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A B S T R A C T   

In recent years, social media has increasingly become one of the popular ways for people to 
consume news. As proliferation of fake news on social media has the negative impacts on in
dividuals and society, automatic fake news detection has been explored by different research 
communities for combating fake news. With the development of multimedia technology, there is 
a phenomenon that cannot be ignored is that more and more social media news contains infor
mation with different modalities, e.g., texts, pictures and videos. The multiple information mo
dalities show more evidence of the happening of news events and present new opportunities to 
detect features in fake news. First, for multimodal fake news detection task, it is a challenge of 
keeping the unique properties for each modality while fusing the relevant information between 
different modalities. Second, for some news, the information fusion between different modalities 
may produce the noise information which affects model’s performance. Unfortunately, existing 
methods fail to handle these challenges. To address these problems, we propose a multimodal 
fake news detection framework based on Crossmodal Attention Residual and Multichannel 
convolutional neural Networks (CARMN). The Crossmodal Attention Residual Network (CARN) 
can selectively extract the relevant information related to a target modality from another source 
modality while maintaining the unique information of the target modality. The Multichannel 
Convolutional neural Network (MCN) can mitigate the influence of noise information which may 
be generated by crossmodal fusion component by extracting textual feature representation from 
original and fused textual information simultaneously. We conduct extensive experiments on four 
real-world datasets and demonstrate that the proposed model outperforms the state-of-the-art 
methods and learns more discriminable feature representations.   

1. Introduction 

As its low cost, convenience, and rapid propagation of information, social media has gradually become one of the important 
platforms for people to seek out and consume news in recent years Shu, Cui, Wang, Lee, and Liu (2019); Shu, Sliva, Wang, Tang, and 
Liu (2017); Zhang and Ghorbani (2020). Compared with traditional news media, the lack of effective supervision measures for social 

* Corresponding author. 
E-mail address: wubin@bupt.edu.cn (B. Wu).  

Contents lists available at ScienceDirect 

Information Processing and Management 

journal homepage: www.elsevier.com/locate/infoproman 

https://doi.org/10.1016/j.ipm.2020.102437 
Received 29 February 2020; Received in revised form 27 September 2020; Accepted 8 November 2020   



Information Processing and Management 58 (2021) 102437

2

media weakens the journalistic norms of objectivity. One can publish and spread fake news on social media at a very low cost. The 
proliferation of fake news on social media will bring negative impacts on both individuals and society. It may undermine the tradi
tional news sources that have enjoyed high levels of public trust and credibility and harm stability and harmony of society Lazer et al. 
(2018). 

One of the methods to mitigate the serious negative effects caused by the fake news is manual fact-checking Zhou, Zafarani, Shu, 
and Liu (2019b), which includes expert-based fact-checking and crowd-sourced manual fact-checking. Expert-based fact-checking can 
obtain high accuracy but needs intensive labor and cost of time and has difficulty in scaling with emerging fake news. Crowd-sourced 
manual fact-checking do well in scalability but will get a relatively less credible label, which fails to meet the qualification of accurate 
fake news detection. As the limitations of manual fact-checking approaches, automatic fake news detection techniques have been 
developed to solve the problem Zhou et al. (2019b). Some early researchers try to manually design a series of features which are fed 
into a machine learning model to identify fake news Castillo, Mendoza, and Poblete (2011); Sejeong, Meeyoung, Kyomin, Wei, and 
Yajun (2013); Yang, Liu, Yu, and Yang (2012), but these methods are still time-consuming and poor in generalizability. 

As the powerful ability of the deep neural networks (DNN) to automatic capture complex patterns, it was introduced to alleviate the 
shortcomings of traditional methods. Most of existing studies are mainly focus on using the textual features to detect fake news 
Oshikawa, Qian, and Wang (2018); Su, Macdonald, and Ounis (2019). However, there is a phenomenon that cannot be ignored is that 
more and more social media news contains information with different modalities such as texts, pictures, and videos. There are 
complementary and enhanced relationships between different modalities Cao et al. (2018); Cui, Wang, and Lee (2019); Zhao et al. 
(2019). More importantly, news with visual information is likely to attract much more attention from users and thus gains a larger 
propagation range Jin, Cao, Guo, Zhang, and Luo (2017a); Qi, Cao, Yang, Guo, and Li (2019). But limited work has been performed on 
verifying the credibility of news by exploiting visual information. Jin et al. first proposed a Recurrent Neural Networks (RNN)-based 
automatic multimodal fake news detection model, in which the multimodal features are fused via attention mechanism Jin et al. 
(2017a). Wang et al. proposed a multi-task learning framework to learn both textual and visual transferable feature representations 
among all the posts by leveraging an additional event discriminator Wang et al. (2018b). A similar idea is that Zhang et al. proposed an 
event memory network module to learn invariant features among different events Zhang, Fang, Qian, and Xu (2019). Khattar et al. 
proposed a multimodal fusion fake news detection framework based on Variational Autoencoder (VAE) Khattar, Goud, Gupta, and 
Varma (2019). 

First, despite great progress has been made in previous research, an important problem is ignored—how to keep the unique 
properties for each modality while fusing the relevant information between different modalities. Textual and visual feature repre
sentations are learned by different ways and should have their own unique characteristic. It is not a good choice to fuse different modal 
feature representations to one. Different modal feature separately representations will fail to fuse the correlative and complementary 
information between different modalities. Second, it should be noted that multimodal fake news detection task usually uses high-level 
image embeddings and low-level sentence embeddings Jin et al. (2017a) and the visual feature representation is extracted from the 
model pretrained on Imagenet set Simonyan and Zisserman (2015), which means that it is impossible to accurately match text and 
image information. And fake news images from social media have more complex patterns at both physical and semantic levels Cao 
et al. (2020); Qi et al. (2019). For some posts and their attached images, the visual feature representations extracted from pretrained 
model are not always what we expect. The fusion between textual and visual information may produce noise information which may 
affect model’s performance. Thus, we should consider both original and fused text information simultaneously. Existing multimodal 
fake news detection methods fail to meet these requirements. 

To overcome the limitations of existing approaches, a multimodal fake news detection model based on Crossmodal Attention 
Residual and Multichannel convolutional neural Networks (CARMN) is proposed in this paper. The Crossmodal Attention Residual 
Network (CARN) can selectively extract the information related to a target modality from another source modality while maintaining 
the unique information of the target modality. The Multichannel Convolutional neural Network (MCN) can extract textual feature 
representation from original and fused textual information simultaneously and mitigate the influence of noise information which may 
be generated by crossmodal fusion component Wang, Zhang, Xie, and Guo (2018a). At present, there are only a few reliable 
social-media-oriented multimodal fake news detection datasets. Thus, we collected a large number of reliable fake and real news from 
the Weibo platform1. Our main contributions can be summarized as follows.  

• We present a novel multimodal fake news detection model based on CARN and MCN.  
• The CARN is introduced to fuse the relevant information between different modalities and keep the unique properties for each 

modality.  
• To mitigate the influence of noise information which may be generated by crossmodal fusion, the MCN is introduced to extract 

feature representations from original and fused textual information simultaneously.  
• We conduct extensive experiments on four real-world datasets and demonstrate that the proposed model outperforms state-of-the- 

art methods and learn more discriminable feature representations.  
• We contribute a large scale multimodal fake news dataset from Weibo platform and will make it available to the public2. 

1 http://www.weibo.com/  
2 https://github.com/lumen2018/dataset 
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2. Related work 

2.1. The definition of fake news 

Fake news overlaps with other concepts and terms such as false news, rumor, and disinformation Ajao, Bhowmik, and Zargari 
(2018); Bondielli and Marcelloni (2019); Lazer et al. (2018). An universal definition for fake news is still missing so far Zhou et al. 
(2019b). Similar to previous work Khattar et al. (2019); Wang et al. (2018b), we define fake news to be verifiable false news. 

2.2. Fake news detection 

The fake news detection task. The fake news detection task aims to assess the authenticity for the given news Kakol, Nielek, and 
Wierzbicki (2017); Zhou et al. (2019b). Most existing approaches formulate the fake news detection problem as a binary classification 
problem (fake or real) Shu et al. (2017). In some cases, it also is considered as multi-classification Karimi, Roy, Saba-Sadiya, and Tang 
(2018), regression, or clustering problems Oshikawa et al. (2018). The way of binary classification is adopted in this paper. The 
literature on fake news detection is extensive. We will provide a brief review of the work from the following categories: text-based, 
user-based, propagation-based and multimodal fake news detection. 

Text-based fake news detection. The early studies obtain text-based features by manual linguistic cues selection Rubin, Chen, and 
Conroy (2015); Ruchansky, Seo, and Liu (2017). For fake news detection task, it is difficult to generalize hand-crafted linguistic 
features across topics and domains Sharma et al. (2019). A RNN-based model was introduced to automatically learn the hidden 
representation of temporal textual feature, which outperforms the methods leveraging hand-crafted features Ma et al. (2016). In order 
to capture the long-range dependency among variable length sequential information, Chen et al. adopted soft-attention and RNN to 
learn selectively temporal feature representation of post series Chen, Li, Yin, and Zhang (2018). Similarly, Yu et al. proposed a con
volutional neural networks (CNN)-based model which is used to extract low-level local-global features from the input sequences and 
then construct high-level interactions among important features Yu, Liu, Wu, Wang, and Tan (2017). By exploiting the users’ feedback 
towards a target claim, stance information was proved to be a strong indicator for classification Dungs, Aker, Fuhr, and Bontcheva 
(2018); Kochkina, Liakata, and Zubiaga (2018); Ma, Gao, and Wong (2018a), but each response has to be given a special stance label, 
which is laborious. Inspired by Generative Adversarial Networks (GAN), Ma et al. proposed a GAN-style fake news detection model 
Ma, Gao, and Wong (2019). Textual feature representation is improved by adversarial learning between text generator and fake news 
discriminator. Scholars also explored text-based fake news detection with various way such as user response generating Qian, Gong, 
Sharma, and Liu (2018), text generation Vo and Lee (2019), reinforcement learning Zhou, Shu, Li, and Lau (2019a), fact-checking url 
recommendation Vo and Lee (2018) and attention-residual network Chen, Sui, Hu, and Gong (2019). 

User-based and propagation-based fake news detection. Apart from textual features, user profiles and propagation-based features as 
auxiliary information are also used to help differentiate fake news. Shu et al. provided a systematic research about the relationship 
between user profiles and the credibility of news Shu, Wang, and Liu (2018). Guo et al. fused the propagation features and user profiles 
with textual features via attention mechanism Guo, Cao, Zhang, Guo, and Li (2018). In addition, diffusion-based models have been 
introduced to solve this problem. Vosoughi et al. claimed that fake news tend to spreads faster, farther and more broadly than the truth 
on social network Vosoughi, Roy, and Aral (2018). According to supporting and opposing relations among posts, Jin et al. designed a 
homogeneous stance signed network to evaluate news credibility Jin, Cao, Zhang, and Luo (2016). Similarly, by exploiting post-repost 
relationships, Ma et al. proposed two kinds of recursive neural network models based on bottom-up and top-down tree-structured Ma, 
Gao, and Wong (2018b). 

Multimodal fake news detection. Different from all the aforementioned work, visual information, as auxiliary information, also has 
been adopted to infer the veracity of news articles Gupta, Lamba, Kumaraguru, and Joshi (2013); Gupta, Zhao, and Han (2012); Ke, 
Song, and Kenny Q (2015). There only a few studies that focus on the correlation between image and credibility of tweets Cao et al. 
(2018). By introducing some features from the field of image retrieval, Jin et al. first provided a systematic research on image features 
between fake and real news Jin, Cao, Zhang, Zhou, and Tian (2017b). However, these features are still hand-crafted and do not capture 
the complex visual content information. Inspired by DNN that achieved impressive results for image and text feature representation 
task, Jin et al. proposed a RNN-based multimodal fusion fake news detection framework Jin et al. (2017a). The high-level visual 
features and high-level textual and social features are fused by attention mechanism. Wang et al. proposed a multi-task learning model 
to learn textual and visual transferable feature representations among all the posts by removing textual and visual event-specific 
information Wang et al. (2018b). Similarly, for the event-level fake news detection task, Zhang et al. used the memory network to 
learn event invariant features and obtained better generalizability for newly emerged events Zhang et al. (2019). In order to learn a 
shared latent representation across modalities, Khattar et al. proposed a multi-modal fusion framework based on VAE Khattar et al. 
(2019). Recently, transfer learning-based methods also have been introduced to verify the authenticity of news Singhal et al. (2020); 
Singhal, Shah, Chakraborty, Kumaraguru, and Satoh (2019). 

3. Problem formulation 

There are two ways to detect fake news: post-level or tweet-level (to identify a single post is fake/real news) and event-level (to 
identify a news which include a group of posts is fake/real). Our research falls in the former. Let T be a post, T = [w1,w2,⋯wn], where n 
is the number of words w and P is an attached image of the post T. Given a post T and an attached image P, the task of this paper is to 
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identify the post T is real (y = 0) or fake (y = 1) news by learning a fake news detection function F : F(T,P) → (ŷ). 

4. Model 

4.1. Model framework 

The overall structure of the proposed model is shown in Fig. 1. Our model consists of: (1) input embedding layer (to get word 
embedding matrix RT and image embedding matrix RP), (2) CARN layer (to reinforce the target modality feature representation by 
selectively extracting information from another source modality) and self-attention residual network layer (to capture the interactions 
between different sequence element pairs and transmit original textual information to MCN), (3) MCN layer (to alleviate the effect of 
noise information which may be generated by CARN layer and extract the final textual feature representation Rtf ), (4) fake news 
prediction component (to predict a post is real or fake news). Next, we will present the details of the proposed fake news detection 
model. 

4.2. Input embeddings 

4.2.1. Word-Level sentence embeddings 
For a sentence T = {w1,w2,⋯wn}, each wi represent i − th word of the sentence T and n is the length of the sentence T. Then, we 

convert each word of sentence T to a pretrained word embedding ei: 

ei = WordEmbed(wi) (1)  

where ei ∈ RdT , dT is is the dimension of word embeddings. The word-level sentence embeddings (i.e., word embedding matrix) of the 
sentence T can be denoted as: 

RT = {e1, e2,⋯, en} (2)  

where RT ∈ RLT×dT , LT equals the length of the sentence T. 

4.2.2. Image embeddings 
Given m attached images P = {p1, p2,⋯pm} of the sentence T, we extract the initial image embeddings Rvgg from the VGG-19 net 

pretrained on Imagenet set Simonyan and Zisserman (2015), which followed by a fully connected layer to transform initial image 
embeddings Rvgg to the image embedding matrix RP with same dimension of word embeddings. Note that m = 1 in this paper. The 
image embedding matrix RP of the sentence T can be denoted as: 

RP = σ
(
Rvgg ×Wbf + bP

)
(3) 

Fig. 1. The proposed model framework.  
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where Rvgg ∈ RLP×dvgg , RP ∈ RLP×dP , Wbf ∈ Rdvgg×dP is the weight matrix of the fully connected layer, bP is bias term, LP equals to the 
number of the attached images m, dvgg denotes the output embedding dimension of the VGG-19 (dvgg = 1000), dP represents the 
dimension of image embeddings and σ is the Leaky ReLU activation function. It should be noted that dP = dT and LP = m = 1 in this 
paper. 

4.3. Attention residual network 

4.3.1. Positional encoding 
Compared to RNN, the attention-based neural networks can improve the training speed and capture longer dependencies in a 

sentence. However, there is no essential position information in an attention-based network. In order to enable each token of a 
sequence carries unique position information, the sentence embeddings are added with the positional encoding Vaswani et al. (2017). 
Given the embedding matrix of sentence T RT ∈ RLT×dT , its positional encoding (PE) can be computed by: 

PE(pos, 2j) = sin
(
pos

/
100002j/dT

)
(4)  

PE(pos, 2j+ 1) = cos
(
pos

/
100002j/dT

)
(5)  

where pos ∈ [0,⋯, LT] is position, j ∈ [0, dT /2) is the dimension. Each dimension of the PE corresponds to a sinusoid. Then, the position 
information is added to a sentence representation by summing token embeddings and corresponding PE (i.e., RT + PE(RT)). 

4.3.2. Crossmodal and unimodal attention 
As scaled dot-product attention is the core component of our model, we will provide the definitions of single head crossmodal 

attention, single head unimodal self-attention and multi-head unimodal self-attention, respectively Tsai et al. (2019); Vaswani et al. 
(2017). The task of crossmodal attention is to capture the relevant and complementary information between textual and visual in
formation. When pass information from the sentence T to its attached image P (i.e., T → P), the Queries, Keys and Values are defined as 
QP = RP × WQP , KT = RT × WKT and VT = RT × WVT , where WQP ∈ RdP×dk , WKT ∈ RdT×dk and WVT ∈ RdT×dv . Note that dk = dv = dT. 
The single head crossmodal attention function AttT→P ∈ RLP×dv is defined as follows. 

AttT→P = softmax
(
QP × K⊤

T

/ ̅̅̅̅̅
dk

√ )
× VT

= softmax
(

RP × WQP × W⊤
KT

× R⊤
T

/ ̅̅̅̅̅
dk

√ )
× RT × WVT

(6)  

when the information from modality P is passed to modality T: 

AttP→T =
[
softmax

(
QT × K⊤

P

/ ̅̅̅̅̅
dk

√ )⊤]⊤
× VP (7)  

where QT = RT × WQT , KP = RP × WKP , VP = RP × WVP , WQT ∈ RdT×dk , WKP ∈ RdP×dk , WVP ∈ RdP×dv and AttP→T ∈ RLT×dv . Similarly, the 
single head unimodal self-attention function AttT→T ∈ RLT×dv can be represented as: 

AttT→T = softmax
[
Q′

T ×(K′

T)
⊤
/ ̅̅̅̅̅

dk
√ ]

× V′

T (8)  

where Q′

T = RT × W′

QT , K′

T = RT × W′

KT , V′

T = RT × W′

VT , W′

QT ∈ RdT×dk , W′

KT ∈ RdT×dk and W′

VT ∈ RdT×dv . 
Compared to single head attention, previous work has shown that multi-head attention can make more efficient use of context 

information Vaswani et al. (2017). The Q′

T, K′

T , and V′

T are divided into H different subspaces by exploiting H different, learnable 
linear projections. The Queries, Keys, and Values of the h − th head can be represented as Q′

T,h = Q′

T × W′

QT ,h, K′

T,h = K′

T ×W′

KT ,h and 

V′

T,h = V′

T × W′

VT ,h, respectively. Note that W′

QT,h ∈ RdT×
dk
H , W′

KT,h ∈ RdT×
dk
H , W′

VT,h ∈ RdT×
dv
H . The unimodal self-attention function of h 

− th head AttT→T,h ∈ RLT×
dv
H is defined as follows. 

AttT→T ,h = softmax
[
Q′

T,h ×
(
K′

T,h
)⊤

/ ̅̅̅̅̅̅̅̅̅̅̅
dk/H

√ ]
× V′

T,h (9)  

The outputs of all the heads are concatenated together and then are linearly transformed to form multi-head unimodal self-attention 
function: 

Attmul
T→T = Concat

[
AttT,0,AttT,1,⋯,AttT,H

]
× Wmul (10)  

where Attmul
T→T ∈ RLT×dv , Wmul ∈ Rdv×dv . 

4.3.3. Crossmodal and unimodal attention residual network 
After introducing some preliminary definitions, we will present the structure of CARN module in detail. The target modality 
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selectively extract information from another source modality by exploiting crossmodal attention network. Then, the information is 
added to the target modality with residual connection. We take pass information from an attached image of the sentence T to the 
sentence T (i.e., P → T) as an example to make introductions. The overall architecture of the CARN is shown in Fig. 2. To make use of 
the order of the sequence T, the temporal information is added to the sentence by using PE. It can be computed by: 

⎧
⎨

⎩
R̂P = RP
R̂T = PE(RT) + RT

(11)  

Next, the CARN module can be computed by: 

RP→T = AttP→T

(
LN

(
R̂P

)
,LN

(
R̂T

))
+ LN

(
R̂T

)
(12)  

where RP→T ∈ RLT×dv and LN represents layer normalization Ba, Kiros, and Hinton (2016). Similar to CARN, for a D layers unimodal 
self-attention residual network (UARN) block, each layer i can be computed by: 

R0
T→T = R̂T

Ri
T→T = Attmul

T→T

(
LN

(
R(i− 1)

T→T
)
,LN

(
R(i− 1)

T→T
))

+ LN
(
R(i− 1)

T→T
) (13)  

where Ri
T→T ∈ RLT×dv . For simplicity, Rpt = RP→T , Rtt = RD

T→T. When the target modality is visual information, Rtp = RT→P. 

4.4. Feature extractor 

4.4.1. Textual feature extractor 
We employed a multi-channel and word-word-aligned CNN-based architecture network (i.e., MCN) to extract the key features from 

textual information (i.e., Rpt and Rtt) processed by CARN and UARN module Kim (2014); Wang et al. (2018a). We first align and stack 
the embedding matrices Rpt and Rtt as 

R =

[
Rpt
Rtt

]

(14)  

where R ∈ R2×LT×dv . The convolutional filters Wc ∈ R2×l×d with various windows size l are used to extract information from embedding 
matrix R and produce LT − l + 1 new features. When a filter start with i − th word, the new feature can be denoted as: 

ri = σ(Wc ⋅ Ri:i+l− 1 + bW) (15)  

where σ is Leaky ReLU activation function and bW is bias term. The same convolutional operation is performed on each possible 
window of words in this sentence which generates a feature vector. 

r = [r1, r2,⋯, rLT − l+1] (16)  

Next, we extract the maximum r̃ = max(r) by performing the max-over-time pooling operation on the feature vector r ∈ RLT − l+1. 
Suppose there being nW different filters with window size l for the sentence, its feature representation r̃l ∈ RnW can be denoted as: 

r̃l
=

[

r̃1, r̃2⋯, r̃nW

]

(17) 

Fig. 2. An illustration for CARN.  
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Suppose there being nl filters with different size (i.e., l ∈ [1,⋯,nl]), 

R̃ = Concat
[
r̃1
,⋯, r̃nl

]
(18)  

where R̃ ∈ RdR and dR = nW × nl. For the sentence T, the final textual feature representation Rtf ∈ RdT is: 

Rtf = σ
(

WT × R̃+ bT

)
(19)  

where σ is Leaky ReLU activation function, WT is weight matrix and bT is bias term. 

4.4.2. Visual feature extractor 
As a post only with an attached image in our model, we adopted the output (i.e., Rtp) of CARN module as the final visual feature 

representation Rpf ∈ RdP . 

4.5. Fake news predictor and model learning 

We have introduced the mainly modules of this paper. Rtf and Rpf are concatenated together and then are fed to a softmax layer to 
make the final prediction. The fake news predictor is defined as: 

ŷ = softmax
(
W×

[
Rtf ,Rpf

]
+ b

)
(20)  

where W is the parameters of softmax layer, b is bias term and ̂y = [ŷ0, ŷ1]. ̂y0 and ̂y1 denote the probability of a given news is real(0) or 
fake(1), respectively. We adopt cross-entropy to define the loss function L(θ) as follows. 

L(θ) = − ylog
(

ŷ1

)

− (1 − y)log
(

ŷ0

)

(21)  

where θ is model parameters. The model aim at minimizing the loss function Lθ for each news by learning θ through back-propagation. 
We use stochastic gradient decent to train the model and choose Adam as the optimizer with learning rate decay. 

5. Experiments 

In this section, first, we present the information of four large social media datasets. Second, we provide an introduction about model 
settings and baseline methods. Third, we make comparisons between the model and baseline methods on four datasets and then bring 
an detail analysis for experimental results. 

5.1. Datasets 

The Twitter and Weibo A multimodal dataset are widely adopted by previous work. In addition, in this work, we introduce two new 
multi-modal fake news datasets for the first time. The detailed statistics information of four datasets is shown in Table 1.  

• Twitter Dataset. The Twitter dataset derives from the Verifying Multimedia Use task, the goal of which is to distinguish fake/real 
news on Twitter with automatic method Boididou et al. (2016). It consists of development set and test set. There is no overlapping 
events between development set and test set. For each piece of data, it contains text component, an associated image/video and 
additional user profile information. We only keep the data with text content and attached images.  

• Weibo A Dataset. The Weibo A datatset is first presented in Jin et al. (2017a) for fake news detection task. Each post contains text 
content, user profiles and attached images. The verified fake news is collected from the official fake news debunking system of the 
Sina Weibo, a website very similar to Twitter. The time span of the data is from May 2012 to January 2016. Jin et al. adopted the 
news verified by the Xinhua News Agency as real news Jin et al. (2017a). Following the data preprocessing methods of previous 
research, the low quality and duplicated images are taken away Slaney and Casey (2008). To avoid the same events among training, 
validation and testing set, we find the same events by exploiting a single-pass clustering method Yang, Pierce, and Carbonell 
(1998). 

Table 1 
The statistics of datasets  

Dataset # of fake news  # of real news  # of images  

Tweet 7,898 6,026 514 
Weibo A 4,103 3,605 7,708 
Weibo B 5,076 5,008 10,084 
Weibo C 5,065 5,065 10,130  
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• Weibo B Dataset. The Weibo B dataset, a benchmark dataset for internet fake news detection challenger3, is released by Cao et al. 
Cao et al. (2018). For each post, it contains text content, attached images, user profile information, news category and corre
sponding ground-truth label. We take the way same to Weibo A dataset to preprocess and split the Weibo B dataset.  

• Weibo C Dataset. To promote fake news detection task, we build a new multi-modal fake news detection dataset. The fake news is 
collected from the Weibo community management center4, an official fake news debunking system. The time span of this data is 
from May 2012 to November 2019. The real news is collected from the People’s Daily, an authoritative news source similar to the 
Xinhua News Agency. Each post contains the original post text, associated images/video and additional user profile information. 
Following previous research, we preprocess and split this dataset with the way same to Weibo A and B datasets. 

