyamine metabolisms, accompanied by an increased in virus resistance. The virus titre was reduced as indicated by significantly lower amounts of RCNMV coat protein in plants grown at elevated  $CO_2$ . The combination of elevated  $CO_2$  and RCNMV infections promoted an increase in antioxidant metabolism in Top Crop beans. Polyamine metabolism also increased following RCNMV infection under elevated  $CO_2$ . Therefore, it was suggested that the increase in antioxidant and polyamine levels in plants exposed to elevated  $CO_2$  is associated with stress tolerance to RCNMV infection.

In conclusion, results from this study show that both stressors (biotic and abiotic) have

common defense mechanisms. Since  $H_2O_2$  is one product of stress, the necessity for  $H_2O_2$  detoxification is required for the survival of plants. The results also underline that environmental conditions can have a strong and complex modifying influence on antioxidant and polyamine metabolism. There are metabolic similarities between virus infection and toxin exposure.

#### viii