5.2. Experimental setup 

Following previous work Wang et al. (2018b), development set and test set of the Tweet dataset is used as training set and test set, 
respectively. For each Weibo datasets, we choose 70%, 10% and 20% of news for training, validation and testing set, respectively. 
Same to previous research, we obtain 32-dimensional word embedding (i.e., dT = 32) by exploiting Word2Vec model Mikolov, 
Sutskever, Chen, Corrado, and Dean (2013). For textual feature extractor, the window size of the filter is l ∈ [1,2, 3,4] (i.e., nl = 4) and 
for each size l, the number of filters is nW = 25. For CARN, the number of layers and heads has little effect on the experimental results, 
so we choose single head and layer attention residual network. For UARN, we choose the attention residual network with 4 heads and 3 
layers (i.e., H = 4 and D = 3), which achieves the best performance. In the process of training, the batch size and the number of epochs 
is set to 150. We choose Accuracy, Precision, Recall and F1 score as evaluation metrics which are widely adopted by related areas Shu 
et al. (2017). 

5.3. Baselines 

We make comparisons with a series of baseline fake news detection methods as follows. 

5.3.1. Single modality models  

• Textual. As the input of model is only post, the CARN module is removed. The output of sentence embedding layer is fed into single 
channel CNN-based textual feature extractor Kim (2014), which followed by a fully connected layer and softmax layer.  

• Visual. The visual features are obtained from the VGG-19 net. After processed by input embedding layer, The visual information is 
fed into a fully connected layer and softmax layer for making final prediction. 

5.3.2. Multimodal models  

• VQA Antol et al. (2015). The goal of Visual Question Answering (VQA) is to provide an answer to a question about a given image. As 
VQA is a multi-classification task, we have to replace the multi-class classifier with a binary classifier. For a fair comparison, we 
choose a single layer LSTM with hidden layer size 32. 

• NeuralTalk Vinyals, Toshev, Bengio, and Erhan (2015). The NeuralTalk model is proposed to generate natural language de
scriptions from visual information. To adapt the model to fake news detection task, its feature representation is defined as the 
average of the output of RNN at each time step. Then, the feature representations are fed into a fully connected layer to make 
prediction. For a fair comparison, we choose both LSTM and fully connected with the hidden layer size 32. 

• att-RNN Jin et al. (2017a). att-RNN is a RNN-based automatic multimodal fake news detection model which fuses joint repre
sentation of textual features and user profile features and visual features via attention mechanism. For a fair comparison, the user 
profile information is removed and the hidden layer size of LSTM is 32.  

• EANN Wang et al. (2018b). The Event Adversarial Neural Networks (EANN) is a multi-task learning fake news detection model, 
which aims at learning shared feature representations among all the posts by leveraging an additional adversarial component. 
Textual and visual feature representations are obtain by exploiting a CNN-based textual features extractor Kim (2014) and VGG-19 
network, respectively. For a fair comparison, we remove the adversarial component.  

• MVAE Khattar et al. (2019). The state-of-the-art method, the Multimodal Variational Autoencoder (MVAE), is a multi-task learning 
multimodal fusion fake news detection framework. The modal aims at discovering correlations across modalities by exploiting VAE 
to reconstructs the textual and visual feature representations from the shared latent representation.  

• MKN Zhang et al. (2019). Multi-modal Knowledge-aware Event Memory Network (MKEMN) is event-level multi-modal fake news 
detection framework, which use the visual information and the external knowledge to assist fake news detection task. The authors 
adopted an event memory network to learn event invariant features. Considering the differences between event-level and post-level 
fake news detection and the fairness of comparison, we remove the external knowledge component and event memory network. 
The modified method is denoted as MKN. 

3 https://biendata.com/competition/falsenews/  
4 http://service.account.weibo.com/ 
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5.4. Results and analysis 

5.4.1. Comparisons of different models 
Table 2 and Table 3 show the performance of the proposed model as well as baseline methods in fake news detection task on Twitter 

and Weibo dataset, respectively. We can observe that CARMN outperforms all the competitive models on different metrics. In fact, the 
Tweet dataset is not a good choice for the post-level fake news detection task. There are multiple languages, many irregularly written 
texts, and the textual features lack diversity, which is the reason that the performance of the method based on textual information is 
worse than visual information. By fusing the information across modalities via attention mechanism, att-RNN outperforms all baseline 
methods, which confirms the effectiveness of using multimodal information simultaneously in the fake news detection task. Compared 
with the Tweet dataset, there is rich semantic context information in the text of the three Chinese datasets. 

On Chinese datasets, the method only based on text features shows similar or even better performance than some baseline methods. 
There is a phenomenon that can not be ignored is that, on Weibo C dataset, the method based on visual features outperforms the 
method based on textual feature representation, which can be attributed to the high-level of quality of the pictures attached to the real 
news. For multimodal models, attention-based methods (i.e., att-RNN and MKN) show better performance than VQA and NeuralTalk 
but are less effective and robustness than EANN. MVAE shows worse performance, the reason of which is that it only adopts shared 
latent representation between textual and visual information. It suggests that it is important to keep unique characteristics for each 
modality. By introducing the CARN and MCN, our model can keep unique characteristics for each modality while fusing the correlative 

Table 2 
The experimental results of different methods on Twitter dataset.  

Dataset Method Accuracy Fake News Real News 

Precision Recall F1  Precision Recall F1  

Twitter Textual 0.568 0.655 0.379 0.480 0.531 0.778 0.631 
Visual 0.664 0.733 0.568 0.640 0.617 0.770 0.685 
VQA 0.631 0.765 0.509 0.611 0.550 0.794 0.650 
Neural Talk 0.610 0.728 0.504 0.595 0.534 0.752 0.625 
att-RNN 0.681 0.769 0.561 0.650 0.626 0.813 0.707 
EANN 0.677 0.750 0.579 0.653 0.627 0.786 0.699 
MVAE 0.578 0.626 0.488 0.548 0.544 0.677 0.603 
MKN 0.664 0.753 0.537 0.627 0.611 0.805 0.695 
CARMN 0.741 0.854 0.619 0.718 0.670 0.880 0.760  

Table 3 
The experimental results of different methods on three Weibo datasets.  

Dataset Method Accuracy Fake News Real News 

Precision Recall F1  Precision Recall F1  

Weibo A Textual 0.764 0.776 0.721 0.747 0.755 0.805 0.779 
Visual 0.594 0.583 0.752 0.657 0.615 0.424 0.502 
VQA 0.579 0.581 0.665 0.620 0.576 0.487 0.527 
Neural Talk 0.748 0.739 0.790 0.764 0.758 0.702 0.730 
att-RNN 0.784 0.797 0.781 0.789 0.771 0.787 0.779 
EANN 0.807 0.831 0.788 0.809 0.785 0.828 0.806 
MVAE 0.681 0.756 0.589 0.662 0.630 0.785 0.698 
MKN 0.792 0.805 0.788 0.796 0.778 0.796 0.787 
CARMN 0.853 0.891 0.814 0.851 0.818 0.894 0.854 

Weibo B Textual 0.762 0.861 0.623 0.723 0.706 0.900 0.791 
Visual 0.702 0.734 0.630 0.678 0.678 0.773 0.722 
VQA 0.704 0.706 0.695 0.701 0.702 0.713 0.707 
Neural Talk 0.735 0.778 0.652 0.709 0.704 0.817 0.756 
att-RNN 0.780 0.853 0.675 0.753 0.733 0.884 0.801 
EANN 0.815 0.903 0.703 0.791 0.759 0.925 0.834 
MVAE 0.741 0.779 0.671 0.721 0.713 0.811 0.759 
MKN 0.778 0.880 0.643 0.743 0.720 0.913 0.805 
CARMN 0.869 0.935 0.796 0.860 0.820 0.944 0.878 

Weibo C Textual 0.772 0.742 0.844 0.790 0.812 0.697 0.750 
Visual 0.831 0.806 0.882 0.842 0.864 0.779 0.820 
VQA 0.807 0.742 0.953 0.834 0.931 0.657 0.770 
Neural Talk 0.796 0.751 0.897 0.817 0.867 0.691 0.769 
att-RNN 0.834 0.778 0.942 0.852 0.923 0.722 0.810 
EANN 0.858 0.807 0.948 0.872 0.934 0.765 0.841 
MVAE 0.821 0.781 0.901 0.837 0.878 0.737 0.802 
MKN 0.842 0.786 0.947 0.859 0.930 0.733 0.820 
CARMN 0.922 0.890 0.965 0.926 0.961 0.876 0.917  
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and complementary information between different modalities and alleviate the influence of noise information which may be generated 
by crossmodal fusion component. The experimental results demonstrate the effectiveness of the proposed model. 

5.4.2. Comparisons among variants of CARMN 
To further validate the effectiveness of CARMN, we make comparisons with variants of CARMN as follows. 

Table 4 
The comparison of experimental results among variants of CARMN.  

Method Accuracy Fake News Real News 

Precision Recall F1  Precision Recall F1  

CNN* 0.862 0.815 0.943 0.874 0.930 0.777 0.847 
CARN* 0.890 0.850 0.953 0.898 0.944 0.825 0.881 
CARMN- 0.913 0.878 0.963 0.919 0.959 0.861 0.907 
CARMN 0.922 0.890 0.965 0.926 0.961 0.876 0.917  

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Visualization of learned latent textual and visual feature representations on the testing data of Weibo C dataset with t-SNE, (a) the textual 
feature representation Rtf learned by CNN*; (b) the visual feature representation Rpf learned by CNN*; (c) the textual feature representation Rtf 

learned by CARN*; (d) the visual feature representation of Rpf learned by CARN*; (e) the textual feature representation Rtf learned by CARMN; (f) 
the visual feature representation of Rpf learned by CARMN. 
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(1) CNN*: The CNN* is the variant of CARMN. It is removed the CARN and UARN. The convolutional filters is changed from Wc ∈

R2×l×d to Wc ∈ R1×l×d.  
(2) CARN*: The CARN* is the variant of CARMN. It is removed the UARN. The convolutional filters is changed from Wc ∈ R2×l×d to 

Wc ∈ R1×l×d.  
(3) CARMN-: The CARMN- is the variant of CARMN. It is removed the unimodal attention module. 

Due to space limitations, all of the subsequent experimental analyses only focus on the Weibo C dataset. The results are shown in 
the Table 4. The CARN* is better that CNN* which proves that by fusing the correlative information between different modalities can 
benefit the model’s performance. Compared with CARN*, the usage of the additional residual network and MCN (i.e., CARMN-) can 
further improve the accuracy and mitigate the influence of noise information which may be generated by crossmodal fusion 
component. We can achieve the best performance by combining CARMN- with the self-attention module. Then, as shown in the Fig. 3, 
we visualize the final feature representation Rtf (i.e., a, c, e) and Rpf (i.e., b, d, f) learned by CNN*, CARN* and CARMN with t-SNE van 
der Maaten and Hinton (2008). The orange and blue color nodes represent fake and real news, respectively. We can observe that our 
CARMN learns more discriminable feature representations. For textual feature representation, the rank of its discriminability is Fig. 3 
(e) > Fig. 3(c) > Fig. 3(a). For visual feature representation, the rank of its discriminability is Fig. 3(f) > Fig. 3(d) > Fig. 3(b). It proves 
that the CARMN can learn more discriminability feature representations and further validate the effectiveness of the proposed method. 
The reason why we not to visualize the CARMN- is that the results of CARMN and CARMN- are similar. 

5.4.3. Comparisons with transfer learning-based methods 
In addition, we also make comparisons with transfer learning-based methods and launch an investigation to find out how the pre- 

trained Bert Devlin, Chang, Lee, and Toutanova (2018) and XLNet Yang et al. (2019) affect the proposed model’s performance. The 
SpotFake Singhal et al. (2019) and SpotFake+ Singhal et al. (2020), transfer learning-based fake news detection methods, are mainly 
based on Bert and XLNet model, respectively. The CARMN that takes word embedding representation from Word2Vec model Mikolov 
et al. (2013) is replaced by CARMN Bert and CARMN XLNet that take the representation from pre-trained Bert and XLNet with no 
fine-tuning. The experimental results are shown in Table 5 and Table 6. Compared with SpotFake and SpotFake+, CARMN Bert and 
CARMN XLNet show better performance. However, the experimental results of CARMN Bert and CARMN XLNet are similar to 
CARMN, which shows that the word embedding representation from pre-trained Bert and XLNet model fail to largely improve the 
model’s performance. 

5.4.4. Effects of the number of the heads and layers 
In this section, we investigate how the number of the self-attention heads and residual network layers affect the model’s perfor

mance. Specifically, we set the range of the number of layer to [1,2,3,4,5]. Table 7 shows the performance of CARMN with different 
layers. The performance of CARMN increases with the number of the layers grows until 3. As the number of the self-attention head 

Table 5 
The comparison of experimental results between CARMN and SpotFake.  

Method Accuracy Fake News Real News 

Precision Recall F1  Precision Recall F1  

SpotFake 0.848 0.804 0.914 0.855 0.904 0.784 0.840 
CARMN Bert  0.934 0.922 0.952 0.937 0.948 0.916 0.932 
CARMN 0.922 0.890 0.965 0.926 0.961 0.876 0.917  

Table 6 
The comparison of experimental results between CARMN and SpotFake+.  

Method Accuracy Fake News Real News 

Precision Recall F1  Precision Recall F1  

SpotFake+ 0.838 0.807 0.882 0.843 0.875 0.796 0.834 
CARMN XLNet  0.922 0.890 0.965 0.926 0.961 0.876 0.917 
CARMN 0.924 0.921 0.930 0.925 0.926 0.917 0.922  

Table 7 
The experimental results of different layer number.  

# of layer  1 2 3 4 5 

Accuracy 0.915 0.917 0.922 0.914 0.906 
F1 Score 0.914 0.917 0.921 0.914 0.906  
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must be divisible by word embedding dimension, we set the range of the number of the head to [1, 2, 4, 8]. Table 8 shows the per
formance of CARMN with different heads. We can observe that the performance of CARMN increases with the number of heads grows 
until 4. That’s the reason why we set the number of the self-attention heads and residual network layers as 4 and 3, respectively. 

6. Conclusion 

In the field of multimodal fake news detection, there is a challenge of keeping the unique properties for each modality while fusing 
the relevant information between different modalities. However, for some posts and their attached images, the fusion between textual 
and visual information may produce noise information which may affect model’s performance. To solve these problems, we proposed a 
multimodal fake news detection model based on CARN and MCN. We conduct extensive experiments on four real-world datasets and 
demonstrate the effectiveness of the proposed model. As the CARMN is a general model for multimodal fake news detection task, it can 
be easily expanded to more modalities and the multimodal fusion module can be replaced by other methods. In future work, we will 
explore event-level multimodal fake news detection by exploiting visual information. 
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A B S T R A C T

Fake news, hate speech and offensive language are related evil triplets currently affecting modern societies.
Text modality for the computational detection of these phenomena has been widely used. In recent times,
multimodal studies in this direction are attracting a lot of interests because of the potentials offered by other
modalities in contributing to the detection of these menaces. However, a major problem in multimodal content
understanding is how to effectively model the complementarity of the different modalities due to their diverse
characteristics and features. From a multimodal point of view, the three tasks have been studied mainly using
image and text modalities. Improving the effectiveness of the diverse multimodal approaches is still an open
research topic. In addition to the traditional text and image modalities, we consider image–texts which are
rarely used in previous studies but which contain useful information for enhancing the effectiveness of a
prediction model. In order to ease multimodal content understanding and enhance prediction, we leverage
recent advances in computer vision and deep learning for these tasks. First, we unify the modalities by creating
a text representation of the images and image–texts, in addition to the main text. Secondly, we propose a
multi-layer deep neural network with inter-modal attention mechanism to model the complementarity among
these modalities. We conduct extensive experiments involving three standard datasets covering the three tasks.
Experimental results show that detection of fake news, hate speech and offensive language can benefit from
this approach. Furthermore, we conduct robust ablation experiments to show the effectiveness of our approach.
Our model predominantly outperforms prior works across the datasets.
1. Introduction

The exponential growth of world wide web (WWW) and social
media have fueled the menaces of fake news, hate speech and offensive
language in recent times. Fake news are a form of disinformation,
fabricated to deceive readers to believe they are real by imitating
mainstream news. The main goal of any form of disinformation is to
intentionally mislead people through the creation and spread of false
information. In some cases, fake news take genuine part of mainstream
news and modify them by injecting some form of falsehood into them.
Such modification and injection affect not only the text modality but
also images. The main difference between disinformation and misinfor-
mation is that in disinformation, the piece of information is deliberately
created to mislead people while misinformation is an unintentional
propagation of false information. Hate speech is more complex to define
because what constitutes hate is relative and differs across jurisdictions.

∗ Corresponding author.
E-mail addresses: eniafe.ayetiran@ntnu.no (E.F. Ayetiran), ozlem.ozgobek@ntnu.no (Ö. Özgöbek).

1 https://www.un.org/en/hate-speech/understanding-hate-speech/what-is-hate-speech (accessed 14th March, 2023).

However, in order to provide a general perspective, the United Nations
Strategy and Plan of Action on Hate Speech1 defines hate speech as
‘‘any kind of communication in speech, writing or behavior, that attacks or
uses pejorative or discriminatory language with reference to a person or a
group on the basis of who they are, in other words, based on their religion,
ethnicity, nationality, race, color, descent, gender or other identity factor’’.
Hate speech and offensive language share a common characteristic as a
form of abuse or attack but are different in a sense, though some works
in literature often use the two terms interchangeably to mean the same.
Offensive language is simply a statement which upsets another person.
Hence, hate speech is considered more severe as it may lead to extreme
action(s) and constitute severe harm to the target. Furthermore, the
common effect of the three menaces of fake news, hate speech and
offensive language is emotional harm to their targets. Giachanou and
Rosso [1] identifies this nexus among the phenomena and refer to
vailable online 16 March 2024
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them as harmful information. A greater percentage of fake news, hate
speech and offensive language happen online particularly on social
media. These three tasks have been studied individually. However,
there are connections among them as one may lead to the other. For
instance, fake news may lead to hate speech or offensive language. On
the other hand, hatred or animosity towards someone or a community
of people may make them a target of fake news. In most cases, this
is especially applicable to public figures or celebrities. In fact, some
fake news doubles as hate speech and/or offensive language. The Euro-
pean Foundation for South Asian Studies identifies and discusses some
roles played by fake news in promoting hate speech and extremism
online [2]. Both the actions and reactions pertaining to fake news,
hate speech and offensive language are strongly tied to intention and
harm. Till now, the detection of the three phenomena in digital con-
tents have mostly been studied individually with different approaches.
Early studies focused mainly on text modality but as the digital media
and repositories continue to grow in multimedia contents (i.e. text,
videos, images and audio), the interest to research the prospects of
these modalities has risen over the years. Besides text, image is the
most commonly used because it is the next most readily available in
online digital contents. With the aim to explore the prospects of other
modalities, studies based on multimodality are gaining ground [3–8]
but still under-explored [9]. Multimodal content understanding aims
at recognizing and localizing objects, determining the attributes of
entities, characterizing the relationships among entities and describing
the common semantic features among different modalities [10]. Chen
et al. [10] specifically identified two major gaps in deep multimodal
content understanding. First is the ‘‘heterogeneity gap’’, which arises
as a result of differences and uniqueness of features of images and
texts. This characteristics are directly related the second challenge of
‘‘semantic gap’’, caused by the peculiarities of individual modalities
thereby leading to different abstract representations. Extracted features
from individual modalities are not directly comparable and are in-
consistently distributed. Techniques to mitigate these problems rely
mainly on embeddings of individual unimodal features into a common
latent space with the help of mapping functions in order to make them
comparable and consistent. At present, these techniques still do not
fully resolve these problems and advances are still being explored. In
view of these current challenges and inspired by advances in computer
vision precisely image captioning and Optical Character Recognition
(OCR), we develop a unified modality-based deep learning framework
which presents the advantage of direct comparison and consistency
across modalities. Image captioning and OCR enable the unification
of the modalities for comparison and consistency of the modalities.
Our deep learning framework comprises a Bidirectional Long Short-
Term Memory (BiLSTM) layer [11], a Convolutional Neural Network
(CNN) layer with an inter-modal attention mechanism among other
layer/modules. The model can be trained on datasets involving any
language with appropriate preprocessing. The important contributions
of this paper are as follow:

• We develop a unified modality for multimedia contents to resolve
the barriers in multimodal content understanding

• We propose an inter-modal attention mechanism for complemen-
tarity among modalities in order to improve multimodal content
understanding

• We develop a deep learning framework based on the inter-modal
attention mechanism for fake news, hate speech and offensive
language detection

• Our deep learning framework achieves state-of-the-art perfor-
mance on three benchmark datasets covering the three tasks.

he rest of the paper is structured as follows: Section 2 reviews the
elevant related works covering the three tasks. Section 3 describes the
eep learning framework while Section 4 discusses the experiments and
odel implementation. In Section 5, we discuss the model evaluation
2

nd results. Section 6 concludes the paper.
2. Related works

Unimodal content understanding has been widely studied for a
wide range of tasks. On the other hand, studies on multimodal con-
tent understanding is currently limited [9,12], with some inherent
challenges [13,14]. Some of the challenges as discussed in Section 1
include heterogeneity and semantic gaps. In the following subsections,
we discuss prior multimodal works on fake news, hate speech and
offensive language detection.

2.1. Multimodal fake news detection

One of the earliest works on multimodal fake news detection is the
work of Wang et al. [15]. They proposed an end-to-end framework
based on neural networks named EANN comprising three primary
components; a multimodal feature extractor, a fake news detector and
an event discriminator. The multimodal feature extractor comprises
two sub-components; a text features extractor and a visual features
extractor. Each of the components cooperate for the task of multimodal
fake news detection. Experiments on two benchmark datasets show
performance improvements over baselines. Khattar et al. [3] proposed
MVAE, a similar work to EANN and which as the name suggests used
variational autoencoder for classifying multimodal news contents as
real or fake. The components of MVAE are an encoder, a decoder and
a fake news detector. Both the encoder and the decoder each com-
prises a text and visual extractor. While the encoder basically encodes
the multimodal inputs and outputs a shared representation of learnt
features as latent vectors, the decoder reconstructs the latent vectors.
The encoded representations serve as inputs to the decoder and the
fake news detector component. The fake news detector classifies news
content based on the encoded representations, sum of reconstructed
and Kullback–Leibler divergence losses. The evaluation of MVAE was
carried out on the same datasets as EANN with significant perfor-
mance improvements over EANN and other baselines. With the goal of
achieving a pure classifier without any subtask, SpotFake [16] employs
pretrained transformers to incorporate contextualized information and
image recognition into multimodal fake news classification. Precisely,
they employ Bidirectional Encoder Representations from Transformers
(BERT) [17] and VGG-19 [18] to extract textual and visual features
which were fused for the classification. The evaluation of SpotFake on
the same datasets as EANN and MVAE shows that it outperforms both
on only one of the datasets. In order to help identify fake news based on
irrelevant images in news content, Zhou et al. [5] introduced SAFE. For
textual and visual features extraction, SAFE extended a method based
on convolutional neural network (CNN). Images are first processed as
text using image captioning. The main crux of SAFE is the computa-
tion of similarity between text and image features which is used to
optimize model learning parameters. Giachanou et al. [19] combines
textual, visual and semantic information for fake news detection using
neural network classifier. Textual features include embeddings of posts
and sentiments while visual features comprise image tags and local
binary patterns (LBP). The model was evaluated on three datasets. In
a follow-up work, Giachanou et al. [20] extended the visual features
to include multi-image information and in contrast to their earlier
work uses BERT [17] and VGG-16 [18] for the extraction of text and
image features respectively. The main underlying idea in both works
is the computation of semantic similarity between textual and visual
features. Multimodal Consistency Neural Network (MCNN) [21] is a
network-based approach which consists of five subnetworks namely:
a text feature extraction module, a visual semantic feature extraction
module, a visual tampering feature extraction module, a similarity
measurement module and a multimodal fusion module. MCNN experi-
ments on four datasets show improvements over baselines. In another
work, Multimodal Fusion with Co-attention Networks (MCAN) [22] was
proposed. MCAN includes a co-attention block, a co-attention layer and

multiple co-attention stacking on spatial-domain, frequency-domain
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and textual features. Experimental evaluation of MCAN on two domain
datasets improves baselines. A cross-modal ambiguity learning model
(named CAFE) was proposed by Chen et al. [23]. CAFE comprises
three modules namely: a cross-modal alignment module, a cross-modal
ambiguity learning module and a cross-modal fusion module. The main
goal of CAFE is adaptive aggregation of unimodal features and cross-
modal correlations. The evaluation of CAFE was carried out on two
benchmark datasets with improvements over baselines. Zhang et al.
[24] proposed a model (named SceneFND) with a different approach
from prior works by incorporating contextual scene information in
addition to textual and visual information. The scene features were
obtained from the images by calculating the probabilities of each scene
category with different scene recognition methods. They presented
results for several variants of the model and SpotFake [16]. Similar to
some of the previous works, TRIMOON [25] uses BERT and VGG-19
to extract text and image features respectively followed by a fusion
module. The fusion module consists of two co-attention blocks and
gate-based fusion component. Experiments on two real-world datasets
show improvements over baselines.

2.2. Multimodal hate speech detection

The work of Hosseinmardi et al. [26] is one of the earliest works
on multimodal hate speech detection in which they focussed on cyber-
bullying using both textual and image features. Their model is based
logistic regression classifier trained with a forward feature selection
method. They experimented on a dataset collected from Instagram for
the purpose of validating the model. Automated hate speech detection
was explored by Yang et al. [27] with multimodal modalities involving
text and image. They experimented with quite a number of multimodal
fusion approaches including concatenation and addition with attention
mechanism. Evaluation reports on the experiments did not show any
tangible gain in fusing the two modalities. As part of the hateful
memes challenge competition, Kiela et al. [28] developed a dataset
of multimodal memes for the task of identifying whether the memes
are hateful or not. They presented a number of models evaluated
based on defined benchmarks. What can be referred to as a truly
standard benchmark dataset for multimodal hate speech classification
was developed by Gomez et al. [6] which they named MMHS150K. It
was collected from Twitter and annotated on a large scale. In contrast
to other datasets, it also leverages image–texts in addition to the main
text and image modalities. They experimented widely with diverse
models and similar to Kiela et al. [28], also reported that multimodality
did not result in tangible gain when compared with using a single
or two modalities. Maity et al. [29] introduces a model for detecting
cyberbullying in multimodal memes taking into account sentiment,
emotion and sarcasm. This led to the development of a dataset on
which the model was evaluated. A recent work Yang et al. [30] explores
transfer learning for hate speech detection. The authors opine that there
is a high correlation between hate speech and sarcasm and therefore
designate them as primary and auxiliary tasks for the purpose of cross-
task transfer learning. The model consists mainly of adaptation modules
namely: semantic, definition and domain adaptation modules. A joint
objective for the modules is optimized for learning the parameters.
Experiments show efficacy of the approach across benchmark datasets.

Besides the traditional hate speech, research on misogyny detection
using multimodal contents is now generating interests [31,32]. Misog-
yny is a type of hate targeted at women. Fersini et al. [31] specifically
organized a task on this problem using multimedia contents while Rizzi
et al. [32] proposed to answer some open questions on the topic which
include but not limited to determining which modality contributes most
to misogyny detection.
3

2.3. Multimodal offensive language detection

To the best of our knowledge, the work of [4] is the first work
to experiment on a truly multimedia contents for offensive language
detection. They developed a dataset (MultiOFF) for this purpose using
existing meme data collection and experimented with different known
classifiers. In their study, multimodal experiments show very little
improvements over unimodal experiments when the same algorithms
are used. Curiously, some unimodal experiments with different algo-
rithms outperform multimodal experiments. Lee et al. [33] proposed a
method called DisMultiHate to disentangle target entities in multimodal
memes for hate detection. Their proposed method consists of three
modules; data pre-processing, text representation learning and visual
representation learning modules. DisMultiHate uses a regression layer
to generate the probability of a multimedia content being hate or not
and experimental evaluation of the method on MultiOFF improved
performance over compared baselines. Pramanick et al. [34] developed
a framework (MOMENTA) for detection of harmful memes and the
target entities. It uses Google’s Vision API to extract image–texts.
The extracted text and images are then encoded with a pre-trained
visual-linguistic model and VGG-19 respectively. A key component of
MOMENTA is intra-modal and cross-modal attention fusion. It outper-
forms majority of the baselines. MeBERT is another work [35] that uses
external knowledge-base to enhance semantic representation for meme
classification. It fuses texts and images based on attention mechanism
for the classification task. Experiments on two public datasets show the
effectiveness of the method. A recent work on multimodal offensive
language is MemeFier [8], a deep learning framework for classifying
offensive memes. It incorporates external knowledge into features en-
coding. A key component of MemeFier is alignment-aware fusion of
modalities. Experiments on three datasets reveal MemeFier outperforms
baselines on two of the three datasets.

3. Methodology

We define the problem and describe the unified framework for
multimodal content classification for fake news, hate speech and of-
fensive language. The general architecture of the unified deep learning
framework is presented in Fig. 1. It consists of a modality unification
module, an embedding layer, a BiLSTM layer, a CNN layer, an inter-
modal attention module, a fusion module and a prediction module
(dense layer with sigmoid activation).

3.1. Problem formulation

Let 𝑀 denote a multimedia data comprising a text 𝑇 , an image
𝑋 and an image–text 𝑌 , belonging to a binary class 𝐶. Given a set
f multimedia data 𝑀𝑘

𝑖 , for each 𝑚𝑖 ∈ 𝑀𝑘
𝑖 comprising text 𝑡𝑖, an

mage 𝑥𝑖 and an image–text 𝑦𝑖, the problem is to determine the class
𝑖 ∈ 𝐶𝑛=2

𝑖 to which 𝑚𝑖 belongs, where 𝐶𝑛=2
𝑖 is a set of predefined

inary classes. We adapt this formulation to fake news, hate speech and
ffensive language detection where 𝑚𝑖 is either a news article, hateful
r non-hateful and offensive or non-offensive contents respectively.
urthermore, 𝑐𝑖 represents fake or real, hateful or non-hateful and
ffensive or non-offensive classes for the three tasks respectively.

.2. Modality unification module

For each sample 𝑚𝑖 in a multimedia content, we obtain the cap-
ion 𝑥, of the image and the image–text 𝑦. We use LAVIS [36], a
eep learning library for LAnguage-and-VISion intelligence research
nd applications to retrieve image captions. LAVIS consists over thirty
tate-of-the-art language vision models including but not limited to
ontrastive Language-Image Pre-training (CLIP) [37] and Bootstrap-
ing Language-Image Pre-training (BLIP) for Unified Vision-Language
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Fig. 1. Architecture of the unified inter-modal attention framework.
Understanding and Generation [38]. Sample images with captions on
top are presented in Fig. 2.

We use EasyOCR2 to retrieve texts inserted within the images. Sam-
ple images with inserted texts are shown in Fig. 3. We therefore have
the text representations for the original texts, images and image–texts
denoted 𝑡, 𝑥 and 𝑦 respectively. EasyOCR and LAVIS have been chosen
for OCR and image captioning respectively because of their state-of-the-
art efficacy and easy-to-use Application Programming Interface (API).
In few cases where the outputs of OCR are not 100% perfect, the
results are still useful as some of the recognized texts are still accurate.

2 https://github.com/JaidedAI/EasyOCR
4

The same situation applies to the generated image captions. When the
captions do not fully describe the scene, they still capture them to
reasonable extents useful for understanding the contents.

3.3. Embedding module

For each word in the unified modality, that is 𝑤 ∈ {𝑡, 𝑥, 𝑦}, we obtain
their embeddings 𝑒𝑤 from an embedding matrix 𝐸 ∈ R𝑉 ×𝑑 , where V
is the vocabulary size of the embedding matrix and 𝑑, the dimension.
Specifically, Eqs. (1) to (3) present the word embeddings for a text in
each modality as follow:

𝑒 = {𝑒 , 𝑒 ,… ., 𝑒 } (1)
𝑡 𝑤1 𝑤2 𝑤𝑛
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Fig. 2. Sample images with captions on top.

Fig. 3. Sample images with inserted texts.

𝑒𝑥 = {𝑒𝑤1
, 𝑒𝑤2

,… ., 𝑒𝑤𝑛
} (2)

𝑒𝑦 = {𝑒𝑤1
, 𝑒𝑤2

,… ., 𝑒𝑤𝑛
} (3)

where 𝑛 is the number the words in each of 𝑡, 𝑥 and 𝑦. The embedded
texts are fed to the Bidirectional Long Short-Term Memory (BiLSTM)
layer.

3.4. Bidirectional Long Short-Term Memory (BiLSTM) layer

The original Long Short-Term Memory (LSTM) [39] was developed
to address the exploding and vanishing gradient problems in feed-
forward neural networks. The LSTM architecture comprises three gates;
an input gate 𝑖𝑡, a forget gate 𝑓𝑡 and an output gate 𝑜𝑡. It also has
a memory cell 𝑐𝑡 with capability to learn long-term dependencies in
sequences and a hidden state ℎ𝑡. The transition equations of the LSTM
are presented in Eqs. (4) to (8):

𝑖𝑡 = 𝜎
(

𝑤𝑖
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖
)

(4)

𝑓𝑡 = 𝜎
(

𝑤𝑓
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
)

(5)

𝑜𝑡 = 𝜎
(

𝑤𝑜
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜
)

(6)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ tanh
(

𝑤𝑐
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑐
)

(7)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh
(

𝑐𝑡
)

(8)

where 𝑤𝑖, 𝑤𝑓 and 𝑤𝑜 are the weights of the neurons. 𝑏𝑖, 𝑏𝑓 and
𝑏𝑜 are the biases to be learned during training. 𝜎 denotes a logistic
sigmoid function and ⊙ denotes element-wise multiplication. tanh() is a
hyperbolic tangent function. Bidirectional LSTM [11] is a variant of the
conventional LSTM which consists of two LSTMs that are run forward
and backward simultaneously on the input sequence. The backward
LSTM is used to capture the past contextual information while the
forward LSTM is used to capture future contextual information. The
BiLSTM is used to capture the sequential and contextual information
in the input sequences. The outputs are hidden representations of the
inputs as presented in Eq. (9):

[ℎ ,… ., ℎ ] = 𝐵𝑖𝐿𝑆𝑇𝑀([𝑒 ,… ., 𝑒 ], 𝜃 ) (9)
5

1 𝑛 𝑤1 𝑤𝑛 𝑏𝑖𝑙𝑠𝑡𝑚
where the input sequences 𝑒𝑤 are the embeddings from the embedding
layer. 𝜃𝑏𝑖𝑙𝑠𝑡𝑚 is a trainable parameter. Therefore, the final hidden state
is obtained using Eq. (10):

ℎ𝑡 = 𝜇
(

⃖⃖⃗ℎ𝑡, ⃖⃖ ⃖ℎ𝑡
)

(10)

where 𝜇 is the average of the hidden states of the forward and the
backward LSTMs.

3.5. Convolutional Neural Network (CNN) layer

Convolutional Neural Network (CNN) [40] has become one of the
most popular choice in the field of deep learning for image classi-
fication and feature extraction. Convolutional Neural Network is a
kind of feedforward neural network that is able to extract features
from data with convolution structures. In contrast to the traditional
feature extraction methods, CNN does not need to extract features
manually. Computer vision based on Convolutional Neural Networks
has enabled accomplishments that had been considered impossible in
the past decades. These areas include face recognition, autonomous
vehicles and intelligent medical treatment. They have also recently
found applications in sequence modeling problems such as text classifi-
cation, sentiment analysis, prediction tasks among others. Therefore,
this layer is meant to extract important features from the BiLSTM
hidden vectors. The CNN component of our architecture uses a one-
dimensional convolutional layer with 𝑓 filters and 𝑘 kernels. The output
hidden state representations from the BiLSTM layer is fed into this
layer. Similar to TextCNN [41], for each BiLSTM hidden vector ℎ𝑖 ∈
R𝑑 (d is the dimension of the vector), a convolution operation which
involves a filter 𝑓 ∈ R𝑗𝑑 is applied to a window of 𝑗 hidden vectors of
words to produce a new feature map. A feature map 𝑔 is extracted from
a window of 𝑗 word hidden vectors as given by Eq. (11):

𝑔 = 𝑡𝑎𝑛ℎ
(

𝑓 ⋅ ℎ𝑖∶𝑖+𝑗−1 + 𝑏
)

(11)

where tanh() is a hyperbolic tangent and 𝑏 ∈ R is a bias term. Therefore,
for each possible window of words 𝑗 in a text (𝑡𝑖, 𝑥𝑖 and 𝑦𝑖 for the three
modalities), the filter is applied to produce a set of feature vector for a
text in each modality as presented in Eqs. (12) to (14):

𝑔𝑡 = {𝑔1, 𝑔2,… ., 𝑔𝑛−𝑗+1} (12)

𝑔𝑥 = {𝑔1, 𝑔2,… ., 𝑔𝑛−𝑗+1} (13)

𝑔𝑦 = {𝑔1, 𝑔2,… ., 𝑔𝑛−𝑗+1} (14)

3.6. Inter-modal attention module

Given the set of feature maps of words for each modal texts 𝑡𝑖, 𝑥𝑖
and 𝑦𝑖, we propose an inter-modal attention layer to assign weights to
each word in the text. This attention mechanism is based on the variant
proposed by Luong et al. [42] and applied in [43]. At a time, we take
either feature map 𝑔𝑡, 𝑔𝑥 or 𝑔𝑦 as the source and another text of different
modality as the target to produce an alignment vector 𝑎. For instance,
taking 𝑔𝑥 as the source and 𝑔𝑡 as the target, the alignment vector 𝑎𝑡(𝑥)
is given by Eq. (15):

𝑎𝑡(𝑥) =
𝑒𝑥𝑝

(

𝑠𝑐𝑜𝑟𝑒
(

𝑔𝐓𝑡 , 𝑔𝑥
)

)

∑

𝑥′ 𝑒𝑥𝑝
(

𝑠𝑐𝑜𝑟𝑒
(

𝑔𝐓𝑡 , 𝑔𝑥′
)

) (15)

where 𝑠𝑐𝑜𝑟𝑒 is a function which computes the semantic relationship
among words in the source and target; dot product in this case. The re-
sulting alignment vector is passed through a softmax activation to pre-
dict the probabilities (attention weights) 𝛼 of each word. The weights
are given by Eq. (16):

𝛼 (𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑎 (𝑥)
)

(16)
𝑡 𝑡
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When the three modalities are considered, the final attention wei-
ghts for a modality is obtained by computing the average [44] of
the resulting attention weights obtained from using the other two
modalities as targets. For instance, the weight 𝛼𝑡(𝑥, 𝑦) is the average
of 𝛼𝑡(𝑥) and 𝛼𝑡(𝑦) given by Eq. (17):

𝛼𝑡(𝑥, 𝑦) =
1
2
∑

𝛼𝑡(𝑥), 𝛼𝑡(𝑦) (17)

If only two modalities are involved or considered, the weighted rep-
resentation of a modality is computed by simply using one of the two
modalities as source and the other as target and vice versa.

3.7. Fusion module

The final attention-weighted vector representation of a text 𝑡 is
presented in Eq. (18):

𝑣𝑡 = 𝛼𝑡𝑔𝑡 (18)

he same weighted representation is applicable to image and image–
ext, denoted 𝑣𝑥 and 𝑣𝑦 respectively. To obtain a multimodal repre-
entation of a multimedia content, the weighted multimodal repre-
entation 𝑣𝑚 is derived through concatenation of individual weighted
epresentations 𝑣𝑡, 𝑣𝑥 and 𝑣𝑦 as shown in Eq. (19):

𝑚 = 𝑣𝑡 ⊕ 𝑣𝑥 ⊕ 𝑣𝑦 (19)

here 𝑣𝑡, 𝑣𝑥 and 𝑣𝑦 are the weighted vectors for original text, caption
nd image–text respectively.

.8. Prediction module

The resulting multimodal fused representation from the fusion mod-
le is fed into an output layer to predict the probability 𝑃 of a data
ample of a multimedia content belonging to a particular class as shown
n Eq. (20):

= 𝜎(𝑣𝑚) (20)

here 𝜎 is a sigmoid activation function. The objective loss function
hich the model seek to minimize is a cross-entropy function given by
q. (21), with specific application to our binary classification problem
s given in Eq. (22):

= −
𝑐
∑

𝑖=1
𝑦𝑖log𝑝𝑖 (21)

𝑏 = −(𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)) (22)

here 𝑦 is the true class label and 𝑝 is the predicted probability of
data sample belonging to a particular category between the binary

ategories.

. Experiments and model implementation

In this section, we discuss the experiments and model implementa-
ion details.

.1. Datasets description

We describe the datasets used for the experiments as per the tasks.
e however present a summary of the statistics of the datasets for fake

ews, hate speech and offensive language in Tables 1 to 3 respectively.
6

Table 1
Statistics of PolitiFact dataset.

Real Fake Total

News contents 624 432 1056
- with text 528 420 948
- with image 447 336 783

Table 2
Statistics of MHS150K dataset.

Train Validation Test

Hate 29,447 2,500 5,001
NotHate 105,346 2,500 4,999

Total 134,823 5,000 10,000

4.1.1. Fake news dataset
• PolitiFact: PolitiFact dataset is part of FakeNewsNet [45], a

repository of news contents which fact-checks political reports
and issues. It has been collected from the website3 of the or-
ganization. It consists of three contexts; news content, social
context and spatio-temporal information. Like most prior works,
we used the news content. Annotations were done by human
annotators as part of the dataset development. The news content
comprises mainly the news headline and body. PolitiFact consists
of news articles that were published from May, 2002 to July,
2018. It comprises 1,056 news articles with 624 real news and
432 fake news. Other statistics on textual and visual contents
are shown in Table 1. In our experiment, we have treated the
headline and body as original text modality but applied separately
when dealing with other modalities in the model. For instance, in
computing attention weights, both are weighted separately using
captions and image–texts.

4.1.2. Hate speech dataset
• MMHS150K: MMHS150K [6] is a large-scale collection of tweets

for hate speech classification task. The raw MMHS150K consists
of 150,000 samples, on which annotations were done by hu-
man annotators based on majority voting. The annotated data
consists of 112,845 NotHate samples and 36,978 Hate samples.
The annotations fall into six classes including ‘‘No attacks to
any community’’, ‘‘racist’’, ‘‘sexist’’, ‘‘homophobic’’, ‘‘religion based
attacks’’ and ‘‘attacks to other communities’’. The other five labels
apart from ‘‘No attacks to any community’’ are hate categories.
The dataset was further split into a test set consisting of 10,000
samples, a validation set consisting of 5,000 samples while the
remaining were set aside as training set. Each data sample has a
text and associated image and majority of the images have texts
inserted within them. Following the authors of MHS150K, in our
experiment, the dataset was treated as binary by taking all hateful
categories as ‘‘Hate’’ label and ‘‘No attacks to any community’’
as ‘‘NotHate’’ label. Full statistical details about the dataset are
presented in Table 2.

4.1.3. Offensive language dataset
• MultiOFF: MultiOFF [4] was developed from a collection of

memes from social media such as Facebook, Twitter etc. and
annotated for offensiveness or otherwise. It is an extension of
an existing dataset about 2016 U.S. Presidential Election. In all,
MultiOFF consists of 743 samples split into training, validation
and test sets. It consists only of the memes (images) and texts

3 https://www.politifact.com/
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Table 3
Statistics of MultiOFF dataset.

Train Validation Test

Offensive 187 59 59
Non-offensive 258 90 90

Total 445 149 149

(full details in Table 3). The text modality constitutes the image–
texts already extracted by the authors. Therefore, the dataset does
not have separate text and image–text modalities. Experiments on
MultiOFF are carried out using the two modalities.

.2. Data pre-processing

Traditional pre-processing on text data such data cleaning, remov-
ng noise, lower casing among others were performed on the data
ccording to the peculiarity of the data. For instance, the hate speech
ataset was collected from Twitter which contains slangs and some
nformal writing styles. All numeric tokens are represented as ‘‘<num-
er>’’, all uniform resource locators (URLs) as ‘‘<url>’’, emojis’ inter-
retation among other pre-processing activities.

.3. Model implementation

In the following subsections, we present a brief description of
ask-specific details of the experiments and present a summary of
he hyperparameters for all models in Table 4. In all experiments, a
00-dimension GloVe embeddings [46] (trained on 840 billions word
okens) was used to initialize the Embedding layer. Furthermore, for
atasets which suffer from class imbalance, we adopt sample weights
rom each class in computing the loss.

.3.1. Fake news detection experiments
We split the fake news datasets in the ratio 7:1:2 for training,

alidation and test respectively. In training the model, we use a batch
ize of 32 using ADAM [47] as the optimization algorithm with a
earning rate of 1𝑒−3. The model was regularized with a Dropout [48]
robability of 0.2, applied after the concatenation layer. The number
f LSTM neurons is 300 while CNN filters and kernel windows are 300
nd 3 respectively.

.3.2. Hate speech detection experiments
The MMHS150K dataset used for experiment is already split into

raining, validation and test sets as shown in Table 2. Batch normal-
zation [49] was applied to standardize inputs to the BiLSTM layer. In
raining the model, we use a batch size of 128 using NADAM [50] as
he optimization algorithm with a learning rate of 1𝑒−3. A Dropout [48]
robability of 0.2 was applied after the concatenation layer to regular-
ze the model. The number of LSTM neurons and CNN filters are 100
hile the kernel window size is 4.

.3.3. Offensive language detection experiments
Like MMHS150K, MultiOFF dataset is also already split into train-

ng, validation and test sets as shown in Table 3. A batch size of
2 is adopted in training the model while Adam [47] is used as the
ptimization algorithm with a learning rate of 1𝑒−3. A Dropout [48]
robability of 0.2, applied after the concatenation layer is used to
egularize the model. The number of LSTM neurons is 300 while CNN
ilters and kernel windows are 300 and 3 respectively.

. Model evaluation and results discussion

In the following subsections, we evaluate each of the models, report
heir performances and that of ablation studies and then compare with
7

tate-of-the-art models.
Table 4
Hyperparameters for the task-specific models.

Task Fake news Hate speech Offens lang

LSTM neurons 300 100 300
CNN filters 300 100 300
Batch size 32 128 32
Embedding size 300 300 300
Optimizer ADAM NADAM ADAM
Learning rate 1𝑒−3 1𝑒−3 1𝑒−3
Dropout 0.2 0.2 0.2
Batch norm NA Yes NA

Keys: NA — Not applied, Offens lang — Offensive language.

Table 5
Performance of inter-modal attention models with different combination of modalities
on PolitiFact dataset. Best results in bold.

Modality Accuracy Precision Recall F1

TT & IM 0.893 0.898 0.894 0.896
TT & IT 0.893 0.893 0.903 0.898
IM & IT 0.570 0.568 0.546 0.557
TT & IM & IT 0.940 0.939 0.940 0.939

Keys: TT — text, IM — Images and IT — Image–text.

Table 6
Performance of BiLSTM-CNN models with different combination of modalities on
PolitiFact dataset. Best results in bold.

Modality Accuracy Precision Recall F1

TT 0.893 0.898 0.895 0.897
IM 0.631 0.744 0.658 0.698
IT 0.557 0.776 0.515 0.619
TT & IM 0.893 0.892 0.895 0.894
TT & IT 0.866 0.867 0.876 0.871
IM & IT 0.651 0.694 0.626 0.658
TT & IM & IT 0.879 0.882 0.884 0.883

Keys: TT — Text, IM — Images and IT — Image–text.

5.1. Evaluation results on fake news detection task

Table 5 shows the results of the inter-modal attention model on
the PolitiFact dataset with different modalities in terms of Accuracy,
Precision, Recall and F1. Table 6 shows the results of the ablation
experiments which use BiLSTM-CNN directly without the inter-modal
attention module for all combination of modalities.

The result in Table 5 shows that the inter-modal attention model
produces the best result when the three modalities are used. Text used
with image and text used with image–text have comparable perfor-
mance. Image used with image–text does not seem to be helpful in
detecting fake news as the combination performs way below other
combinations. The result of the ablation studies which uses direct con-
catenation of BiLSTM-CNN features without attention layer is presented
in Table 6. Analysis of the ablation results also reveals that combination
of the three modalities best detects fake news. The performances of
the different combination of modalities follows the same pattern as the
main inter-modal attention model. However, the impact of the inter-
modal attention mechanism is noteworthy. It enhances performance
by 6.1%, 5.7%, 5.6% and 5.6% for Accuracy, Precision, Recall and F1
respectively.

Fig. 4 shows the Receiver Operating Characteristic (ROC) curve
of our inter-attention model. The ROC curve tilts towards the True
Positive Rate and farther away from the random curve which confirms
the quality of the model.

5.1.1. Performance comparison with baselines on fake news detection
Performance comparison of the inter-modal attention model with

state-of-the-art models is presented in Table 7. Brief descriptions of the

baselines are as follow:
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Fig. 4. The Receiver Operating Characteristic (ROC) curve for fake news detection
task.

Table 7
Performance comparison of the inter-modal attention model with state-of-the-art models
on PolitiFact dataset. Best results in bold.

Model Accuracy Precision Recall F1

LBP-sim [19] – – – 0.925
SAFE [5] 0.874 0.889 0.903 0.896
MCNN [21] 0.884 0.973 0.867 0.917
Our model 0.940 0.939 0.940 0.939

Table 8
Performance of the inter-modal attention models with different combination of
modalities on MMHS150K dataset. Best results in bold.

Modality Acc Prec Rec F1 AUC

TT & IM 0.684 0.656 0.763 0.705 0.684
TT & IT 0.680 0.653 0.764 0.704 0.680
IM & IT 0.514 0.516 0.934 0.665 0.514
TT & IM & IT 0.687 0.659 0.761 0.706 0.687

Keys: Acc — Accuracy, Prec — Precision, Rec — Recall, TT — text, IM — Images and
IT — Image–text.

• Text-tags-LBP-similarity: Text-tags-LBP-similarity [19] is a mod-
el based on neural network classifier which computes the similar-
ity of text tags and LBP features.

• SAFE: SAFE [5] uses an extension of a method based on Con-
volutional Neural Network (CNN) for textual and visual features
extraction. The main component of SAFE is the computation of
similarity between text and image features which was used to
optimize model learning parameters.

• MCNN: MCNN [21] is a network-based approach which consists
of five sub-networks namely: a text feature extraction module,
a visual semantic feature extraction module, a visual tampering
feature extraction module, a similarity measurement module and
a multimodal fusion module

Comparison of the performance of our model with baselines shows that
our inter-modal attention model outperforms the other baselines across
all the metrics except precision where MCNN has a better performance.

5.2. Evaluation results on hate speech detection task

Table 8 shows the results of the inter-modal attention model on
the MMHS150K dataset with different modalities in terms of Accuracy,
Precision, Recall, F1 and Area Under Curve (AUC). Table 9 shows
the results of ablation experiments which use the BiLSTM-CNN di-
rectly without the inter-modal attention module for all combination of
modalities.
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Table 9
Performance of BiLSTM-CNN model with different combination of modalities on
MMHS150K dataset. Best results in bold.

Modality Acc Prec Rec F1 AUC

TT 0.678 0.653 0.762 0.703 0.678
IM 0.524 0.516 0.892 0.654 0.524
IT 0.506 0.508 0.965 0.666 0.506
TT & IM 0.677 0.653 0.762 0.703 0.677
TT & IT 0.677 0.652 0.763 0.703 0.677
IM & IT 0.524 0.520 0.883 0.654 0.524
TT & IM & IT 0.675 0.652. 0.761 0.702 0.675

Keys: Acc — Accuracy, Prec — Precision, Rec — Recall, TT — Text, IM — Images and
IT — Image–text.

Fig. 5. The Receiver Operating Characteristic (ROC) curve for hate speech detection
task.

Combination of the three modalities results in better performance
across all the metrics except Recall, where utilization of image and
image–text results in better performance with a score of 93.4%. Combi-
nation of text and image compared with text and image–text produces
comparable performance. Performance of image and image–text results
in considerably general lower performance when compared to other
combinations except in Recall where it produces a significantly higher
performance.

In contrast to the results produced by the inter-modal attention
model, combination of text with image or image–text performs best
using the BiLSTM-CNN model. Still on the BiLSTM-CNN models, the
combination of text and either of image or image–text produce better
performance than using the three modalities. More surprising is the fact
that text only outperforms any other combination of modalities except
in Recall where image–text only has the best performance.

We also qualitatively evaluate the inter-attention model on hate
speech detection using ROC curve as presented in Fig. 5. The position
of the ROC curve as shown in the figure confirms the quantitative
performance.

5.2.1. Performance comparison with baselines on hate speech detection
Table 10 depicts the performance of the inter-modal attention model

with state-of-the-art models. The descriptions of the baseline models are
as follow:

• FCM: Features Concatenation Model (FCM) [6] is a concatenation
of features from each of the modalities in which a CNN-based
pretrained model (Inception v3) was used for image features
representation with Average Pooling while LSTM was used for the
representation of text and image–text features.

• SCM: Spatial Concatenation Model (SCM) [6] is the same as FCM
but with a change in the feature vectors of Inception v3.
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Table 10
Performance comparison of the inter-modal attention model with state-of-the-art models
on MMHS150K dataset. Best results in bold.

Model Acc Precision Recall F1 AUC

FCM [6] 0.684 – – 0.704 0.734
SCM [6] 0.685 – – 0.702 0.732
TKM [6] 0.682 – – 0.701 0.731
Our model 0.687 0.659 0.761 0.706 0.687

Keys: Acc — Accuracy.

Table 11
Performance of inter-modal attention and BiLSTM-CNN models with individual and
combination of modalities on MultiOFF dataset. Best results in bold.

Modality Acc Prec Rec F1

BiLSTM-CNN(TT) 0.658 0.641 0.598 0.619
BiLSTM-CNN(IM) 0.537 0.614 0.635 0.624
BiLSTM-CNN(TT & IM) 0.664 0.655 0.643 0.649
Inter-att(TT & IM) 0.718 0.703 0.700 0.702

Keys: Acc — Accuracy, Prec — Precision, Rec — Recall, TT — text, IM — Images and
IT — Image–text. Key: Inter-att — Inter-modal attention.

• TKM: Textual Kernels Model (TKM) [6] aims to boost interactions
among modalities by learning dependent text kernels for texts and
image–texts.

Comparison of the performance of our inter-modal attention model
with baseline models as presented in Table 10 shows that it outperforms
the baselines on Accuracy and F1 with a score of 68.7% and 70.6%
respectively. FCM is the best on AUC metric. Our model achieves 65.9%
and 76.1% in Precision and Recall respectively. The baselines do not
present evaluation results for Precision and Recall.

5.3. Evaluation results on offensive language detection task

Since the MultiOFF dataset consists of two modalities, we present
the results of the inter-modal attention model with those of BiLSTM-
CNN models in Table 11.

The results in Table 11 confirms that combined usage of text and
image is beneficial for offensive language detection. On all the eval-
uation metrics, multimodality improves performance. For unimodal
approaches, usage of text only is better for Accuracy and Precision
while image modality is better in Recall and F1. The inter-modal
attention model outperforms the BiLSTM-CNN model with a significant
margin which therefore confirms its effectiveness.

The ROC curve for our inter-attention model on offensive language
is presented in Fig. 6. The positioning of the curve in relation to True
Positive Rate and random curve confirm the quality of the quantitative
performance of the model.

5.3.1. Performance comparison with baselines on offensive language detec-
tion

Performance comparison of our inter-modal attention model with
state-of-the-art models is presented in Table 12. Brief descriptions of
the baselines are as follow:

• Stacked LSTM + VGG16: Stacked LSTM + VGG16 [4] uses
stacked LSTM and VGG16 to for text and image representation
respectively in a neural classifier

• BiLSTM + VGG16: BiLSTM + VGG16 [4] uses BiLSTM to rep-
resent the texts combined with image features extracted with
VGG16

• CNNText + VGG16: CNNText + VGG16 [4] employs VGG16 for
image features extraction while traditional CNN was used for
textual features representation

• DisMultiHate: DisMultiHate [33] extracts target entities for hate
detection in multimodal memes
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Fig. 6. The Receiver Operating Characteristic (ROC) curve for offensive language
detection task.

Table 12
Performance comparison of the inter-modal attention model with state-of-the-art models
on MultiOFF dataset. Best results in bold.

Model Acc Prec Rec F1

Stacked LSTM+VGG16 [4] – 0.400 0.660 0.500
BiLSTM+VGG16 [4] – 0.400 0.440 0.410
CNNText+VGG16 [4] – 0.380 0.670 0.480
DisMultiHate [33] – 0.645 0.651 0.646
MeBERT [35] – 0.670 0.671 0.671
MemeFier [8] 0.685 – – 0.625
Our model 0.718 0.703 0.700 0.702

Key: Acc — Accuracy, Prec — Precision, Rec — Recall.

• MeBERT: MeBERT [35] fuses texts and images enhanced with
external knowledge for semantic representation

• MemeFier: MemeFier [8] is a deep learning framework for clas-
sifying memes. It also incorporates external knowledge into fea-
tures encoding. The fusion of modalities is based on alignment
among the multimodal features.

Our inter-modal attention model with 70.3%, 70.0% and 70.2%
on Precision, Recall and F1 respectively is the best performing model
among the compared baselines. It also achieves better Accuracy when
compared with MemeFier; the only baseline which evaluated on Accu-
racy.

5.4. Further note

Result analysis across the tasks reveals that combination of the
three modalities mostly lead to the best performance on both inter-
modal attention and BiLSTM-CNN models with the exception of the
hate speech dataset (MMHS150K) where only text modality leads to the
best performance on the BiLSTM-CNN model. In general, the efficacy
of the inter-modal attention model is evident across all the tasks.

6. Conclusion

Multimodal content understanding is a challenging and still an
open research area due to the heterogeneity and semantic gaps in the
modalities involved. Majority of the prior works in multimodal content
understanding for fake news, hate speech and offensive language de-
tection do not take into account how modalities involved complements
one another due to issues caused by the aforementioned gaps. In this
work, we introduce an additional modality and filled the gaps by
leveraging on advances in computer vision to unify the diverse modal-
ities. We further develop a unified deep learning framework based
on inter-modal attention mechanism on the unified modalities. Our
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framework consists of several modules/layers based mainly on neural
networks. We conduct extensive experiments on three public bench-
mark datasets covering fake news, hate speech and offensive language.
Our model significantly enhance prediction and achieves state-of-the-
art performance on most of the datasets. We further conduct ablation
experiments covering the three tasks to show the effectiveness of our
unified inter-modal attention approach.
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Abstract: Hashtags have been an integral element of social media platforms over the years and
are widely used by users to promote, organize and connect users. Despite the intensive use of
hashtags, there is no basis for using congruous tags, which causes the creation of many unrelated
contents in hashtag searches. The presence of mismatched content in the hashtag creates many
problems for individuals and brands. Although several methods have been presented to solve the
problem by recommending hashtags based on the users’ interest, the detection and analysis of the
characteristics of these repetitive contents with irrelevant hashtags have rarely been addressed. To
this end, we propose a novel hybrid deep learning hashtag incongruity detection by fusing visual
and textual modality. We fine-tune BERT and ResNet50 pre-trained models to encode textual and
visual information to encode textual and visual data simultaneously. We further attempt to show
the capability of logo detection and face recognition in discriminating images. To extract faces, we
introduce a pipeline that ranks faces based on the number of times they appear on Instagram accounts
using face clustering. Moreover, we conduct our analysis and experiments on a dataset of Instagram
posts that we collect from hashtags related to brands and celebrities. Unlike the existing works, we
analyze these contents from both content and user perspectives and show a significant difference
between data. In light of our results, we show that our multimodal model outperforms other models
and the effectiveness of object detection in detecting mismatched information.

Keywords: hybrid deep learning models; machine learning models; stacking ensemble; XGBoost;
fine–tuning; image–text multimodal classification; object detection; hashtags; social media analysis

1. Introduction

Over the past decade, with the drastic rise in the popularity of social media, these
platforms have played an indispensable role in users’ social lives. They have become more
than just a tool for communication and sharing information privately and publicly. Social
media platforms provide services allowing users to maintain direct relationships with
their followers. Thus, it is a great opportunity for commercial brands and celebrities that
encourage them to share visual and textual posts. In other words, social media nowadays
can be considered a two-way channel where brands can amplify their marketing strategies,
take customer services to the next level and enhance their knowledge about their customers
by monitoring activities taking place on social networks [1] and celebrities and public
figures can reach a wider audience and monetize with the content they produce. Despite
the advantages of services offered to users, some problems may still transpire due to public
access to these platforms.

This paper focuses on incongruent Instagram content that can also be referred to as
spam, which are posts that do not match users’ expectations [2]. These contents can be
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found in a variety of cases on Instagram. However, we specifically assess them in hashtag
searches. Hashtags are searchable keywords preceded by the hash sign # that are used
on social media platforms to categorize information in different contexts. The increase
in the number of social searches using hashtags sometimes makes it a substitution for
conventional search engines on social media [3]. In addition, by tagging a post, users can
contribute and link their posts to other related images and videos. Since using hashtags has
no restriction, some users may choose the wrong hashtags inadvertently or intentionally
to get more followers or monetize by advertising, which can be annoying for consumers
who have a common interest through the hashtag, and also prevent creating a collection
of related content that may have valuable insights. Therefore, as illustrated in Figure 1,
many irrelevant and incongruent contents on hashtags can be troublesome. Not only are
they disturbing and confusing for users searching through the hashtags, but they also
impede brands from analyzing their customers in the best way. Additionally, post-hashtag
mismatches on Instagram, which are in text and visual formats, have the potential to
convey misinformation which is a significant threat [4]. Accordingly, utilizing incongruous
hashtags on Instagram posts that comprise both visual and textual data may have adverse
consequences. To avoid the potential threats and improve visual-sharing social network
performance for any user who spends time on these platforms, there is a need to detect
such posts automatically via their visual and textual information.

Computer Vision and Natural Language Processing (NLP) are two fields of Artificial
Intelligence (AI) that contain many techniques that can be applied, respectively, to visuals
and texts and even combined to solve several real-world problems, such as images with
tags on social media [5]. As a result, our primary objective is to find a solution using these
techniques that could be used to detect posts with irrelevant hashtags, whether a tag link
to an individual or a prominent brand. To this end, we crawl Instagram posts with various
information (e.g., images, texts, metadata) from a few hashtags with a large number of
contents. In addition, we propose detection models to identify incongruity between posts
and hashtags using visual and textual features. Since related objects in images can indicate
whether an image is associated with a hashtag or not, we further develop object detection
models to detect logos and faces and analyze their performance. Moreover, we analyze the
characteristics of mismatched information and users who contribute prevalence of these
contents. The key contributions are summarized as follows:

1. We introduce a dataset for Instagram that consists of metadata, visual and textual
information collected from different hashtags pertinent to brands and celebrities with
additional generic features related to images and texts.

2. We develop machine learning and deep learning models based on metadata, text and
images for incongruity detection. We also propose a multimodal model by fusing text
and image classifiers. Further, by comparing the experimental results of models, we
show that our proposed multimodal models outperform other models.

3. We apply object detection to the two categories of images. First, we use brand-related
images to detect a brand’s logos. Second, we employ celebrity-related images to
recognize the faces of the celebrity and other people who are somehow connected to
them by performing clustering on their Instagram accounts and show the effective-
ness of object detection to discriminate incongruent information from other relevant
information.

4. We conduct an explorative analysis and empirical study of our dataset from dif-
ferent perspectives to categorize the type of incongruity in posts and examine the
characteristic of social media users who share such posts.

The overview of the rest of the paper is as follows. We first review the related literature
in Section 2. Then, the proposed approach and our methods are presented in Section 3. We
conduct experimental results and explicate data analysis in Section 4. Next, we discuss
limitations and provide insight into future works in Section 5. Finally, we conclude and
summarize our work in Section 6.
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#Nike #Gucci

#CristianoRonaldo #EdSheeran

Figure 1. An example of incongruent content that users have shared with irrelevant hashtags on
Instagram.

2. Related Works
2.1. Brand Marketing and Advertising on Social Media

The previous findings reveal that different factors motivate users to use Instagram,
including establishing social interaction, recording events and peeking at celebrities [6],
who are public figures that have been shown to affect human behaviour strongly [7]. Thus,
brands should comprehend these motivations to establish a reinforced relationship with
their customers by identifying customer needs and utilizing various advertising techniques
that help them obtain a desirable outcome. In recent years, marketers and brands have taken
advantage of visual-sharing social networks because visual information is more memorable
and provokes stronger emotional reactions than textual information [8]. Consequently,
visual brand-related content is a persuasive tool that significantly influences consumers’
buying intentions [9]. Instagram is one of the most popular visual-based social media
platforms with a large number of active users. Along with allowing users to share visual
information, Instagram, by adding new features in recent years (e.g., product tags on
images), created a good marketing atmosphere that can develop more trust between users
and companies [10]. Moreover, brands on this platform can implement image strategies
that express their concepts and promote the public’s cognitive efficiency [11]. In addition
to these benefits, Instagram APIs grant users access to data from business and creator
accounts, allowing brands to mine perceptual and semantic features to yield promising
results. Many prior studies, therefore, were conducted about marketing and advertising on
Instagram. For instance, Liu et al. [12] estimate how brands are represented on Instagram
by studying consumer-created images.

In the latest works, employing Machine Learning (ML) and Deep Learning (DL)
approaches also allows brands to gain more valuable marketing insight by leveraging
disparate information. For instance, Paolanti et al. [13] measured the overall sentiment of
brand-related images by proposing a deep Convolutional Neural Network (CNN) model.
A Support Vector Machine (SVM) model was presented by Apostolova and Tomuro [14]
for extracting named entities in online marketing materials. Wijenayake et al. [15] studied
users’ expressions and opinions toward brands and developed a Long Short-Term Memory
(LSTM) model to generate and monitor brand personalities. Nakayama and Baier [16]
introduced an approach to predict and prevent confusion in a brand’s visual advertise-
ments using CNN. Tous et al. [17] proposed a CNN model to efficiently filter and curate
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brand-related images from Instagram and Twitter by applying object detection to discover
brands’ logos.

In the context of advertising, the privilege of social media in exchanging information
at a high level enables brands to create positive attitudes toward their products more than
traditional advertising channels. Correspondingly, advertisements have appeared in a vari-
ety of forms on social media. Both celebrities and social media influencers who accumulate
a high number of followers have the capability to affect a brand’s preferences [18]. One way
to advertise, thus, is via exploiting influencers and celebrities, and finding appropriate ones
is a challenging task. The most straightforward and relevant task of identifying proper in-
fluencers comes from research that suggests a DL algorithm to classify these influencers and
disclose the impact of visual congruence on consumers’ brand engagement by analyzing
their interaction with their followers [19]. Another way is to customize advertising based
on a user’s interests, preferences and personal characteristics to boost engagement [20].
To personalize the advertisement, Hong et al. [21] have also proposed a hybrid interest
classification system using Recurrent Neural Network (RNN) and CNN to classify text
and images, respectively. Therefore, visual-based platforms are predominantly helpful for
brand analysis.

Although social media platforms provide brands with a way to better advertise and
exhibit their products that the above works have focused on, some problems can stop brands
from completely taking advantage of these platforms. Unlike these works, we attempt
to increase the efficiency of hashtag searches in social media, which are crucial for brand
marketing and advertising, by identifying incongruent content from congruent content.

2.2. Incongruent Content, Misinformation and Spam

Despite the benefits brought by social media to brands, a huge number of unwanted
information has been found on these platforms, such as incongruent content [22], spam [23]
and misinformation [24] and due to the emergence of new challenges, they have been a top
priority in the field of research for the past decade. This content can be broadcasted acciden-
tally or deliberately in a fraction of a second due to the broad audience [25]. Nonetheless,
we do not scrutinize the intention of such content, and we examine incongruent content re-
gardless of intent in this study. Incongruence can be defined as information about a specific
topic presented in an unrelated context. We investigate a type of incongruent information
on Instagram where posts are not associated with their hashtag. Ha et al. [22] worked on
the contradiction between brand-related visual data and hashtags by leveraging Computer
Vision to analyze and detect these data on Instagram with images, text and meta-data cues.
Basically, hashtags are one way to label content and assign it to other related content. When
a hashtag is used in a post, the post will emerge on the hashtag’s page. They are beneficial
for garnering opinions, surveys and engagement across events. Apart from differentiating
between hashtags with visual and textual information, hashtag recommendation methods
have also been proven to prevent mismatched information. Alsini et al. [26] reviewed
these methods on Twitter and divided them into three categories: first, methods that
employ text-based [27], graph-based [28] and classification models [29,30]; next, hybrid
user-based methods recommend hashtags based on similarities among users’ interactions
and behaviour [31,32]; lastly, hybrid miscellaneous methods whose recommendations are
conducted with multimodal features [33]. In contrast to the studies that analyzed irrelevant
content, other papers have concentrated on detecting and classifying the images relevant
to a company with real-time object detection systems and deep learning techniques on
Instagram [34]. Moreover, incongruent content and turmoil and befuddlement caused by
the exposure to such information have demonstrated that users were required to make
more efforts to process information, which, in the marketing domain, is a negative aspect
of a brand [35–37].

The discrepancy between information can also be considered an indicator of finding
fake news and misinformation [38,39], for example, misinformation detection pertinent
to headlines and news [40–42]. Misinformation is a type of misleading information that
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has been disseminated unintentionally and goes through a variety of labels, such as fake
news, clickbait and rumors [43]. It is widely accepted that misinformation is a serious
menace to societies [44], and the multiple negative impacts of such false information have
led researchers to focus on this issue in several areas, ranging from health to marketing.
Consequently, previous studies have addressed the task of detecting misinformation,
mainly in social media as a source of information. Some have explored the concept from a
verbal perspective on text-based platforms such as Twitter, while others presented works
from a visual perspective due to the greater deceiving influence [45] and to avoid the
dangerous use of social media and technologies that can produce misinformation, such as
Deepfake technology [46,47]. Furthermore, with the positive nature of Instagram and the
presence of images and video accompanied by textual information, it has provided a place
for researchers to work with multimodality by fusing data from several dimensions that
have been shown to perform significantly better [48,49]. Amid a wide range of models for
detecting misinformation, the dissemination of this content can be amplified by automated
fake accounts [50]. In consideration of that, studies were also conducted for Instagram
platforms using machine-learning algorithms to discover fake accounts [51,52].

Regarding marketing, brands and companies can also be affected by misinformation
in consumer reviews and fake news alongside advertising which undermine consumers’
trust in them and damage brands’ reputations and consumers’ overall attitude toward
brands [53]. Among works that assessed this issue, Vidanagama et al. [54] provided a
comprehensive analysis of previous research that proposed approaches to detect deceptive
consumer reviews. On the other hand, some researchers used consumer reviews for fact-
checking. For instance, Zhang et al. [55] developed a model to predict the integrity of
answers to consumers’ Question-Answering related to products on Amazon by retrieving
evidence from consumer reviews and product descriptions.

The other type of unwanted information that users encounter is spam, which is
considered one form of misinformation [56]. Spam is defined as irrelevant and worthless
texts and images with a high rate of repetition that is proliferated in any media, like social
network platforms and emails. Their form classifies spam into social network spam, image
spam, spam links, email spam and advertisement spam [57]. However, allegedly, spam
appeared and increased quickly, firstly in emails [58]. The majority of previous work on the
processing of spam has been conducted on email text [59], images attached to emails [60,61]
and multimodal approaches to eliminate spam from emails [62–64]. Even though spam
content has become part of the human experience on emails and web, the development of
social media platforms and the appearance of spam content brought new challenges to this
issue. They lead to a stream of research investigating how to identify and analyze spam
on social media. Regarding Instagram, spam content is tied between visual and textual
information [65]. Processing of spam content, therefore, is associated with images/videos
along with captions and comments. For example, CNN models have been presented with
different architectures to detect spam images [2] and spam comments; Complementary
Naïve Bayes and SVM models have been developed on balanced and imbalanced datasets
of Instagram comments [66]. Other studies focused on extracting texts from spam images
by leveraging optical character recognition (OCR), which has shown that its combination
with NLP and ML outperforms other ML models trained without OCR [67]. Moreover, the
challenges involved in detecting spam content on a large scale have led researchers to look
at spam profiles and identify spammers to prevent these accounts from generating spam
and remove spam before the user falls for it [68].

Although several methods have been proposed for misinformation and spam, very few
works have addressed the problem of incongruent information detection that only focuses
on brand-related images. Therefore, we focused on incongruent information detection for
brands and celebrities with a large number of followers on social media. Moreover, to
the best of our knowledge, very few articles have explored the semantic aspect and the
relationship between spam and its context [69]. In this article, we are looking for posts with
irrelevant tags in the hashtag search. At first glance and regardless of other posts, a post
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with irrelevant hashtags might not be spam. However, in the wrong context, when that
post is found among other posts that have nothing to do with it, it becomes a worthless
post that users do not expect to see among other posts, just like spam.

2.3. Machine Learning, NLP and Computer Vision

Promising results over the years obtained by different AI techniques and state-of-the-
art methods that have been proposed have led researchers to deal with various problems
using these technologies. Although AI technologies are broad and cannot all be mentioned
in detail, three areas used in this study should be considered while examining related work;
ML, NLP and Computer Vision.

ML is a component of AI that relies on algorithms and data to provide models that
are able to perform a specific task automatically with accurate results. Generally speak-
ing, according to the scale of the data and the type of tasks to be performed, different
ML algorithms, such as traditional ML and DL, derive benefits from two main learning
methods: supervised learning and unsupervised learning. Traditional ML techniques are
predominantly supervised learning methods that include a wide variety of algorithms, such
as Logistic Regression (LR), SVM, Decision Tree (DT), Naïve Bayes (NB), Random Forest
(RF), K-Nearest Neighbor (KNN), etc., each of which has its own advantages [70]. Even
though these algorithms are still suited for many tasks independently or as a component
of ensemble models, most of them are unsuitable to be used directly in high-dimensional
vector information, such as images [71]. Moreover, they cannot work without predefined
data. As a result, unsupervised learning methods were performed that allowed models
to recognize patterns by themselves and even deal with data that showed up in a matrix
form, including images. For example, Zhang [72] proposed unsupervised image clustering
algorithms on two datasets to group images into meaningful categories. The drawbacks
have also caused traditional ML algorithms to be significantly overshadowed by DL, which
can be considered mathematically sophisticated algorithms with a spectrum of architectures
capable of solving problems using high-dimensional data [73]. From CNN with its typical
layers (e.g., convolution, pooling, fully connected) that are mainly used in image processing
and Computer Vision [74] to RNN, LSTM and Gated Recurrent Unit (GRU) with their
ability to memorize and recognize sequential patterns in sequential data such as natural
language [75]. In addition to these DL algorithms to process these forms of data, it is better
to refer to other components of AI that make it possible for computer systems to perceive
and process texts and images.

NLP is associated with the capability of a computer system to understand natural
language, just as humans, from written or spoken communication, concerning which great
strides have been made in performing various tasks such as text classification, sentiment
analysis, topic modelling, translation, etc. [76]. Another component of AI is Computer
Vision, which is very different to NLP, which includes processing, analyzing and compre-
hending digital images and videos [5]. In this area, when computer systems’ functions
integrate with intelligence, they can fulfil various tasks, such as image classification, object
detection, semantic segmentation and so on. Though NLP and Computer Vision are two
distinct and active research areas, their combination gives rise to a new interdisciplinary
field with an assortment of applications in industries. Some application domains that
intersect NLP and Computer Vision include image and video captioning [77], document
image classification [78] and visual question answering [79]. Additionally, many studies
proposed image–text multimodal and multi-view for classification models that used NLP
and Computer Vision techniques to extract textual and visual features [80,81].

A comprehensive summary of the main ML and DL models applied in this field can
be found in Table 1.
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Table 1. A summary and comparison of the main characteristics of related ML models in the literature.

Ref. Year Task Source of
Information Dataset Data Type Models Main Focus

[22] 2020 Mismatch
Detection Instagram

7769 labeled
posts and

444,491
unlabeled

posts

Textual, Visual,
Metadata LR, SVM, RF Detecting brand-irrelevant posts in

brand-relevant hashtags

[40] 2020

News-
Headlines

Incongruent
Detection

News 1.7 million
news articles Textual SVM, DL

Introducing a web interface for
predicting the incongruence

between news-headline

[41] 2022

News-
Headlines

Incongruent
Detection

News

Incongruent
News

Headline
Dataset

Textual Deep Learning
(GRU)

Proposing a method to detect
incongruence of news headlines
using the lexical and contextual

connection between news body and
its headline

[42] 2020

News
Headlines

Incongruent
Detection

News

NELA17:
91,042 news,

Clickbait
Challenge:

21,033 social
media posts

Textual SVM, LSTM
Incongruence detection using
inter-mutual attention-based

semantic matching

[27] 2021 Hashtag Rec-
ommendation Twitter 30 million

news tweets Textual SVM

Proposing a novel method to
recommend hashtags of tweets

using lexical, topical, semantic and
user influence features

[29] 2020 Hashtag Rec-
ommendation -

Two public
datasets:

18,464 articles
with five tags
and 127,600
articles with

four tags

Textual
AdaBoost, RF,

LSTM,
Bi-LSTM, CNN

An approach to recommend
hashtags using text classification.

[30] 2020 Hashtag Rec-
ommendation Instagram

HARRISON
dataset: 57,383
multi-labeled

images

Visual

Voting Deep
Neural

Network with
Associative

Rules Mining

Recommending one to ten hashtags
for images

[31] 2016 Hashtag Rec-
ommendation Twitter

1,674,789
tweets with

28,526
hashtags

Textual

Latent
Dirichlet

Allocation
(LDA)

Hashtag recommendation using the
latent relationship between words

and hashtags

[32] 2020 Hashtag Rec-
ommendation Twitter

Dataset-UDI-
TwitterCrawl-

Aug2012
Textual

Clique
percolation

method (CPM)

A community-based approach to
recommend hashtags using tweet

similarity

[33] 2022 Hashtag Rec-
ommendation Social media -

Textual, Visual,
User

information

Hybrid deep
neural network

Proposing a multimodal
personalized hashtag

recommendation

[49] 2020 Misinformation
Detection Instagram 30,000 posts Textual, Visual

LSTM, GRU,
VGG16,
VGG19,

ResNet50,
ResNet101,

DenseNet121,
DenseNet169,

Ensemble
model

Detecting medical misinformation
with semantic level and task-level

attention to focus on important
contents

[39] 2020 Fake News
Detection -

George
McIntires

dataset: 10,558
texts

Textual LSTM, FNN
Fake news detection using NLP and
deep learning by including auxiliary

features from live data mining

[51] 2020 Fake account
Detection Instagram 10,000

accounts Metadata SVM, RF, NB,
DT, MLP

Introducing a method to identify
fake accounts efficiently
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Table 1. Cont.

Ref. Year Task Source of
Information Dataset Data Type Models Main Focus

[52] 2019 Fake Account
Detection Instagram

Two datasets:
1002 real and

201 fake
accounts; 700
real and 700
automated
accounts

Metadata NB, LR, SVM,
NN

Detecting fake and automated
accounts

[55] 2020 Fact-Checking
Product Q&A

forums on
Amazon

60,864 answer
claims about

products
Textual

CNN, LSTM,
AVER

(proposed
model)

Proposing AVER, a model to predict
the veracity of answers based on

evidence

[25] 2019 Spam
Detection Twitter

2000
Dialectical

Arabic tweets
Textual SVM, NB

Detecting malicious and spam
content on Twitter written in

Dialectical Arabic

[59] 2019 Spam
Detection Email 962 emails Textual NB, SVM Effect of preprocessing of text on

the performance of models

[60] 2016 Spam
Detection Email 52,934 images

in 7 categories Visual
CNN and SVM
instead of the
Softmax layer

Classifying spam images into seven
categories

[61] 2022 Spam
Detection Email

1,725,928 spam
images

extracted from
real spam

emails

Visual
RF, DT, KNN,

SVM, NB,
CNN

Classifying spam images and
analyzing the performance of ML

models

[62] 2008 Spam
Detection Email 14,723 emails Textual, Visual DT

Proposing a system to filter out
spam emails using different sets of

features

[63] 2019 Spam
Detection Email

Text dataset:
2893 message,
Image dataset:
2359 images

Textual, Visual SVM
Propose a method to improve spam
classification using a dataset with a

small number of data

[64] 2017 Spam
Detection Email

1251 spam
images from

emails, Enron
Spam Dataset:

33,645 texts

Textual, Visual CNN Detecting spam emails with hybrid
architecture

[2] 2019 Spam
Detection Instagram 8000 images Visual CNN

Detecting spam images and
comparing five different CNN

architectures

[66] 2019 Spam
Detection Instagram 2600 comments Textual

SVM, Comple-
mentary

NB

Detecting spam using a balanced
and an imbalanced dataset

[67] 2020 Spam
Detection -

Mark Dredze
spam images:
10,000 images

Textual, Visual DL Extracting text from images using
OCR to improve spam classification

[68] 2021 Spam Profile
Detection Instagram 916 user

profiles Metadata MLP, RF, KNN,
SVM

Detecting spammers by extracting
additional features

[12] 2020 Image
Classification

Flickr,
Instagram

13 features
about color,
shape, and

texture from
16,368 images

Visual SVM, CNN Measuring how brands are
portrayed on social media

[19] 2020 Image
Classification Instagram More than

45,000 images Visual CNN

Classifying images’ themes and
analyzing to reveal the hidden

relationship between visual content
and brand engagement

[17] 2018

Image
Recognition,

Object
Detection

Instagram,
Twitter

More than
50,000 images

in 100
categories

Visual CNN Minimizing manual curation of
brand-related images
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Table 1. Cont.

Ref. Year Task Source of
Information Dataset Data Type Models Main Focus

[34] 2021

Image
Recognition,

Object
Detection

Instagram
Starbucks
Instagram

images
Visual

Mask R-CNN,
Faster R-CNN,

YOLO, SSD

Proposing a model to recognize the
identity of a brand using object

detection

[72] 2021 Image
Clustering

Chinese social
media,

Instagram

Images of
protests,

images related
to climate

change

Visual K-means,
Deep-Cluster

Developing three image clustering
algorithms on two datasets

[13] 2017 Sentiment
Analysis Instagram

GfK Verein
Dataset: 4200

positive,
negative and

neutral images

Textual, Visual

Deep CNN,
KNN, SVM,
DT, RF, NB,

ANN

Estimate the overall sentiment of
brand-related pictures from social

media.

[21] 2020 User Interest
Classification

Instagram,
Twitter,

Facebook,
Flickr, Google

33,647 images
and 21,022

texts
Textual, Visual CNN, RNN Improving personalized advertising

based on users’ interests

[14] 2014
Named Entity
Recognition

(NER)
Online sources 1920 online

flyers Textual, Visual SVM
Recognizing 12 types of named

entities in online marketing
materials

[16] 2020
Predicting

Brand
Confusion

All channels
Image and

video
advertising

Visual CNN Proposed an approach to predict the
uniqueness of brand positionings

[15] 2021
Generate

Brand
Personalities

Social media
data

1.2 million
posts Textual Deep LSTM

Investigating how users’ opinions
can be used to generate and monitor

brand personalities

3. Materials and Methods
3.1. Approach Overview

In this section, we describe the general approach of our study on incongruent infor-
mation. The proposed approach to detect this content consists of two primary modules:
classification and object detection. This study starts with the classification module, which
employed ML and DL methods to identify incongruity between Instagram posts and hash-
tags. We investigate different models to detect and classify posts based on extracted features
from metadata, text and images. We further propose a hybrid multimodal model by fusing
image–text classifiers. In the object detection module, we apply an object detection model
to brand and celebrity-related images that enables us to identify and recognize related
objects from images in our dataset. Accordingly, the first and foremost step is to construct a
dataset containing Instagram posts with applicable information that allows us to research
the concept of incongruent data.

3.2. Data Collection

Before dealing with the main modules, there is a need for a high-quality dataset
with multimodal information for the processing to be carried out with the highest success.
Hence, we used Instagram, a visual-based social media platform that provides multimodal
information. Although there are different types of users on Instagram, the most followed
user accounts can be divided into brands and celebrities, which were earlier found to have
a higher number of spam comments [82]. Likewise, due to having more visits by other
users, it is expected that more incongruent information will be found on hashtags related
to prominent brands and celebrities. Therefore, we identified a set of hashtags related to
brands/celebrities that have been used frequently in users’ posts and created a dataset
of Instagram posts by searching through these hashtags. For retrieving information, we
used Instaloader, which is a python library to crawl images and videos along with JSON
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files containing captions, post engagements (e.g., like count, comment count) and user
information (e.g., follower count, post count, profile picture). However, we excluded videos
from our study. Instaloader further allows us to garner data based on time intervals. The
dataset is aggregated from posts that were published at least 30 days ago to get enough
feedback. In total, we were able to gather 12,119 data objects from 8014 users, which we
collected from four hashtags.

3.3. Data Annotation

Our approach for detecting incongruent information is based on supervised learning
that learns from labelled training data. Consequently, the significant challenge is the
availability of a dataset with reliable labels, so we annotated the data manually, which is
a cumbersome and demanding task. For annotation of our dataset, we created a team of
ten people, including seven master’s degree students and three bachelor’s degree students,
all with background knowledge of computer science. Based on our experience, finding
incongruent information, especially on most-used hashtags, can be identified usually by
observation of images and captions. However, detailed discussions were conducted for
uniformity of data labelling and acquainting annotators with the task and sample data were
provided as a guideline throughout the annotation process. At the beginning of the task,
we distributed our dataset among annotators in a way that three annotators evaluated each
post. To simplify and accelerate the task, we developed a website that enables annotators
to upload their data and evaluate each post by observing textual and visual information.
After labelling each post three times, if there was even a single disagreement between the
labels, we evaluated them for the last time. According to the obtained results, 76.2% of the
data reached a full agreement, and the rest had at least one disagreement, which shows the
effectiveness of the guideline and website. Once the data annotation task was completed,
we segregated data into “match” and “mismatch” labels. Table 2 presents a list of hashtags
used in the dataset with their statistical information regarding the hashtags’ details and
distribution of the match and mismatch content in the dataset. According to the table,
among 6494 brand-related posts, 39.57% and 60.43% of them were annotated as match and
mismatch, respectively. In celebrity-related posts, 38.36% of the samples belong to matched
data, and 61.63% belong to mismatched data. As a result, irrelevant hashtags were used in
more than half of the collected posts.

Table 2. The distribution of the collected data with additional statistical information for each hashtag.

Type Hashtag Total Number of
Posts

No. of Collected
Posts No. of Matches No. of

Mismatches No. of Users

Brands #Nike 125.6 million 3151 1531 1620 2266
#Gucci 69.4 million 3343 1039 2304 1940

Celebrities #CristianoRonaldo 12.7 million 3481 1024 2457 2405
#EdSheeran 5.6 million 2144 1134 1010 1403

3.4. Classification Module

This section briefly clarifies the classification module that relies on different ML and
DL models with a collaboration of NLP and Computer Vision techniques to address the
issue of detecting post-hashtag incongruence. The classification module adopts a four-stage
approach. Each stage is explained in detail below:

3.4.1. Metadata Classification

The first stage is carried out by extracting metadata and generic features related to
texts and images to quantify the characteristics of posts. Early work in various domains
leverages supervised-learning methods that have specifically focused on manually curated
features to solve various tasks. To determine the distinctive features between incongruence
and congruence information and better analyze their characteristics, we initially explored
features that have been analyzed and used for classifying other unwanted information,



Sensors 2022, 22, 9870 11 of 31

such as misinformation [83], rumors [84] and spam [85] and also other works on social
media that can be seen in Table 1. Then, we selected and mined the most useful features for
predictive models and showed their potential to distinguish information in other tasks.

These features are mainly extracted from metadata generated by user engagement
and interaction. Instagram generally makes these features available, and we extracted
them straightforwardly from the collected data. Besides these features, we also extracted
additional features with a bit of computing that indicates a series of attributes related to
captions (e.g., word count, sentiment) and images (e.g., size, dominant colors). The overall
extracted features from our datasets are listed in Table 3.

Once the features are extracted from raw data, the feature selection takes place to
discover the features’ importance. The selected feature vectors representing each post
are then fed into different ML and DL classifiers to learn from the metadata features.
Analyzing each feature’s characteristic and the classifiers’ performance is discussed further
in Section 4.

Table 3. List of extracted features with their descriptions.

Type Feature Description

User

user_follower_count Number of followers
user_following_count Number of followings

user_post_count Number of posts published by the user
user_business_category Type of accounts business

user_is_business_account Type of the account
user_is_verified Whether the user is verified by Instagram

Post

like_count Number of the post’s like
comment_count Number of comments

has_location Whether the location has been specified by the
user in the post

mention_num Number of mentions (@)
hashtags_num Number of hashtags (#)

Text

sentiment Sentiment of captions
text_word_count Number of words in captions
capital_char_num Number of capital characters

digit_num Number of digits

hashtag_sequence_num Index of a target hashtag in a sequence of
hashtags

is_comment_hashtags Whether hashtags are used in the caption or
comments

mention_target_account Whether the user also mentions the target
account

hashtag_other_related_brands Whether the user tagged other famous brands

tag_other_related_brands Whether the user mentions other famous
brands

is_bio_related_brand Whether the bio of the account relates to the
target account

is_username_related_brand Whether the username relates to the target
account

Image dominant_color The dominant color of the image
image_original_size Size of the image

3.4.2. Text Classification

This stage aims to adopt a DL approach to classify textual information. Text classifica-
tion is a fundamental task in NLP that has been proven to be solved using DL models by
differentiating verbal patterns and distinguishing semantic relations. Here, we developed
a text classification model based on a transfer learning approach using the pre-trained Bidi-
rectional Encoder Representations from Transformers (BERT) model to detect incongruence
textual information automatically. Textual information generated by the user who publishes
an Instagram post can be found in captions, which are titles or brief descriptions of images
or videos and also can be found within digital images that refer to text embedded inside
of the images. Therefore, our input data are divided into these two corpora. Apart from
captions, which are available through the dataset, we need to extract texts from images.
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Hence, we used OCR to identify and recognize alphanumeric characters automatically
and symbols from digital images, including printed, typewritten and handwritten texts,
and convert them into a machine-readable text format [86]. With OCR, all words and
sentences overlaying the images can be recognized character by character with a confidence
rate. Images relate to a scene and texts placed in the background or they are associated
with advertising and texts written on objects, as shown in Figure 2. In the dataset, by
performing OCR with a confidence rate of 0.7 on the original-sized images, 8159 of the
images contained text, and the rest were without any text inside the images. In this study,
after preparing and preprocessing the corpus, we fine-tuned the BERT pre-trained model
with captions and texts extracted from OCR as two input data.

Figure 2. Sample images and recognition of corresponding overlaying text in different hashtags.

BERT [87] is a transformer-based model that consists of two steps, i.e., unsupervised
pre-training and supervised fine-tuning. The pre-training step was performed on a large
amount of unlabeled textual data related to a variety of domains gathered from BooksCor-
pus and Wikipedia. The fine-tuning step refers to the procedure of retraining the pre-trained
model to adapt and perform on a custom dataset. It has been shown that such fine-tuned
models outperform traditional models that require large training data sets. In general,
BERT serves both as an encoder to process and extract features from input texts and a
decoder to employ the features to generate outputs. However, in this study, we used
BERT as an encoder to preprocess raw input data and transform them into BERT read-
able features, i.e., Token IDs, Input Mask and Type IDs that contain 0 or 1, indicating
the padding and the token’s sentence, respectively. For encoding, the input data are first
tokenized and moved through an embedding layer that can transform each input token
into a 768-dimensional vector. Special classification (CLS) and separator (SEP) tokens are
then added correspondingly at the first and last of the sentences to clarify each sentence.
Finally, positional encoding took place to learn the positions and assign a token to a unique
representation based on its context (contextualized embeddings).

3.4.3. Image Classification

Another type of information that can help us to classify our data is images. Images
and the features that can be obtained from them give us an advantage that might perform
better than the other types of information we mentioned in previous sections. CNN is
one of the DL methods that is widely used for image classification. We refer readers to a
survey by Rawat and Wang [88] about a comprehensive overview of CNN in the image
classification task. Although a wide variety of CNN architectures have been proposed, each
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depending on the task, Mascarenhas and Agarwal [89] concluded the better performance of
Resnet50 on the image classification task by comparing other pre-trained models, including
VGG16 and VGG19. Thus, In this stage, we encoded the images using the Resnet50 model,
which had been pre-trained on the ImageNet dataset [90] to detect image mismatches.

ResNet [91] is a CNN architecture that enables the construction of networks with
thousands of convolutional layers by overcoming the vanishing gradient and exploding
gradient problems. In DL models, the deeper the networks get, the less the gradient value
changes. Therefore, weights are barely updated during backpropagation. However, Resnet,
with its stacked (two-layer) residual blocks that have additional shortcut connections,
allows the network to reduce computation and improve performance by skipping some
layers and learning with deeper models. Resnet50 is a version of residual networks that
consists of 48 convolutional layers along with two pooling layers, i.e., max pooling and
average pooling layers. Each two-layer block is replaced with a three-layer block called a
bottleneck in ResNet50.

3.4.4. Hybrid Multimodal Deep Learning Model

In real-world problems, it is often the case that the information comes not just from
a single modal, but from a multimodal combination of information, just like our tasks. It
has been found that multimodal classification can be most effective when text and image
diverge semiotically [92]. Therefore, multimodal classification, where image and text are
fused, gives us the privilege of strengthening the detection of incongruity information.
Until now, we developed text classification and image classification models separately
using pre-trained models. In the text classification, we extracted texts from images in
the OCR and along with captions, we fed them as inputs to the BERT pre-trained model.
We fed input images into a pre-trained Resnet50 model in the image classification. In
this stage, however, we proposed a multimodal network by fusing these two models that
simultaneously learn from images and textual contents. As illustrated in Figure 3, they
moved through the learning process after passing information to the model and extract-
ing embeddings for textual and visual information. The learning process contains fully
connected layers accompanied by dropout to reduce overfitting and a batch normalization
layer to normalize input features across the batch dimension that improve the training time
and add a regularization effect on the network. Finally, we used a late fusion process to
concatenate the two modalities and fed them to the final classification layer, a one-unit
dense layer with a sigmoid activation function to detect match and mismatch content.

Figure 3. The proposed hybrid multimodal deep learning model.
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3.5. Object Detection Module

In the previous module, we discussed different classifiers which were trained on the
dataset. The dependencies of these models on the dataset could be a drawback because
content on social media is evolving over time, and the classifiers cannot perform well on
the other data as much as on the collected dataset. Nonetheless, relevant posts about a
hashtag usually contain the same objects representing the hashtags. Therefore, identifying
the objects that appear in most images can effectively detect incongruence information.
Note that this module aims to show the ability to detect related objects on images and
its performance in identifying incongruence data. As an object detection algorithm, we
used YOLO [93], a real-time object detection system that applies a single CNN to the entire
image in order to divide regions and predict classes and bounding boxes of the detected
object with a probability. Moreover, employing YOLO to detect objects from images in the
application has been shown to have advantages in terms of speed and accuracy over other
CNN architectures [34]. Therefore, YOLO’s performance in earlier works is another reason
for using YOLO in the training process to recognize faces, products and logos.

As mentioned earlier, we divided the data into two categories: celebrities and brands,
which each include different associated objects to detect. For example, faces for celebrities
and logos for brands. Thus, this stage is also divided into face recognition and logo
detection sections. Figure 4 illustrates the result of face recognition and logo detection.

Cluster 1
Cluster 21

Cluster 18

(a)

Nike

(b)

Figure 4. The result of the models in the object detection module. (a) face detection, (b) logo detection.

3.6. Face Recognition

The most important object, which is an indicator of the presence of celebrities in an
image, without any doubt, is their faces because if their faces are present in an image of a
post, the post is relevant to a hashtag, and it is right to use the hashtag. The first step for
face recognition is to have many images of the target face. Hence, a source of information
is required to obtain these images. Instagram is an appropriate place to collect images to
recognize celebrities’ faces on Instagram. The Instagram platform lets users share images
and save them on their accounts. Therefore, we could find and download all images from
their accounts. However, we need to detect and extract the faces from each image before
face recognition. We used MTCNN (Multi-task Cascaded Convolutional Networks) [94]
as a face detection algorithm containing CNNs in three stages. First, a shallow CNN
generates windows and locates candidates. Second, another CNN refines the result of
the previous stage and eliminates non-face candidates. Finally, a deep CNN is used to
refine the candidates again and returns facial landmark positions such as nose, eyes and
mouth. Even though we could extract all faces from the accounts using this algorithm,
most faces do not belong to the owner of the Instagram accounts. Consequently, clustering
the faces is crucial. To be able to cluster faces, we compacted high-dimensional images of
faces into 128-dimensional embeddings using Google’s FaceNet [95], which in light of the
face clustering results, has been shown to be invariant to a variety of cases. Finally, we
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performed K-means to cluster all the obtained faces, and the Elbow method was employed
to determine the optimal value of clusters (K). Moreover, we sorted clusters by the number
of members and filtered out clusters containing poor-quality images because K-means
could not work well due to the quality of images, occlusion, image lighting and persons’
pose in images. Moreover, we eliminated clusters that resulted from a group of faces of
different people. The procedure of face clustering is illustrated in Figure 5.

In this way, by performing the steps on Instagram accounts of users who often share
pictures of themselves with their followers, we can extract their faces since they appear in
a significant number of images. Celebrities are also aware of the effects that social media
accounts have on their fans [96] and publish different images of themselves, more than
others, to followers. Consequently, the cluster with the highest number of members belongs
to the person that owns these accounts. Furthermore, with the right number of clusters that
can obtain from the Elbow method, we can also extract other faces from people who are
somehow related to the owner of the Instagram accounts. Regardless of removed clusters,
the people in images will be ranked based on their appearance on the image in the account
by sorting the clusters based on the cluster’s frequency. This means the more a person
is present in an image of the respective Instagram account, and the image is placed in
higher clusters; thus, the possibility that an image of this person is incongruent with the
related hashtag is decreased and vice versa. All faces and corresponding cluster labels were
ultimately passed to the training model as inputs.

Figure 5. The procedure of face recognition. The images of MTCNN and FaceNet architecture are
taken from the corresponding referenced papers.

3.7. Logo Detection

The presence of a logo in brand-related images and their detection can effectively
differentiate match images from mismatches. The logo is a key component of branding;
it is a brand’s emblem, trademark or identity, as it typically joins brand names, products
and packaging [97]. As a result, it is a fundamental part of brand-related images shared
on Instagram and actually represents the brand. In this section, we used brands’ logos to
differentiate mismatched from matched content. Hence, we performed the YOLO object
detection model to exhibit the potential of object detection by identifying the logos from
images. In the training process, the images of a brand’s logo were first collected via the
brand’s Instagram account and Google Images, containing icons and images of logos
overlaying on the products. Then, the logos were labelled using LabelImg, a tool for
labelling bounding boxes in images. After the labelling process, the images and their
labelled bounding box passed through the training model to learn objects from images.



Sensors 2022, 22, 9870 16 of 31

4. Experiment and Analysis
4.1. Data Analysis

In this section, we discuss an extensive analysis of incongruent information and
explicate the characteristics of incongruent information and users that use irrelevant tags.

4.1.1. Mismatch Topics

We conducted an empirical study to discover the relation among the hashtags and
their various irrelevant topics and attempt to find answers to different questions, which can
help us to gain a better comprehension of this content. For example, which topics include
incongruent information, which topic constitutes the majority of this information and so
on. As mentioned in the discussion on data collection, we collected data for two hashtag
categories for which consumers post many photos: brands and celebrities. We found
incongruent hashtag-post information in 60.42% of brand data and 61.63% of celebrity data
and categorized them into different topics based on observation. Although there are several
ways to categorize mismatched information based on their topic, generally, the major topics
on Instagram were:

• Personal: selfies and photos of an individual or group without any relation to the
hashtag.

• Art: painting, graphic art, musical instruments and artists.
• Sport: sports equipment, pictures of professional sports, athletes.
• Animal: all pictures of animals.
• Food: meals and beverages and simply everything edible and drinkable.
• Cosmetic: hairdressing, makeup, cosmetic treatments, even healthcare.
• Environment: photo of nature, building.
• Quote: images of quotes, memes, tweets, manuscripts.
• Screenshot: photos displayed on the screen of a computer or mobile phone.
• Ads: posters and flyers.
• Economy: images relating to bitcoin and other digital currencies.
• Shop: online sales and products related to other brands.
• Inappropriate: sensitive and sexual pictures that are not suitable for all users. Note

that Instagram strictly handles this sort of content, so there is little of them.
• Other: the remaining images do not belong to mentioned topics.

In addition, we categorized the shop category in the brand-related hashtag into related
and unrelated products due to the different nature of these two types of hashtags. Figure 6
shows the proportion of topics for each hashtag in the dataset. As illustrated in Figure 6,
in both brands’ hashtags, the most common type of incongruent information involves
brand-related products from other brands and more than half of the posts belong to this
topic. As a result, it makes it difficult for our classification models to distinguish between
brand-related data. On the other hand, in celebrity-related mismatches, the theme of
some data is similar to the corresponding hashtag. For example, in #CristianoRonaldo,
which is associated with an athlete, the sports topic has a high percentage. In #EdSheeran,
which is related to an artist, the art topic forms a large part of the data. Moreover, it can
be inferred that online shops and users who sell products on Instagram use celebrities’
tags to attract users who constantly or occasionally visit these hashtags since a significant
part of incongruent information in celebrity-related hashtags comprises the shop topic. In
addition, the role of personal content is undeniable, which intertwines with mismatches in
all hashtags.
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Figure 6. Distribution of the main mismatch topics over posts in the dataset.

4.1.2. Hashtag Analysis

In Figure 7, by ignoring the target hashtags that have been used for data collection and
consequently are present in all sample data, we listed the most frequent hashtags in each
tag used in the dataset. We found differences between the hashtag distributions in match
and mismatch content. While in the congruent content, hashtags mainly refer to the target
hashtag’s general idea, those in the incongruent content are pertinent to diverse themes
with much more repetition throughout all Instagram posts. For instance, in #EdSheeran,
the congruent information is about music, concerts and tours. However, the incongruent
information includes hashtags about other artists, fashion, love and business. As a result,
we conclude that other unrelated hashtags that have nothing to do with each other can be
found frequently in this type of content.

Figure 7. Frequency of the top 10 hashtags about the match and mismatch content in each category
on Instagram.

Another analysis that can be pointed out about hashtags is the number of hashtags and
the order of their placement in a single caption. As illustrated in Figure 8a, we discovered
a significant difference between the number of hashtags in a single post. Users sharing
incongruent content tend to use more hashtags in their posts to be seen by more visitors.
Furthermore, considering the hashtags of a post as a sequence of tags, we obtained the
index of the target hashtag in the sequence in each sample datum. As shown in Figure 8b,
the target hashtag usually appears in the congruent information at the beginning of this
sequence. In comparison, the hashtag in incongruent information may occur at the end of
the sequence.
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(a) (b)

Figure 8. The comparison of hashtags in matched and mismatched content (the outliers are ignored),
(a) the number of hashtags, (b) the Hashtag sequence index.

4.1.3. User Analysis

Other than content analysis, we examine the characteristics of users who are responsi-
ble for creating mismatched information by using irrelevant hashtags. As mentioned in
the data collection discussion, the data were collected at least a month after their being
published on Instagram. So, enough feedback and reactions had been received from others.
As shown in Figure 9, based on the user engagement information obtained by measuring
the audience’s interaction in the sample posts, users who shared incongruent information
followed more users and were followed less by others. Moreover, the number of posts
of these users is less than users who create congruent information. In addition, although
congruent posts received more likes, there was no significant difference in the number of
comments.

(a) (b)

(c) (d)

Figure 9. User engagements in the match and mismatch content (the outliers are ignored), (a) Follower
count, (b) Following count, (c) Post count, and (d) Like count.

Moreover, Instagram enables users to create business accounts that provide additional
features that help them to expand their business and improve their strategies, such as
the ability to run advertising, access to insights to analyze their profile, posts and more.
Moreover, as part of the accounts set up for business, Instagram allows users to select a
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business category from hundreds of categories, letting visitors understand their type of
business better. In our dataset, business accounts comprise 34.92% of the total data in
20 categories. Among these categories, “Personal Goods & General Merchandise Stores”
is the most common category, followed by “Creators & Celebrities” and “ Publishers”.
According to Figure 10, each category has more congruent information, which shows that
users who do not have business accounts are more involved in generating incongruent
information.

Figure 10. The comparison of business accounts in the dataset.

Finally, we investigated gender to fulfil our analysis of users. Since such information
cannot be obtained from Instagram APIs, we carried out another empirical study to examine
users’ gender. At the time of the data collection process, we stored the profile image of
each user along with other features. In this study, we divided the users into four groups
based on their profile pictures: business, male, female and unknown. The unknown group
includes profile pictures concerning which the gender cannot be determined due to not
setting a profile picture or using fake pictures. Moreover, due to the limitation under the
API, we could not extract some profile URLs in JSON files. From Figure 11, we discover that
the most frequent group belongs to businesses and males share a slightly higher percentage
of mismatched content than females.

Figure 11. Comparison of the gender of users.

4.2. Experimental Results

In this section, we discuss the experimental setup and the performance evaluation of
the classification and object detection models.
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4.2.1. Feature Selection

In Section 3.4.1, we extracted features from the collected dataset. To discover those
features that contribute most to differentiating incongruent information from congruent
information and exclude redundant and irrelevant variables from the model training,
we performed Recursive Feature Elimination (RFE). RFE is a recursive feature selection
algorithm that identifies the important features based on an estimator’s accuracy. In
this experiment, we used RF as the estimator of RFE. Moreover, we performed feature
importance via RF to better demonstrate the impact of the extracted features and their
discriminative power. As shown in Figure 12, the number of hashtags that were also
analyzed in Section 4.1.2 has the most impact on classification. In the following, user
engagement features are in the next ranks. In contrast, due to the limited number of
samples with corresponding characteristics, most features were extracted from the captions
and other features (e.g., user_is_verified) have less contribution.

Figure 12. The feature importance of the collected features using Random Forest.

4.2.2. Classification Results

In the classification module, the collected dataset was initially divided into training,
test and validation sets with an 80:10:10 ratio. We tested different architectures and tuned
the hyperparameters to find the optimal models. All hyperparameters used for each
method are enumerated in Appendix A. Then, the models were built using the collected
dataset, as described in Section 3. In metadata classification, after performing feature
selection, we used ML algorithms, including SVM [98], Stacking Ensemble ML [99], RF [100],
XGBoost [101] and Deep Dense layers to train classification models. In addition to the
pre-trained models described in Section 3, we also used these ML models for text and image
classification to provide a comprehensive experiment. In the text and image classification
tasks using these algorithms, the encoded data are obtained from the pre-trained models
and used as the inputs of the ML models. The learning process was conducted using
scikit-learn and TensorFlow to build the BERT, Resnet50 and VGG19 models and other ML
models. The pre-trained models were fine-tuned on the collected dataset. Then, the Adam
optimizer was used during the model training with a learning rate of 0.001 and a batch
size of 32 for 100 epochs. The model with the best validation performance was used for
evaluation. To evaluate the performance of the models in the classification module, we
used accuracy and F-score, which are shown in Tables 4 and 5, respectively.
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F-score =
2 × Precision × Recall

Precision + Recall
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Based on the results obtained from the models, the image–text multimodal architecture,
as expected, obtained relatively more satisfactory results than text and image classification
separately. Moreover, the results indicate that integrating caption with OCR texts yields
better results than classification without OCR in most cases. In addition, we observe a
slight difference between the performance of the two types of hashtags in some classifiers.
These models cannot classify data in brand-related hashtags as much as in celebrity-
related hashtags. Our empirical study on the type of mismatched content can justify these
differences. As shown in Figure 6, there was a large volume of incongruent information
about brand-related products from other brands, which makes it difficult for our models to
discriminate between them. Therefore, the object detection model can help in this case due
to its ability to detect logos, among other related product images. Moreover, as stated in
Section 3, it has been shown that the Resnet50 model outperforms other pre-trained models,
such as VGG19. However, we again tested VGG19 for the image classification task and
compared it with Resnet50. As a result, Resnet50 is employed in the multimodal model.

Table 4. The accuracy of the models on the test set. The best-performed model shows in bold.

Type Models #Nike #Gucci #CristianoRonaldo #EdSheeran All Hashtags

Metadata Classification

SVM 0.6518 0.6956 0.7106 0.7558 0.7112
Stacking Ensemble 0.6518 0.6895 0.7220 0.7883 0.7194

RF 0.6993 0.7492 0.7841 0.7868 0.7568
XGBoost 0.7267 0.7522 0.7965 0.7930 0.7582

Deep Dense layers 0.6990 0.7019 0.7177 0.7341 0.7417

Text Classification (Without OCR)

SVM 0.6307 0.6542 0.6760 0.6832 -
Stacking Ensemble 0.6174 0.6412 0.6497 0.7037 -

RF 0.6234 0.6955 0.6607 0.7204 -
XGBoost 0.6429 0.7004 0.6946 0.6981 -

Fine-tuned BERT 0.7358 0.7448 0.8142 0.8096 -

Text Classification (With OCR)

SVM 0.6317 0.6483 0.6814 0.6722 -
Stacking Ensemble 0.6192 0.6559 0.6507 0.7305 -

RF 0.6344 0.6784 0.6637 0.7253 -
XGBoost 0.6830 0.7067 0.6911 0.7629 -

Fine-tuned BERT 0.7509 0.7640 0.8172 0.8342 -

Image Classification

SVM 0.5889 0.5972 0.6175 0.6487 -
Stacking Ensemble 0.6137 0.6214 0.6432 0.6663 -

RF 0.6964 0.6811 0.7139 0.7100 -
XGBoost 0.7320 0.7274 0.7548 0.7413 -

Fine-tuned VGG19 0.7632 0.7119 0.8295 0.8444 -
Fine-tuned Resnet50 0.7849 0.7988 0.8412 0.8785 -

Image–Text Multimodal Model BERT + Resnet50 0.8363 0.8536 0.8762 0.9218 -
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Table 5. The F-Score of the models on the test set. The best-performed model shows in bold.

Type Models #Nike #Gucci #CristianoRonaldo #EdSheeran All Hashtags

Metadata Classification

SVM 0.6867 0.7104 0.7191 0.7532 0.6864
Stacking Ensemble 0.6550 0.7045 0.7265 0.7569 0.7208

RF 0.7079 0.7103 0.7528 0.7697 0.7528
XGBoost 0.7282 0.7564 0.7779 0.7638 0.7408

Deep Dense layers 0.6987 0.6827 0.7211 0.7258 0.7169

Text Classification (Without OCR)

SVM 0.6395 0.6499 0.6993 0.6798 -
Stacking Ensemble 0.6313 0.6238 0.6807 0.6968 -

RF 0.5986 0.6704 0.6914 0.6835 -
XGBoost 0.6250 0.6858 0.6851 0.7058 -

Fine-tuned BERT 0.7460 0.7410 0.8155 0.8372 -

Text Classification (With OCR)

SVM 0.6493 0.6746 0.6858 0.6930 -
Stacking Ensemble 0.6234 0.6432 0.6776 0.6625 -

RF 0.6059 0.6807 0.6411 0.7167 -
XGBoost 0.6955 0.6873 0.6798 0.7024 -

Fine-tuned BERT 0.7547 0.7639 0.8317 0.8558 -

Image Classification

SVM 0.5275 0.5664 0.5721 0.5917 -
Stacking Ensemble 0.5985 0.6067 0.6779 0.6776 -

RF 0.6552 0.6775 0.7075 0.6922 -
XGBoost 0.7082 0.7295 0.7633 0.7096 -

Fine-tuned VGG19 0.7249 0.7198 0.8458 0.8513 -
Fine-tuned Resnet50 0.7592 0.7743 0.8507 0.8627 -

Image–Text Multimodal Model BERT + Resnet50 0.8104 0.8359 0.8860 0.9106 -

4.2.3. Object Detection Results

Additional experiments were performed by focusing on the object detection module.
In the second module, we used additional images and fed them into YOLO to detect faces
and logos from images in the collected dataset. First, to recognize faces from posts in
celebrity-related hashtags (#CristianoRonaldo and #EdSheeran), we downloaded all images
from their account (@cristiano and @teddysphotos) and performed the procedure which
contains face detection, finding the optimal number of clusters using the Elbow method,
clustering the faces with K-means and filtering out clusters with low-quality of faces and
clusters with faces belonging to different people (unknown). The statistics of face clustering
are shown in Table 6. Afterwards, the related faces with their cluster label were fed as
the input to the model. Second, to detect brands’ logos, we downloaded 1000 images of
each logo, including logos overlayed on products and their icons from the corresponding
Instagram accounts and Google Images. Ultimately, the images and their labelled logo
bounding boxes pass through to the object detection model.

Table 6. Statistics of face clustering.

Hashtag @CristianoRonaldo @EdSheeran

Number of account images 2271 3095
Number of faces 8481 11,353

Number of clusters 65 24
Clusters with the highest number of members 1742 (20.54%) 1213 (12.30%)

Number of poor-quality faces 2778 (32.75%) 4206 (42.66%)
Number of faces in unknown clusters 1375 (16.21%) 5652 (57.33%)

In the learning process, we split the additional visual data into training and test sets
with an 80:20 ratio and ran the YOLO model with a batch size of 64 over 1000 epochs.
To measure the performance of the YOLO models, which make predictions in terms of
bounding boxes and labels, we used Mean Average Precision (mAP). the mAP is obtained
from the average of AP, which is calculated by averaging the precision of recall values for
each class.
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mAP =
1
n

k=n

∑
k=1

APk = 1, APk = The AP of class k, n = the number of classes (5)

Based on our experiments, for models trained on brand-related images, the mAP
values are 0.84 and 0.81 for images pertinent to Nike and Gucci, respectively. For celebrity-
related images and recognizing their faces, since each face is extracted from images and
the bounding box is set to the size of the image, the mAP is not a good metric to evaluate
the model. We used the accuracy to measure what percentage of faces could be detected
by their correct cluster labels. The result obtained by performing the model on the test
datum is 87.43% for CristianoRonaldo and 72.61% for EdSheeran. Finally, to demonstrate
the ability of object detection models, we perform the models on the visual data in the
collected dataset. In light of the results, Figure 13 illustrates the logos and faces detected by
the object detection model on the match and mismatch data in each hashtag. Based on the
result obtained from running the trained models on the images of hashtags, we noticed that
models were able to recognize faces and logos in many matched images. Nonetheless, it is
expected that a better result will be obtained by using more data in the training process.

(a) (b)

(c) (d)

Figure 13. Cont.
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(e) (f)

Figure 13. The result of YOLO on the dataset. (a) Logo detection on the #Nike hashtag. (b) Logo
detection on the #Gucci hashtag. (c) Face recognition on the #CristianoRonaldo hashtag with a
Match label. (d) Face recognition on the #CristianoRonaldo hashtag with a Mismatch label. (e) Face
recognition on the #EdSheeran hashtag with Match label. (f) Face recognition on the #EdSheeran
hashtag with Mismatch label.

5. Limitations and Future Works

This research explored hashtags pertinent to brands and celebrities to identify and filter
out incongruent information. Hashtags also play an essential role among people during
critical situations; for example, #COVID-19, is used worldwide for notifying people about
the pandemic and other hashtags have helped people to be informed about occurrences
and events by using them frequently and becoming a trend. Therefore, future work can
concentrate on these topics as a source of information, which contain a high amount of
unwanted information. This study also has several limitations that need to be explored
in future research. First, we have explored incongruent information regardless of videos.
Future work can investigate videos by developing methods that can be applied to audio
and video. Second, we extracted several features to analyze and classify data based on
content and user characteristics. Nonetheless, more features can still be extracted from text
and images in the future. Third, we employed grid search to optimize the hyperparameters
in the models. In addition to grid search techniques, many methods could be addressed.
Future works could address the application of optimization methods to adjust the hyper-
parameters and develop faster and more effective auto-tuners, such as methods used
in [102,103]. Fourth, as mentioned in Section 4, our classification models depend on the
dataset, which brings some limitations. Other than object detection models used in this
paper, future studies can focus on real-time methods to overcome these limitations. Finally,
although some papers have conducted experiments to investigate the performance of object
detection models in terms of speed and consistency, the same as [34], some experiments
could still be conducted by applying different object detection models to detect related
objects in this task.

6. Conclusions

In this research, we presented work on post-hashtag incongruent information and
discussed their prevalence in hashtags searches of brands and celebrities. We initially
collected a dataset consisting of Instagram posts and annotated it into match and mismatch
labels. Then, we conducted our research in two modules: classification and object detection.
In the classification module, we proposed methods that adopt DL, NLP and Computer
Vision to detect incongruent contents from different aspects, including metadata, text and
image. We also proposed a hybrid multimodal DL model based on transfer learning to learn
simultaneously from visual and textual information. In the second module, to illustrate
the ability of object detection models to discriminate between matched and mismatched
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information, we performed YOLO on the images in the dataset to recognize faces and logos
related to the hashtag. For face recognition, we trained the model using faces extracted
from Instagram using a novel pipeline that ranks the faces based on the number of their
appearances on an Instagram account. We also trained the logo detection model using
images of logos collected from the brands’ Instagram accounts and Google Images. To
demonstrate the potential of our approaches in the two modules and analyze the data, we
conducted experiments on the dataset. In particular, the results indicate that leveraging
from both image and text simultaneously improves the results compared to other models.
Furthermore, the results suggest that detecting related objects, which are the identities
that link the posts to the hashtag, particularly helps to differentiate between matched and
mismatched information. Finally, we conducted an explorative analysis and empirical study
on our dataset. In the data analysis, we investigated characteristics of incongruent content
and discussed the differences between topics, hashtags, engagements and user accounts.
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mAP Mean Average Precision

Appendix A

While conducting the aforementioned experiment using scikit-learn and TensorFlow,
there were various hyperparameters that needed to be optimized before starting the training
process. Hence, We tuned hyperparameters to find a set of optimal values that can maximize
the performance of the models. As a tuning technique, we performed Grid Search on ML
and DL models used in the classification module. Table A1 shows all hyperparameters
and their optimal values used for building classifiers. In this table, the text classification
models with and without are built with the same hyperparameters for better comparison.
Moreover, we developed the multimodal model by fusing text and image classifiers with
tuned hyperparameters. So we did not perform hyperparameter tuning for the image–text
multimodal model. Moreover, the number of neurons and activation functions used for
developing DL models is shown for each layer, respectively, in the optimal values. We also
trained the stacking ensemble model with different ML algorithms for estimators and the
final estimator and we selected the best combination.

Number of Filters = (Number of classes + 5)× 3 (A1)

Moreover, configuring the YOLO to train the custom object is required. Thus, we set
the various hyperparameters, including the number of classes (i.e., number of clusters in
celebrities, one class to detect brands’ logo), number of filters to detect three boxes per
grid cell that have five variables consisting of classes, width, height, x, y, confidence rate
(Formula (A1)).

Table A1. The hyperparameters used in the ML and DL models in the classification module and their
optimal value obtained from the grid search technique.

Type Models Hyperparameters Optimal Values

Metadata Classification

SVM kernel = [linear, poly, rbf, sigmoid],
C = [1, 10, 100, 1000] kernel = rbf, C = 1

Stacking Ensemble estimators = [SVM, DT, XGBoost, NB,
LR] estimators = [SVM, DT, NB], final_estimator = LR

RF

n_estimators = [10, 20, 50, 100, 200,
500], criterion = [gini, entropy,

log_loss], max_depth = [None, 2, 5,
10], max_features = [sqrt, log2, None]

n_estimators = 10, criterion = gini,
max_depth = None, max_features = sqrt

XGBoost

loss = [log_loss, deviance,
exponential], learning_rate = [0.01,

0.025, 0.05, 0.075, 0.1, 0.15, 0.2],
max_depth = [3, 5, 8]

loss = log_loss, learning_rate = 0.15, max_depth = 3

Deep Dense layers

Optimizer = [SGD, RMSprop,
Adagrad, Adadelta, Adam, Adamax,

Nadam], Learning rate = [0.0001,
0.001, 0.01, 0.1], Dropout = [0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], Number
of neurons (hidden layers) = [16, 32,
64, 128, 256], Activation functions =

[softmax, softplus, softsign, relu, tanh,
sigmoid, hard_sigmoid, linear]

optimizer = Adamax, learning_rate = 0.1, Dropout
= 0, number of neurons (hidden layers) = [32, 32,

32], Activation functions = [linear, relu, relu]
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Table A1. Cont.

Type Models Hyperparameters Optimal Values

Text Classification

SVM kernel = [linear, poly, rbf, sigmoid]
C = [1, 10, 100, 1000] kernel = rbf, C = 100

Stacking Ensemble estimators = [SVM, DT, XGBoost, NB,
LR]

estimators = [SVM, XGBoost, NB], final_estimator
= LR

RF

n_estimators = [10, 20, 50, 100, 200,
500], criterion = [gini, entropy,

log_loss], max_depth = [None, 2, 5,
10], max_features = [sqrt, log2, None]

n_estimators = 100, criterion = gini,
max_depth = None, max_features = sqrt

XGBoost

loss = [log_loss, deviance,
exponential], learning_rate = [0.01,

0.025, 0.05, 0.075, 0.1, 0.15, 0.2],
max_depth = [3, 5, 8]

loss = log_loss, learning_rate = 0.1, max_depth = 3

Fine-tuned BERT

Optimizer = [SGD, RMSprop,
Adagrad, Adadelta, Adam, Adamax,

Nadam], Learning rate = [0.0001,
0.001, 0.01, 0.1], Dropout = [0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], number
of neurons (hidden layers) = [16, 32,
64, 128, 256], Activation functions =

[softmax, softplus, softsign, relu, tanh,
sigmoid, hard_sigmoid, linear]

Optimizer = Adam, Learning rate = 0.001, Dropout
= 0.1, number of neurons (hidden layers) = [256,

32], Activation functions = [relu, relu]

Image Classification

SVM kernel = [linear, poly, rbf, sigmoid] C
= [1, 10, 100, 1000] kernel = rbf, C = 100

Stacking Ensemble estimators = [SVM, DT, XGBoost, NB,
LR] estimators = [SVM, XGBoost], final_estimator = LR

RF

n_estimators = [10, 20, 50, 100, 200,
500], criterion = [gini, entropy,

log_loss], max_depth = [None, 2, 5,
10], max_features = [sqrt, log2, None]

n_estimators = 100, criterion = gini, max_depth =
None, max_features = sqrt

XGBoost

loss = [log_loss, deviance,
exponential], learning_rate = [0.01,

0.025, 0.05, 0.075, 0.1, 0.15, 0.2],
max_depth = [3, 5, 8]

loss = deviance, learning_rate = 0.1, max_depth = 3

Fine-tuned VGG19 and
Resnet50

Optimizer = [SGD, RMSprop,
Adagrad, Adadelta, Adam, Adamax,

Nadam], Learning rate = [0.0001,
0.001, 0.01, 0.1], Dropout = [0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], number
of neurons (hidden layers) = [16, 32,
64, 128, 256], Activation functions =

[softmax, softplus, softsign, relu, tanh,
sigmoid, hard_sigmoid, linear]

Optimizer = Adam, Learning rate = 0.001, Dropout
= 0.2, number of neurons (hidden layers) = [256,
256, 16], Activation functions = [relu, relu, relu]
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A B S T R A C T   

Fake news is a real problem; unfortunately, it seems to worsen. Even though some false news 
detection methods have made significant progress, current multimodal approaches integrate 
cross-modal features directly without considering uncorrelated semantic representations may 
introduce noise into the multimodal features. This phenomenon reduces model accuracy by 
obscuring subtle differences between text and images crucial for identifying fake news. Uncor
related semantics also reduce the detection accuracy since the identification often relies on these 
subtle differences. To address these challenges, we propose a unified Complementary Attention 
Fusion with an Optimized Deep Neural Network (CAF-ODNN) that captures subtle cross-modal 
relationships for multimodal fake news detection. CAF introduces image captioning to repre
sent images semantically, allowing bidirectional complementary attention between modalities 
based on a scaled dot product to learn fine-grained correlations. A dedicated alignment and 
normalization component is incorporated to calibrate fused representations based on channel 
statistics, ensuring the semantics are preserved across modalities during the interaction, thus 
improving upon the simple concatenation used in existing fusion approaches. To improve feature 
extraction, an Optimized Deep Neural Network (ODNN) is implemented that exploits composi
tional learning. ODNN is designed with three fully connected layers to learn higher-level repre
sentations from CAF-fused features. Model parameters are then systematically tuned beyond 
standard random search techniques to identify configurations, maximizing feature quality and 
detection accuracy. Our proposed method outperforms comparable approaches on standard 
metrics on four real-world datasets, highlighting the importance of complementary attention 
fusion with optimization in identifying fake news.   

1. Introduction 

Social media has transformed online communication and interactions, making it easier for individuals to establish relationships and 
connect online. However, these platforms have also become hubs for fake news and misinformation dissemination (Olan et al., 2022). 
Since they are user-centric, they rarely focus on the accuracy or reliability of the news they share. As a result, sensational or 
controversial content, spreads far and wide as people share it with their networks. A misleading claim, for instance, that chloroquine 
could cure COVID-19 led many people to consume chloroquine phosphate, trusting it would safeguard them from the deadly virus. 
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Unfortunately, this incident resulted in deaths and hospitalizations.1 Misinformation akin to these preys on people’s trust in biased 
information, achieving the manipulator’s goals. Recent years have seen an increase in fake news, making it more critical than ever to 
distinguish between true and false information. Thus, there has been an exponential rise of third-party fact-checking services and 
content moderation to correct fabricated news and prevent the dissemination of misleading and inaccurate information (Kryściński 
et al., 2020), (Giachanou et al., 2022), (Bagade et al., 2020), (Paschalides et al., 2021), (Munyole et al., 2023), (Li et al., 2022) and 
(Sengupta et al., 2021). However, despite the progress, it is evident that significant amount of effort is still required to ensure social 
media remains a safe and reliable source of information and a platform for building relationships and fostering social interactions by 
effectively preventing misinformation proliferation. 

A multimodal fake news detection system analyzes multiple modalities, such as text, images, and videos, to determine whether a 
piece of content is fake or real. The approach considers that multiple modalities provide deeper understanding of fake news, thus 
helping to resolve complexities related to misinformation. A key aspect of existing multimodal false news detection algorithms is the 
direct integration (concatenation) of multimodal representations to enhance performance. Based on this perspective, Singhal et al. 
(2019) proposed SpotFake model for detecting fake news by leveraging textual and visual information. SpotFake utilized BERT for 
textual embeddings and VGG19 for images to learn contextual information based on the input data. A universal multimodal framework 
was also developed by Wang et al. (2018) based on time-sensitive events that learned temporal dynamics and related relationships. In a 
follow-up study, the authors employed a simulated learning via meta-learning to combine a small number of data instances (Wang 
et al., 2021). Khattar et al. (2019) proposed a bimodal variational autoencoder (MVAE) that incorporated information from text and 
image to detect fake news. MVAE learned a shared representation of the input data, which improved classification performance by 
capturing complementary information in different modalities. Methods based on attention (Sachan et al., 2021) employ cross-modal 
attention techniques to detect false information online by recognizing interdependencies and relationships between textual and visual 
elements. However, these approaches result in sub-optimal performance since they fail to capture all relevant information. The above 
methods have proven effective, but a simple combination of image and text features may not always provide reliable information in 
every instance. In addition, the veracity of news is not determined by the correlation between the image and text alone since little 
semantic similarity between the text and image features can result in a noisy representation. The fact that fake news disguises itself as 
real using subtle differences in the text and image makes detection via direct fusion difficult. The methods that exploit attention, on the 
other hand, are sensitive to input noise, including variations and perturbations. Even minor disturbances in the input can potentially 
influence the attention weights and ultimately impact the fusion process. 

The concatenation approach utilized by numerous multimodal fake news detection methods may not adequately represent the 
distinctions between low-level visual features extracted from the image and the high-level semantic concepts conveyed by the text. 
This phenomenon happens because the approach combines the feature vectors from the image and text modalities into a single vector 
for classification. However, this method fail to capture the subtle and complex relationships (Yu et al., 2022) between the modalities 
and introduces noise since it treats them as independent sources of information. As shown in Fig 1(a) and (b), there are subtle dif
ferences between the post and the generated image caption. In Fig 1(a), the news post states that “Biden signs into law Democrats’ 
wide-ranging climate change, health care and tax bill,” however, the accompanying image shows the photo of the former president, Barack 
Obama probably signing a landmark health care bill in 2010, different on what the post expresses. On a closer look at the image, Biden 
can be seen. In the second example, Fig 1(b), the post purports that “A brave driver tows a wheeler during hurricane Katrina” while the 
image generated caption shows that “A truck and a wheeler parked in a parking lot next to a body of water”. In the first example, Fig 1(a), 
the post of the text and image captions shows subtle inconsistent and do not match the context, which could be a sign of fake news. In 
this case, detecting fake news may require careful analysis of the text and the image. In Fig 1(b), while the post indicates that the 
wheeler is being towed, it is not shown in the picture. Thus, the text and the image caption reveal some subtle inconsistencies. We can 
infer discrepancies between the generated image caption and the actual content of the image, such as the absence of key individuals or 
objects mentioned may influence effective multimodal fake news detection. 

As social media remains a popular medium for online users to share their views and thoughts, images often accompany text sur
rounding them. Image captions, thus, can be a helpful feature in fake news detection. Image captioning enables the representation of an 
image in textual form (Wu & Mebane, 2022) and may generate valuable context and information for understanding and decoding the 
image. In this study, we refer to image captions as the textual descriptions of the image content, and we utilize them as a substitute 
rather than a supplement to enhance the interaction between the modalities. This approach is particularly relevant in fake news 
detection, where images may be unrelated to the textual information or manipulated to support false claims. Generating and analyzing 
the image captions can help identify patterns of misinformation and disinformation characterizing fake news. Furthermore, although 
images themselves do not directly authenticate news content, they define significant issues in people’s daily lives that can stimulate 
conversations because they simulate human image interpretation (Al-Malla et al., 2022). The advancement of visual technology has 
facilitated augmentation of images with text, enabling models to extract semantic relationships between images and text, thus 
enhancing multimodal analysis and understanding. 

This paper addresses the above challenges by proposing a unified Complementary Attention Fusion with an Optimized Deep Neural 
Network (CAF-ODNN) for multimodal fake news detection. First, CAF employs image captioning to represent images semantically, 
allowing bidirectional complementary attention between modalities based on a scaled dot product to learn fine-grained correlations. 
Then, a dedicated alignment and normalization component is incorporated to calibrate fused representations based on channel 

1 https://www.nbcnews.com/health/health-news/man-dies-after-ingesting-chloroquine-attempt-prevent-coronavirus-n1167166 
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statistics, ensuring the semantics are preserved across modalities during the interaction, thus improving upon the simple concatenation 
and averaging used in existing fusion approaches. To improve end-to-end feature extraction, an Optimized Deep Neural Network 
(ODNN) that exploits compositional learning is implemented. ODNN is designed with three fully connected layers to learn higher-level 
representations from CAF-fused features. Model parameters are then systematically tuned beyond standard random search techniques 
to identify configurations, maximizing feature quality and detection accuracy. 

The main contributions of this paper are:  

- We propose a novel unified Complementary Attention Fusion (CAF) for multimodal fake news detection that captures subtle cross- 
modal relationships. CAF introduces image captioning to represent images semantically, allowing bidirectional complementary 
attention between modalities based on a scaled dot product to learn fine-grained correlations. A dedicated alignment and 
normalization component is incorporated to calibrate fused representations based on channel statistics, ensuring the semantics are 
preserved across modalities during the interaction, thus improving upon the simple concatenation used in existing fusion 
approaches. 

- We propose an Optimized Deep Neural Network (ODNN) for end-to-end refined feature extraction. The ODNN exploits compo
sitional learning designed with three fully connected layers to learn higher-level representations from CAF-fused features. Model 
parameters are then systematically tuned beyond standard random search techniques to identify configurations, maximizing 
feature quality and detection accuracy.  

- We evaluate the proposed approach for accuracy, recall, F1 score, and precision on four benchmark datasets to validate the 
detection efficiency. 

2. Related work 

2.1. Fake news detection using single modality 

A single-modality approach to fake news detection relies on information from a single source to identify and capture rich latent 
features. For example, methods that use texts extract semantic or statistical features from news articles to detect fake news. From this 
viewpoint, Ma et al. (2018) proposed a recursive neural network to identify fake news on X (formely Twitter) platform. Based on the 
hierarchical nature of tweets, the authors considered hidden signals within their structure. On the other hand, Mohtarami et al. (2018) 
introduced a memory network to determine the authenticity of claims. The method combined the strengths of recurrent and con
volutional networks to capture temporal and local dependencies in the input data. The model also included a novel similarity and 
filtering component that minimized irrelevant information in related claims, resulting in improved performance of the memory 
network. Yu et al. (2017) proposed a supervised learning model incorporating a convolutional neural network (CNN) to extract and 
classify features from news articles. In addition to the text, it has also been demonstrated that images can be used as a single modality 
feature to identify fake information (Choras et al., 2018; Cao et al., 2020). Visual methods rely on the assumption that visual cues and 
patterns offer valuable insights into the information veracity. For example, Qi et al. (2019) introduced a model incorporating pix
el–level and frequency-level features to identify fake news. With the complementary information provided by these features, the model 

Fig. 1. (a) and (b): Fake news relies on subtle differences between the text and image. Harvesting such information can contribute to effective 
multimodal detection and help eliminate noise in multimodal fusion. 
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gained understanding of the visual content, strengthening the model’s ability to detect fake news. Steinebach et al. (2019) presented a 
novel technique that involved extracting image features and employing an indexing technique to compare and verify image 
authenticity using a mesh verifier. While these methods prove effective, they primarily focus on event-level detection that relies on 
event flags. Event flags involve monitoring the spread of fake news over time; hence, they are resource-intensive and time-consuming, 
limiting scalability and practicality. The model, may also lack a comprehensive understanding of fake news since it focuses on a 
specific modality. 

Several temporal and network dynamic-based models have also been used to distinguish between fake and credible news. Temporal 
models (Li et al., 2022; Gong et al., 2023; Li et al., 2023; Alharbi et al., 2023) considers the sequence of events and interactions within a 
network to gain a deeper understanding and determine how news articles or social media posts propagate and evolve. This phe
nomenon helps the models identify characteristics distinctive to fake news dissemination. For instance, Li et al. (2023) reconstructed a 
network based on the infection potential energy and incorporated a source location method that considers rumor propagation cen
trality and diffusion tendency. On the other hand, Zhang et al. (2022) proposed a heuristic algorithm to enhance the influence of a 
dynamic GCN (Graph Convolutional Network) network by introducing a leader-fake labeling mechanism. Based on the network to
pology, the algorithm incorporated adaptive layers to obtain representations of the network nodes and selected seed nodes for training 
the model. Even though the above methods demonstrate the importance of incorporating network context and relationships between 
nodes for more effective fake news detection, they may suffer from limited generalizability to different datasets and contexts. Addi
tionally, some of these approaches are computationally expensive and fail to incorporate multimodal information in their detection 
tasks, limiting their effectiveness in capturing complex relationships between different modalities. 

2.2. Multimodal fake news detection 

2.2.1. Detection based on multimodal features 
Early multimodal approaches to fake news recognition combined different multimodal features to enhance detection accuracy. 

These methods were primarily based on the complementary nature of media, such as text, images, and metadata to capture more 
comprehensive and robust features (Wang et al., 2018; Singhal et al., 2019; Khattar et al., 2019; Armin et al., 2021). Wang et al. 
(2018), for example, proposed an EANN model that combined text-CNN and VGG-19 to improve the correlation between modalities. 
Khattar et al. (2019) introduced variational encoders to learn probabilistic latent variables and enhance the correlation between 
different modalities. These approaches effectively demonstrate the benefits of integrating multiple modalities for fake news detection. 
Besides, Jin et al. (2017) developed a multimodal deep-learning model that combined text, image, and social properties using a 
combined CNN and RNN networks. The multimodal features extracted were then fused via a multimodal fusion layer to produce a 
combined representation. This approach, however, did not incorporate the similarity features of images or social engagement into 
analysis. More recently, Armin et al. (2021) designed a multimodal framework incorporating diverse information with different levels 
of abstraction. In addition to textual and visual content, the model exploited user comments and metadata. Then, fusing the modalities 
in phases was adopted to preserve the modality’s intrinsic structure. These studies demonstrates that combining different modalities 
improves detection accuracy. However, simply fusing image and text features may not provide reliable information in all instances 
because text and image are not often correlated. 

2.2.2. Detection based on multimodal consistency 
The practice of including unrelated images with textual posts has gained prominence in the creation of multimodal fake news. 

Hence, in recent years, researchers have sought to identify the level of multimodal consistency between text and visual components in 
a post (Zhang et al., 2023) (Xiong et al., 2023) (Meel & Vishwakarma, 2021) (Wu et al., 2023) to mitigate the impact of such deceptive 
content. A SAFE model was proposed by Zhou et al. (2020) that considered similarity measurement when evaluating the consistency of 
multimodal information. On the other hand, Xue et al. (2021) presented Multimodal Consistency Neural Network (MCNN) that in
tegrated a similarity measurement technique to assess the correlation between text and images. Separate networks were used to extract 
features from the textual and visual modalities and then mapped into a shared feature space through weight sharing. An essential 
feature of this model was the incorporation of a similarity measurement module that calculated the cosine similarity between the 
textual and visual features. While these methods have demonstrated success in multimodal fake news detection, they may encounter 
challenges in capturing intricate relationships between different modalities or handling missing modalities. They are also susceptible 
to noise. For instance, if inconsistencies arise in the predictions made by various modalities due to noise or errors in feature extraction, 
the model’s performance is adversely affected. 

2.3. Multimodal fusion 

Majority of feature fusion algorithms are based on concatenation (Singhal et al., 2019) (Ma et al., 2019), in which features from the 
textual and visual modes are combined into a single vector and classified using a neural network or a support vector machine. 
However, this approach has limitations in capturing the complex relationships between the textual and visual modalities since it treats 
text and visuals as separate sources of information. For example, Nguyen et al. (2019) concatenated document features derived from 
Word2vec, user events, TF-IDF, and node2vec and fed them into fake news detection algorithm. However, the fusion technique applied 
did not consider feature interaction. Shu et al. (2019) and Zhang et al. (2019) improved the fusion technique by exploiting the 
attention mechanism. This technique enabled the model to focus on the interaction of posts and comments, user profiles, and be
haviors. However, the method relied primarily on the collaboration of partial and local features rather than global ones. 
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Fig. 2. The proposed CAF-ODNN framework. The Image translator engine comprises a ViT encoder that extracts images as a sequence of patches and a GPT-2 decoder that generates quality image 
captions. The image captions and the posts are then embedded using a text encoder and passed to the Similarity Evaluator to measure feature similarity. The Complementary Attention Fusion (CAF) 
applies bidirectional attention to learn fine-grained correlations between the image captions and the text. The fused features are passed to the alignment module for calibration. ODNN improves feature 
extraction by learning higher-level representations from CAF-fused features and maximizes feature quality and detection accuracy. 
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There has been a growing interest in deep learning methods that employ different modules to capture multimodal features (Zhou 
et al., 2020; Song et al., 2021; Kumari & Ekbal, 2021; Xue et al., 2021; Ni et al. 2022). These methods also utilize various fusion 
approaches to combine multimodal features for evaluation. For example, Zhou et al. (2020) presented a multimodal learning 
framework to enhance the correlation between text and visual features. The approach entailed extracting features from textual and 
visual, and integrating them through a fusion layer incorporating a loss function based on the semantic distance between the two. Song 
et al. (2021) improved the correlation between multimodal features using a Cross-Attention and Recurrent Multimodal Network 
(CARMN). The model utilized a fusion layer and cross-attention mechanisms to capture the correlation between the textual and visual 
characteristics. However, the technique failed to account for fine-grained relationships between individual features within each 
modality. Kumari and Ekbal (2021) leveraged the Attention-based Multimodal Fusion model with Bayesian optimization (AMFB) to 
maximize the correlation between heterogeneous features in multimodal learning context. An essential characteristics of the model 
was the assignment mechanism that rationed optimal properties to each modality. For example, the Bayesian optimized each feature 
based on the correlation with the other modalities. Xue et al. (2021) proposed a framework for multiple modes that considered the 
consistency of multimodal information and generated general characteristics of social media posts. Though the model was effective, it 
required feature optimization at the fusion level to standardize different multimodal information. Ni et al. (2022) introduced a 
collaborative learning approach that combined a relationship representation graph with a two-level attention mechanism. The model 
facilitated interactions among nodes in a mutual representation network. However, it did not explicitly highlight the heterogeneity of 
features. 

Even though the above methods improve cross-modal correlation, they still have some limitations. The concatenation of features 
results in a shallow network since the approach fails to choose meaningful features and also introduces noise in the detection algo
rithm. In addition, employing diverse modules to capture and fuse multimodal elements make the model sensitive to noise in feature 
extraction, inhibiting the model to capture fine-grained relationships between individual features within each modality. This limi
tation can result in the model overlooking subtle characteristics that could contribute valuable information for fake news detection. In 
this work, we introduce image captioning to represent images semantically, allowing bidirectional complementary attention between 
modalities to learn fine-grained correlations. A dedicated alignment and normalization component is employed to calibrate fused 
representations based on channel statistics. This strategy ensures the semantics are preserved across modalities during the interaction, 
improving simple concatenation used in existing fusion approaches. We improve feature extraction by using an optimized deep neural 
network that exploits compositional learning. The model is designed with three fully connected layers to learn higher-level repre
sentations from CAF-fused features. Model parameters are then systematically tuned beyond standard random search techniques to 
identify configurations, maximizing feature quality and detection accuracy. 

3. Methods 

3.1. Model framework 

Multimodal information presents a challenge for fusion since the modalities typically have different representations and di
mensions. The challenge arises because text, images, videos, and other modalities can contain different types of information that may 
not be directly comparable. This section provides a detailed explanation of our proposed framework, as shown in Fig 2. 

3.2. Image translator engine 

The image translator engine generates image captions. The concept is that captions help reduce the semantic gap between the 
image and the text modality. An encoder-decoder architecture is used in the module to convert the image into a latent representation 
with a textual description. The captions are generated by rescaling images to 224 × 224 resolution and using a beam search with four 
beams. In this study, ViT-GPT- 2 (Dosovitskiy et al., 2021) is used. It is a publicly available image-to-text captioning pipeline consisting 
of a Vision Transformer (ViT) neural network as an encoder and a GPT-2 (Radford et al., 2020) neural network as a decoder. The 
ViT-GPT 2 model is trained on over 330,000 annotated images from the MS COCO captions dataset (Chen et al., 2015). The primary 
benefit of using ViT-GPT-2 is that it allows end-to-end training of the model, resulting in a better representation of the image features 
and the caption generated. Additionally, the self-attention mechanisms in ViT captures long-range dependencies between different 
parts of the image, which is useful in generating more accurate and detailed captions. Given I as an input image with width w and 
height h, the ViT encoder processes the image to generate a set of K feature vectors denoted as: 

F = (f1,…, fK) (1)  

where each feature vector fi ϵ Rd has a dimension of d 
The GPT-2 encoder takes the set of feature vectors F as the input and generates a caption, which is represented as a sequence of 

tokens as: 

C = (c1, . .., cT) (2)  

where each token ci represents a symbol or word in the caption. 
The probability of generating the sequence C given the feature vectors F is achieved by: 
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P(C|F) = P(c1| F) ∗ P(c2 | f1,…, fK , c1) ∗ … ∗ P(cT | f1,…, fK , c1,…, cT − 1 (3)  

where P (ci
⃒
⃒f1, …, fK, c1, …, ci− 1) denotes the conditional probability of generating the i − th token given the previous tokens and 

the feature vector. 
The generated image caption is represented in a space compatible with the post’s textual features. 

3.3. Embeddings 

The image translator engine is first exploited to generate the text caption describing the image. Then, the text is encoded into 512 
high-dimensional embedding vectors to represent the input strings. A Universal Sentence Encoder (USE) (Cer et al., 2018) is employed 
which comprises two main components: a sentence encoder and a transformer-based encoder. Using this strength, the semantic 
meaning of text and more complex relationships between words and phrases can be captured since USE considers the context of a text. 
The text is encoded into a fixed-length vector representation that captures the semantic meaning of the text. Given t as an input text 
sequence, and h an output representation generated by the USE model, the sentence encoder first learn a fixed-length vector repre
sentation u(t)for the input text sequence t exploiting convolutional layers as shown below: 

u(t) = f ([c1, …, ck]) (4)  

Where ci denotes the i − th of the convolutional layer and f is a non-linear activation function. 
The transformer-based encoder then takes the fixed length vector representation u(t) as input and generates the final output 

representation h(t) using self- attention mechanism: 

h(t) = g([ e1, …, en]) (5)  

where ei denotes the i − th output of the transformer-based encoder, and g is a multi-layer pecerptron that maps concatenated output 
vectors to the final representation h(t) which is a fixed length vector capturing the semantic meaning of the input text sequence. 

3.4. Similarity evaluator 

The model generate text ( stext) and image caption (simage) embeddings separately and compares the two embeddings to determine 
similarity. The algorithm can capture the meaning of the sentence based on context, intent, and other semantic nuances by considering 
the evidence of embedding similarity. Cosine similarity computes text ( stext) and image caption (simage) embeddings is used to capture 
their respective features in a numerical form using Eq. (6). Each dimension (i.e. from 1 to n) of the embedding is iterated. For each 
dimension, the corresponding elements of stext and simage and sum of their products are multiplied. Furthermore, the length of the 
embeddings is determined (Eq. (7), Eq. (8)). The idea is that the length of the embeddings serves as useful features for assessing the 
authenticity of news articles. For instance, if the lengths of both the text and image caption embeddings are large, it indicates that the 
textual and image captions features are relatively strong and well-represented. This may suggest a higher likelihood of the news article 
being authentic. On the other hand, if the lengths of the embeddings are relatively small, it could indicate weak or insufficient rep
resentation of the textual and visual information. Finally, the cosine similarity with the sigmoid function is computed as shown in Eq. 
(9). A sigmoid function is included to ensure that the resulting similarity value falls within the range of 0 to 1. It is desirable to utilize 
this mapping since it provides a more interpretable and normalized measure. In this normalization step, the magnitudes of the em
beddings are considered, ensuring similarity value are not biased by the lengths of the vectors. A sigmoid function maps the value to a 
range between 0 and 1, providing a probabilistic interpretation of the similarity score and making it easier to interpret and compare 
similarity values across pairs of text and image. The derived similarity value serves as an input to the complementary fusion module. 

dotproduct =
∑n

i=1
stext[i] . simage [i] (6)  

where stext [i] and simage [i] represents the elements in the i th dimension of stext and simage respectively. The index ranges from 1 to n, 
where n is the dimensionality of the embeddings. Each dimension corresponds to a specific feature of the text or image caption. 

‖ stext‖=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1
stext[j]2

√
√
√
√ (7)  

‖ simage‖=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1
simage[j]2

√
√
√
√ (8)  

where stext[j]2 and simage[j]2 represent the elements or values in the j-th dimension of the stext and simage respectively. The index j ranges 
from 1 to n, where n is the dimensionality of the embeddings. 
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cos
(
stext, simage

)
= σ

(
stext . simage

||stext|
⃒
⃒. ‖ simage|

⃒
⃒

)

(9)  

where σ denotes the sigmoid function that maps its input value to a value between 0 and 1. It is defined as = 1
1+e− x . ‖ stext‖ and ‖ simage‖

denotes the lengths or magnitudes of the text and image embeddings, respectively. 

3.5. Complementary attention fusion 

Instead of concatenating modalities to form a final representation in the fusion process, we use a scaled dot product attention 
technique to fuse the modalities. This technique involves calculating the output of a set of queries Q to a set of keys K and values V. The 
dimensions of the keys are denoted as dk, and the dimensions of the values are denoted as dv. The output is calculated as follows: 

Attention (Q, K, V) = Softmax
(

QKT
̅̅̅̅̅
dk

√

)

V (10) 

In the above calculation, the softmax function is applied to the scaled dot product of the queries Q and the keys K, divided by the 
key’s dimensions. The process produces a set of weights to combine the values V to produce the output linearly. 

First, the textual features set (h1, . . . , hn) is represented as the queries Q, while the image caption features(Ic, . . . , Iw) are 
represented as the keys K and values V. The attention mechanism is used to compute the attention weights for each textual feature for 
the image caption features: 

h′
i =

∑w

j=0
ai

jIj (11)  

For each textual featureh1, the attention weights ai
j are computed using the softmax function applied to the dot product hi and each 

image caption feature Ij. 

ai
j = softmax

(
hiIT

j

)
(12) 

The set of textual features is (h′
1, . . . , h′

n). Finally, these integrated features are averaged to obtain a single feature vector ftext 
representing the entire textual input. 

ftext = average
(
h′

1, . . . , h′
n

)
(13)  

The image caption feature set Ic, . . . , Iw) is represented as the queries Q, while the textual features (h1, . . . , hn) are represented 
as the keys K and values V. The attention mechanism is used to compute the attention weights for each image caption feature for the 
textual features. The image caption representations combined with textual representations are thus outputted as below: 

I′
j =

∑n

i=0
aj

ihi (14)  

For each image caption feature I′j, the attention weights aj
i are computed using the softmax function applied to the dot product h1 

and each textual featurehi. These attention weights represent how much each textual feature contributes to the representation of the 
image caption feature. 

aj
i = softmax

(
IjhT

i

)
(15) 

The set of textual features is (I′1, . . . , I′
w). Finally, these integrated features are averaged to obtain a single feature vector ftext 

representing the entire image caption input. 

fImageCaption = average
(
I′

1, . . . , I′
w

)
(16)  

Overall, this approach takes the advantage of the complementary strengths of text and image modalities and effectively allows the 
model to integrate information from both modalities. 

3.6. Alignment and normalization 

The alignment and normalization component aligns and normalizes the text and image captions by calculating the mean along the 
channel dimension (the dimension of the feature tensor that captures different aspects of the data) for each channel separately (Eqs 
(17) and 18). The idea is that when text and image caption features are combined, different channels may represent diverse aspects of 
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the data. Therefore, the model capture the statistical properties specific to each modality or channel by calculating the mean sepa
rately. Calculating the mean value for normalization ensures the model aligns and normalizes the features within each modality 
independently. In this manner, modality-specific biases are removed, and the distributions of the features are aligned, enabling 
effective fusion. The variance along the channel dimension for each modality is then determined separately (Eqs (19) and 20) to 
complement the mean calculation and provide insights into the variability of the features. Performing this step allows the model to 
identify the variances unique to each modality and align the feature distributions more accurately during normalization. The model 
eliminates the modality-specific biases, scale differences, and feature variations with Eqs (21) and 22 and f. This process facilitates 
effective fusion by ensuring the features have consistent scales and distributions across modalities. Finally, text and image captions 
features are concatenated into a unified single representation Eq. (23). This concatenation preserves separate modality-specific in
formation while ensuring their alignment. In addition, it ensures consistency in the features’ scales and distributions in the subsequent 
modules. Given the text feature tensor (T) of shape (batchs, textd) and the image caption feature tensor (I) (batchs, captiond) the features 
are aligned and normalized as below: 

T =
1

batchs

∑batchs

i=1
Ti, : (17)  

I =
1

batchs

∑batchs

i=1
Ii, : (18)  

σ2
T =

1
batchs

∑batchs

i=1
(Ti, : − T)2 (19)  

σ2
I =

1
batchs

∑batchs

i=1
(Ii, : − I)2 (20)  

T̂ i , : =
Ti , : − T
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

T + ϵ
√ (21)  

Î i , : =
Ii , : − I
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

I + ϵ
√ (22)  

Normalizedf = (T̂ , Î) (23)  

where σ2
T and σ2

I is the text and image caption features calculated along the channel dimension. They are tensor of shape textd and 
captiond representing variance value for each channel in the text and image caption features. i represents the instant index, and (:) 
denotes all elements along the respective dimension. ε is a small value added for numerical stability to avoid division by zero. 

3.7. Optimized deep neural network 

To this point, the model has obtained the text’s attention-aggregated representation for the image caption, denoted as RC, and the 
image caption’s aggregated representation for the text denoted as RT. These two representations capture the most relevant features of 
each modality. After aligning and normalizing the two features are concatenated to form a multimodal representation of a given post. 
The fused representation combines the strengths of both modalities and provides a more comprehensive representation of the post. An 
optimized deep neural network is designed to extract deep features from the fused features. It contains three fully connected layers 
with different parameters. The first fully connected layer contains 256 neurons in a hidden layer with a ReLU activation function, 
followed by a 0.5 dropout. The concept is to project high-dimensional fused input into a lower-dimensional hidden space, allowing the 
model to learn an abstracted nonlinear representation of captions and text modes. The second and third fully connected layers have 
128 and 64 neurons in a hidden layer, respectively. These layers continue to project features into lower-dimensional space, allowing 
the model to discover discovery global, high-level patterns related to real and fake classes. Both layers contain ReLU activation 
function, a dropout, and a batch normalization layer. The batch normalization layer enables the model to learn independently from 
each ODNN layer. A ReLU activation function enhances the model’s ability to learn nonlinear features and decision boundaries when 
classifying. It also prevents gradients from vanishing and exploding. The ODNN incorporates three dropout layers, after the ReLU 
activation function in the first fully connected layer and after batch normalization in the second and third layers. The aim is to prevent 
overfitting, improve generalization error, and reduce training time. The model incorporates Adam optimizer to generate adaptive 
estimates, which are computationally efficient. The model uses an initial learning rate of 0.005 to maximize computational efficiency. 
The fully connected layers enable the model to capture subtle correlations between captions and text semantics in the CAF module by 
combining simpler features learned in earlier layers to extract higher-level abstracted features. We implement a grid search to optimize 
the model’s hyperparameters (Pedregosa et al., 2011). It is necessary to tune the Hyperparameters of a model before training it to 
control the learning process. Optimizing the hyperparameters enhances the performance. The grid search involves experimenting with 
every combination of values of the hyperparameters to find the most appropriate blend for training the model. While it effectively tests 
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various values and quickly finds a near-optimal combination, grid search does not guarantee the best parameters. Consequently, grid 
search is time-consuming, especially when many hyperparameters are involved. We selected a few parameters to optimize to avoid this 
situation. These parameters include neurons, epochs, and batch sizes. We chose the parameters based on their impact on the model’s 
performance. It was more efficient to find the best combination by selecting a small number of hyperparameters to optimize. As shown 
in Table 1, the number of neurons in the hidden layer, the optimized epochs, and batch sizes were considered.  

- Neurons: A neuron is a unit that receives input from the preceding layer and produces output to the next layer. Neuron in each 
layer receives input from neurons in previous layer, calculate, and generate an output dispersed to neurons in the subsequent 
layers.  

- Optimizers: Optimizers can be tuned to improve the model’s efficiency during training. They adjusts the model’s weights and 
biases during training to minimize the loss function. The loss function determines the disparity between the predicted output and 
the actual output, and the optimizer’s goal is to reduce this difference. Different optimization methods, such as Adam, RMSprop, 
and Nadam, update weights and biases differently. We tuned three optimization techniques: Adams, Root Mean Square Propagation 
(RMSprop), and Nadam.  

- Batch size: This parameter can significantly impact the training process and the model’s performance. A large batch size can 
reduce the noise in the gradient estimation and result in a more stable convergence, but it may also require more memory, slowing 
the training process. In contrast, a small batch expedite the training process, but leads to a less stable convergence due to a noisy 
gradient approximation. We used batch sizes between 16 and 512. However, a batch size of 32 is a commonly used value.  

- Epochs: This variable determines the number of successful authorizations in the training dataset. An optimal neural network 
performance requires the correct number of epochs. A small number of epochs causes under-fitting since the model fails to learn 
from the training data, whereas a large number of epochs results in overfitting because the model learns noise as well, resulting in 
poor performance on the test dataset. We used several epochs to update the model’s weights and avoid overfitting. We incorporated 
a grid search to find the best value for epochs. 

3.8. Classification 

The softmax function converts the output of the fully connected layer into a probability distribution over the two classes of fake and 
real news. The predicted probability vector is represented by: 

c = softmax(Wfm + b) (24)  

where c = (c0, c1) denote the predicted vector, and c0 and c1 denote the predicted ground truth, 1 being fake news and 0 being real 
news. 

The binary cross-entropy loss function is given by: 

lc = [ylogc0 +(1 − y)logc1) (25)  

where y ϵ {0, 1} represents the news label. 

4. Experiments 

4.1. Datasets 

We conducted an empirical analysis on four datasets, GossipCO, PolitiFact, Fakeddit and Pheme to validate the effectiveness of the 
proposed model. Table 2 displays the statistical information for the datasets:  

- FakeNewsNet (Shu et al., 2020) is a popular dataset for fake news detection. It contains two datasets, PolitiFact and GossipCO. A 
PolitiFact dataset contains tweets related to posts published on the PolitiFact website. The PolitiFact website is a fact-checking 
website where journalist experts evaluate political claims as fake or real. This dataset consists of tweets mentioning claims and 
statements made by politicians, and other public figures. To create the FakeNewsNet collection, (Shu et al., 2020) used the 
headlines of these posts as queries to collect relevant tweets. On the other hand, GossipCO is based on tweets collected using the 
headlines of articles published and annotated on the GossipCO website. 

Table 1 
Optimization Hyperparameters.  

Hyperparameter Values 

Neurons 128, 256, 512 
Optimizer Adam, Nadam, RMSprop 
Batch size 10, 30, 60, 90 
Epochs 10, 20, 30, 40, 60, 70  
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- Fakeddit (Nakamura et al., 2020) is a dataset specifically designed for multimodal fake news analysis. This dataset contains one 
million samples, including both false and credible information. The dataset is categorized into six categories with binary ground 
truths for distinguishing between real and fake news for classification tasks. Furthermore, it offers more fine-grained classification 
options with three and six-class classifications, providing additional granularity in misinformation analysis.  

- The Pheme (Zubiaga et al., 2016) dataset comprises Twitter threads that revolve around nine notable news events, such as the Siege 
of Sydney, Charlie Hebdo, the Ottawa shooting, and more. Each news thread consists of a tweet that serves as the news source. In 
our analysis, we leverage the original tweet from the news to perform the classification task. 

In the four datasets, we prepare the training, the validation, and test subsets. We adopt Accuracy (A), Precision (P), Recall (R), and 
F1 score as our evaluation metrics. Table 2 shows the statistics of our datasets. 

4.2. Implementation details 

We utilize a PyTorch environment with TensorFlow, Keras, and transformers libraries to facilitate the creation, deployment, and 
utilization of the pre-trained Vit-GPT-2 model. We use a Universal Sentence Encoder, a transformer-based encoder to encode 
contextualized text and captions generated from the image in 512-dimensional space. Three fully connected layers containing 128 and 
64 neurons are incorporated into the model with corresponding activation functions (ReLU) for effective feature extraction. A 0.5 
dropout rate is set between the ODNN layers to mitigate overfitting, and we leverage Batch Normalization and Adam optimizer. The 
model incorporates a sigmoid activation function as a classification layer. The implementation is accelerated using CUDA 11.0 and 
executed on a GPU with 12 GB of memory. We processed data in batches of size 128 to maximize computational efficiency. The dataset 
is stratified into training (70 %), testing (20 %), and validation (10 %) sets, ensuring representative distribution across the three sets. 
We implement a learning rate scheduler to optimize the learning process, with a scheduler reducing the learning rate dynamically if the 
validation error increases for two consecutive epochs. This reduction continues until the model reaches a minimum learning rate, 
improving the overall effectiveness of the training performance. We implement an early stopping mechanism to prevent unnecessary 
training. If the model’s performance or validation error does not improve after ten epochs, the training process is terminated early, 
saving computational resources. We use gradient clipping to stabilize the gradient values and control parameter updates during 
training. This technique prevents gradients from exploding, which can results in potential issues. We calculate loss using Cross Entropy 
Loss. This loss function standardizes the impact of different classes by assigning less attention to the input samples. It also aids in 
achieving balanced performance across class distributions. 

4.3. Baselines 

To validate the proposed model’s effectiveness, we compared the experimental results of the four real datasets as follows:- 

4.3.1. GossipCO and PolitiFact datasets 
We adopt the following baselines for GossipCO and PolitiFact datasets  

- DEFD (Obaid et al., 2022) is an approach that employs an ensemble of deep-learning models based on the same feature extractor. 
Each learner focuses on a distinct aspect of the input news using an attention mechanism and a loss function.  

- Silva et al. (2021) a multimodal method for fake news detection in cross-domain news datasets that learns from two independent 
embedding spaces to capture domain-specific and cross-domain information. 

- TRANSFAKE (Jing et al., 2021) integrates multimodal signals, such as text, images, and comments. A transformer-based archi
tecture is used to extract features from text and image. Further, the model incorporates user comments to enhance the detection 
process.  

- DEFD-SSL (Obaid et al., 2023) utilizes an ensemble model to exploit quality pseudo labels. Moreover, it mitigates bias towards the 
majority category by assessing the class distribution to solve the challenge of imbalanced classes.  

- FR-Detect (Jarrahi & Safari, 2023) is a multimodal model for efficient multimodal fake news detection. It includes 
publisher-related features in the detection process.  

- SBERT(Madhusudhan et al., 2020) utilizes BERT to extract context-rich textual features and ResNet to extract image features. A 
simple concatenation process combines the extracted features. As a second approach, the model incorporates visual attention, 
allowing it to focus specifically on the most relevant regions within the image. 

Table 2 
Statistics of our four datasets.   

Veracity GossipCO PolitiFact Fakeddit Pheme   

Text Caption Image Text Caption Image Text Caption Image Text Caption Image  

Real 1003 1003 1003 280 280 280 1399 1399 1399 1086 1086 1086 
Category Fake 1085 1085 1085 320 320 320 1650 1650 1650 1200 1200 1200  

Total 2088 2088 2088 600 600 600 3049 3049 3049 2286 2286 2286  

A.M. Luvembe et al.                                                                                                                                                                                                   



Information Processing and Management 61 (2024) 103653

12

- SAFE (Zhou et al., 2020) is a multimodal neural network that extracts textual and visual features separately for news represen
tation. It models the relationship between the extracted features on different modalities to predict fake news. 

4.3.2. Fakeddit and Pheme datasets 
We adopted the following baselines for Fakeddit and Pheme datasets: -  

- MIN (Zou et al., 2023b) integrates semantic-level image and text representations. The model also incorporates entities and external 
knowledge. It combines text, images, entities, and external knowledge using a three-level co-attention network.  

- Fakefind (Sengan et al., 2023) is a method in which convolutional neural networks (CNNs) are combined with recurrent neural 
networks (RNNs) to effectively fuse multimodal information.  

- CMAC (Zou et al., 2023a) method uses adversarial learning to align the latent feature distribution of text and image. Moreover, 
contrastive learning is employed to align the feature distribution in multimodal samples of the same category. The combination of 
adversarial and contrastive learning allows the model to obtain robust multimodal fusion representations.  

- FDMCE (Shao et al., 2022) combines two single-modality classifiers and incorporates a similarity classifier to determine feature 
similarity across modalities. An integrity classifier is also used in the model to leverage integral multimodal information.  

- FakedBits (Sharma et al., 2023) is a deep neural multi-modal network that utilizes EfficientNet-B0 and distilBERT to process visual 
and textual information. A feature embedding process is performed for each channel individually, followed by a fusion process at 
the final classification layer.  

- KMAGCN (Qian et al., 2021) combines textual information, knowledge concepts, and visual -information within a unified 
framework to capture semantic representations. The model effectively learns features by representing posts as graphs and utilizing 
a knowledge-aware multimodal adaptive graph learning approach.  

- CCD (Chen et al., 2023) is a technique that incorporates causal intervention to mitigate the impact of psycholinguistic bias, which 
may introduce misleading correlations between text features and new labels for multimodal fake news detection. 

4.4. Results and analysis 

Tables 3 and 4 present our method’s overall performance. According to Table 3, CAF-ODNN outperforms baselines in accuracy, 
recall, and F1 values on the GossipCO dataset. In particular, it improves accuracy by 0.032 % points, recall by 0.508 % points, and F1 
score by 0.399 % points compared to the previous best baselines. However, there is a slight decrease in precision by 0.062 % points. On 
the other hand, the model exhibits performance improvements of 0.056 % points, 0.215 % points, and 0.147 % points in accuracy, 
precision, and F1 score, respectively on the PolitiFact dataset. The SAFE method achieves an accuracy rate of 0.838 % and 0.874 % on 
the GossipCO and PolitiFact datasets, respectively. The approach by Silva et al. (2021), considered the best-performing baseline on the 
GossipCO dataset, achieves a performance of 0.842 % in accuracy. However, its performance on the PolitiFact dataset decreases by 
0.01 % points. This observation suggests that the GossipCO dataset is larger than the PolitiFact dataset, providing the model access to 
more training instances compared to the PolitiFact dataset. DEFD performs better on the PolitiFact dataset in terms of accuracy. One 
reason is that DEFD may be more effective because it utilizes multimodal information, which improves the model’s performance. 
Additionally, it employs a focal loss function and diverse learners to enhance accuracy on the minority class (i.e., fake news), enabling 
more effective detection of fake news. TRANSFAKE consistently performs better, achieving 0.831 % and 0.834 % accuracy on the 
GossipCO and PolitiFact datasets, respectively, compared to other baselines. However, it shows a slight decrease in accuracy by 0.032 
% and 0.055 % points on the GossipCO and PolitiFact datasets, respectively, compared to CAF-ODNN. This performance demonstrates 
that incorporating users’ comments and sentiments enriches multimodal features, and utilizing a transformer for fusion improves the 
performance of the fake news detection model. DEFD-SSL outperforms FR-Detect on the PolitiFact dataset by 0.039 % points. A quality 
pseudo-label ensemble model underlies the impressive performance of DEFD-SSL. An advantage of the ensemble method is that it 
considers the imbalanced nature of the data by estimating the distribution of classes, thereby eliminating bias in favor of the majority 
category. SBERT also performs better than TRANSFAKE and DEFD-SSL, demonstrating its ability to capture the relationships between 
text and images for a more comprehensive understanding and analysis. 

FDMCE’s accuracy decreases by 0.08 % points on the Fakeddit dataset and by 0.023 % points on the Pheme dataset compared to 
CCD in Table 4. It could be inferred from the model’s observation that CCD uses causal intervention and counterfactual reasoning to 
mitigate image bias and achieve superior performance compared to FDMCE. MIN model outperforms all compared baselines, achieving 

Table 3 
Comparison performance on GossipCO and PolitiFact datasets.  

Dataset Measure DEFD (Silva et al., 2021) TRANSFAKE DEFD-SSL FR-Detect SBERT SAFE CAF-ODNN 

GossipCO Acc. (%) 0.841 0.848 0.831 0.831 0.840 0.837 0.838 0.863 
Prec. (%) 0.912 0.822 0.773 0.592 0.767 0.855 0.877 0.870 
Recall (%) 0.601 0.797 0.826 0.442 0.591 0.945 0.937 0.950  
F1score (%) 0.725 0.808 0.851 0.506 0.668 0.898 0.890 0.905  
Acc. (%) 0.855 0.838 0.834 0.872 0.833 0.855 0.874 0.889 

PolitiFact Prec. (%) 0.705 0.836 0.801 0.730 0.804 0.871 0.889 0.920  
Recall (%) 0.827 0.828 0.862 0.826 0.872 0.926 0.903 0.841  
F1 score (%) 0.761 0.833 0.820 0.775 0.837 0.897 0.896 0.908  
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0.893 % accuracy on the Fakeddit dataset. MIN appears to leverage entities and external knowledge to enhance the integration of 
image representations with their semantics, providing additional semantic information that aids in validating post-rationality. 
However, the accuracy of MIN decreases by 0.065 % points on the Pheme dataset, indicating potential dataset characteristics. The 
MIN approach, for example, might have been specifically trained to utilize entities and external knowledge that are more informative 
in the Fakeddit dataset. Therefore, when applied to the Pheme dataset, which may have distinct characteristics, the model struggles to 
effectively utilize the same entities and external knowledge, resulting in low performance. On both the Fakeddit and Pheme datasets, 
FakeBits exhibits consistent performance. This observation suggests that leveraging EfficientNet-B0, distilBERT, and embedding text 
and visual features in separate channels before final classification improves the performance of models. The CMAC and KMAGCN 
models also perform comparatively better on the Pheme dataset. This observation suggests that the models exploits counterfactual 
reasoning and attention to fuse specific features, jointly model textual information, knowledge concepts, and visual information to 
improve detection performance. Table 4 shows that the Fakefind performs better on the Pheme dataset by 0.021 % points than the 
proposed model. However, the proposed model outperforms Fakefind in Recall and F1 scores by 0.047 % and 0.014 % points, 
respectively. A possible explanation could be that the higher scores on Recall and F1 suggest that the proposed model can identify 
positive instances correctly (correctly identifying fake news). Therefore, it can capture more true positive fake news instances, even 
though there might be negligible difference in accuracy compared to Fakefind. 

In terms of datasets, the proposed model exhibits superior performance on the GossipCO, PolitiFact, Fakeddit, and Pheme datasets, 
implying its scalability and generalizability. In particular, the model achieves high level of accuracy of 0.900 % on the Fakeddit 
dataset, 0.889 % on PolitiFact, 0.879 % on Pheme, and 0.863 % on GossipCO. The variation in performance across these datasets can 
be attributed to the dataset characteristics, model architecture, and the hyperparameters used. During the model’s training process, 
these factors interact, influencing the model’s learning ability, as reflected in the changes observed over epochs. In Fig 3, we visualize 
the convergence points for each dataset. The GossipCO dataset reaches convergence at epoch 5.5, PolitiFact at epoch 9, Fakeddit at 
epoch 8, and Pheme at epoch 6, indicating the model optimally balances the training and validation losses. A small gap between the 
training and validation loss reveals that the model fits well with the training data while generalizing well to unseen validation data. 
This observation demonstrates that the model has effectively learned the underlying patterns in the training data without overfitting or 
underfitting, demonstrating its capability to capture and generalize from the dataset’s features. 

CAF-ODNN outperforms the baselines models due to its complementary attention fusion of image captions and text. The perfor
mance of CAF-ODNN can be attributed to three key factors: first, the CAF’s complementary attention fusion technique captures subtle 
cross-modal relationships allowing the model to learn fine-grained correlations in a shared fusion space. This approach captures 
dependencies and fine-grained cross-modal interactions, ensuring accurate and semantically meaningful fusion while eliminating 
unrelated noisy features. Second, the alignment module calibrates fused features based on channel statistics, ensuring the semantics 
are preserved across modalities during the interaction mitigating feature variations and distributions. Lastly, through optimization, 
model hyperparameters are tuned for optimal performance. The optimization technique allows for the efficient feature extraction and 
enhances utilization of text and image caption information, ultimately resulting in improved accuracy. 

4.5. Error analysis 

We implemented a Receiver Operating Characteristics Curve (ROC curve) to analyze errors in the model’s classification. The ROC 
curve represents the performance of a model in binary classification. The ROC curve captures the trade-off between the False Positive 
Rate (FPR) and the True Positive Rate (TPR) at various classification points (Suratkar et al., 2020). The ROC curves are shown in Fig 4 
(a - d). In estimating the area under the ROC curve, the Area Under the Curve (AUC) quantifies the general effectiveness of the model. 
An ideal classification model has an AUC of 1, while random guesses yield an AUC of 0.5. CAF-ODNN performs well on all four datasets, 
with AUC values of 0.79 %, 0.94 %, 0.96 %, and 0.81 % for the GossipCO, PolitiFact, Fakeddit, and Pheme datasets respectively. This 
performance suggests a good balance between the TPR and FPR, establishing excellent overall classification performance. 

4.6. Ablation analysis 

To assess the performance of CAF-ODNN fusion and optimization, we conducted ablation experiments on the GossipCO, PolitiFact, 
Fakeddit, and Pheme datasets. The ablation sub-experiment results are shown in Fig 5 (a - d) and Fig 6 (a - d). In Fig 5 (a - d), CAF- 

Table 4 
Comparison performance on Fakeddit and Pheme datasets. The (–) indicates the results in the original paper were not provided, while (*) denotes 
better performance.  

Dataset Measure MIN Fakefind CMAC FDMCE FakedBits KMAGCN CCD CAF-ODNN 

Fakeddit Acc. (%) 0.893 0.848 0.867 0.804 0.888 0.829 0.884 0.900 
Prec. (%) – 0.841 0.886 0.838 0.852 0.818 0.821 0.961 
Recall (%) – 0.851 0.896 0.749 0.871 0.808 0.781 0.901  
F1score (%) 0.848 0.846 0.884 0.791 0.860 0.812 0.808 0.930  
Acc. (%) 0.828 0.900* 0.874 0.836 0.863 0.867 0.859 0.879 

Pheme Prec. (%) – 0.901 0.797 0.846 0.850 0.830 0.764 0.884  
Recall (%) – 0.901 0.810 0.853 0.921 0.775 0.689 0.948  
F1 score (%) 0.805 0.901 0.780 0.850 0.890 0.800 0.724 0.915  
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Fig. 3. (a – d). Training and validation loss on GossipCO, PolitiFact, Fakeddit and Pheme dataset.  
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Fig. 4. (a- d). ROC curve on GossipCO, PolitiFact, Fakeddit and Pheme datasets.  
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Fig. 5. (a - d). Ablation analysis on GossipCO and PolitiFact datasets. CAF-ODNN* indicates the CAF is not incorporated while CAF-ODNN** incorporates the CAF.  
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Fig. 6. (a – d) Ablation analysis on GossipCO and PolitiFact datasets. CAF-ODNN* indicates the ODNN is not incorporated while CAF-ODNN** incorporates the ODNN optimization.  
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Fig. 7. (a - d) The graph consists of individual data points represented as dots connected by lines. Each dot represents a specific batch size and its corresponding accuracy score. The lines help visualize 
the trend in the data points, and the circular markers placed at each data point highlight the exact values of batch sizes and accuracy scores. 
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ODNN* indicates the exclusion of CAF fusion, while CAF-ODNN** denotes the inclusion of CAF fusion. In Fig 6 (a - d), CAF-ODNN* 
excludes the ODNN optimization, while CAF-ODNN** includes ODNN optimization. 

In Fig 5, the ablation results show that the performance of CAF-ODNN decreases without incorporating complementary fusion. For 
instance, the accuracy, recall, and F1 scores for the GossipCO decreased by 0.043 %, 0.065 %, and 0.017 % points respectively in Fig 5 
(a). The model’s performance falls by 0.058 %, 0.038 %, and 0.045 % points in accuracy, precision, and F1 scores, respectively on 
PolitiFact (Fig 5(b). Consequently, the model’s performance decreases by 0.049 %, 0.089 %, and 0.017% points in accuracy, precision, 
and F1 scores, respectively for the Fakeddit dataset in Fig 5(c). Fig 5(d) shows the decrease in accuracy, precision, and F1 scores for 
Pheme dataset by 0.037%, 0.023%, and 0.11% points, respectively. We can attribute this improved performance to three factors. 
Firstly, when the image and text posts are represented in a joint high-dimensional space, the model compares the features and extract 
visual and textual features from the data, mapping them to a joint embedding space. Secondly, the image caption attention and text 
attention mechanisms highlight relevant features in the image caption and text, respectively. This observation implies the model 
focuses on the most crucial parts of the image captions and text, disregarding irrelevant information. The attention mechanisms detect 
subtle complexities using image captions as the "post text." Image captions serve as descriptions of the content of an image and 
represent visual features in a high-dimensional space. The application of image captions as the post text enables the model to capture 
the most salient visual characteristics of the image in a semantic space that exhibits a significant correlation with textual features, 
thereby enhancing performance. Thirdly, the alignment module performs separate alignment and normalization of the text and image 
caption modalities, thereby improving the fusion process and addressing variances and feature distributions. Thus, the benefit of the 
process is eliminating noisy features, resulting in improved accuracy and semantic meaningfulness of the fusion between image 
captions and text. 

In Fig 6 (a - d), the model’s performance improves through optimization. In particular, the model improves accuracy and recall by 
0.029 % and 0.033 % points, respectively, on the GossipCO dataset. For the PolitiFact dataset, the accuracy improves by 0.031 % 
points, recall by 0.002 % points, and F1 score by 0.0018 % points. Similarly, on the Fakeddit dataset, the accuracy improves by 0.049 % 
points, recall by 0.075 % points, and F1 score by 0.063 % points. The accuracy, recall, and F1 scores of the Pheme dataset are all 
improved by 0.05 % points, 0.14 % points, and 0.103 % points, respectively. We attribute this improved performance to two factors. 
Firstly, using an optimized deep neural network enhances the efficiency of feature extraction in image captions and text by learning 
progressively fine-grained features through compositional learning using fully connected layers. Secondly, the systematic exploration 
of different combinations of hyperparameters enables the model to find the optimal configuration that maximizes performance. This 
approach leads to a more accurate and efficient model since it determines the best settings that enhance overall performance. 

4.7. Hyperparameter analysis 

We analyzed the hyperparameters, and due to space constraints, we focused on two specific hyperparameters: batch size and the 
number of epochs. 

4.7.1. Batch size 
We present the model’s performance with different batches in Fig 7 (a–d). In Fig 7(a), we observe that CAF-ODNN convergence 

occurs after several iterations with a 15-batch size for the GossipCO dataset. The model reaches its optimum point at 90 epochs for the 
PolitiFact dataset. Fakeddit and Pheme datasets converge with a batch size of 32. We draw some insights based on Fig 7 (a - d). The 
convergence at a smaller batch size suggests that the model effectively learns from smaller subsets of data. This phenomenon indicates 
that the dataset is more concentrated with relevant patterns, as seen in the GossipCO dataset. A larger batch size, as observed in the 
PolitiFact dataset, helps the model generalize better by providing more diverse samples during each update step. Hence, a larger batch 
size benefits the model by incorporating more significant sampling instances to learn underlying patterns. A moderate batch size, as 
observed in the Fakeddit and Pheme datasets, implies that the dataset exhibits characteristics that allow the model to learn efficiently. 
These datasets likely contain a balanced distribution of patterns, enabling the model to capture quality local and global patterns. 

4.7.2. Epochs 
Fig 8 (a - d) shows the relationship between epochs and accuracy on four datasets, demonstrating the CAF-ODNN model’s 

generalizing and learning ability. We conducted experiments using varying numbers of epochs, as shown in Table 1 to determine the 
optimal value for the CAF-ODNN model. In Fig 8(a), we observe that CAF-ODNN performs significantly better after 30 epochs on 
GossipCO dataset. We plotted the training and validation accuracy against the number of epochs to visualize the learning curve and 
identify the optimal number of epochs in Fig 9 (a - d). In Fig 9(a), the validation accuracy reaches a plateau and starts to decline at 
around 9 epochs, while the training accuracy continues to increase. This phenomenon suggests that the model has already converged, 
but it may benefit from additional epochs. In Fig 8(b), the model achieves optimal performance and improved accuracy after 60 epochs 
for the PolitiFact dataset. Correspondingly, in Fig 9(b), the validation and training accuracy curves converge after approximately 10 
epochs, exhibiting a zigzag trend in both curves. This observation implies the model is still learning, and additional training may be 
required to reach a steady state. Similarly, Fig 8(c), shows improvement in CAF-ODNN performance after 20 epochs on Fakeddit. 

Fig. 8. (a - d) The graph consists of individual data points represented as dots connected by lines. Each dot represents a specific batch size and its 
corresponding accuracy score. The lines help visualize the trend in the data points, and the circular markers placed at each data point highlight the 
exact values of batch sizes and accuracy scores. 
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Correspondingly, in Fig 9(c), the validation and training accuracy curves converge at around 11 epochs, with validation accuracy 
plateauing. However, in Fig 8(d), the performance on Pheme’s dataset converges after 60 epochs. Correspondingly, in Fig 9(d), the 
validation accuracy converges after 9 epochs, and then plateaus. These observations suggest that each dataset has varying learning 
patterns and complexity. For example, initially, the model learns the underlying patterns in the GossipCO dataset, increasing its 
training and validation accuracy. The training accuracy increases as the model learns to fit the training samples. The behavior observed 
in both figures for the PolitiFact dataset suggests a complex learning pattern. It appears that the model requires several epochs to 
achieve optimal performance, indicating that the dataset could have intricate characteristics that necessitate a longer learning process 
for effective capture. A zigzag trend in the accuracy curves suggests that the optimization landscape of this dataset is not smooth and 
may have multiple local optima. The model navigates these optima during training, resulting in training and validation accuracy 
fluctuations. The convergence of the curves after some epoch implies that the model has learned the essential patterns and reached a 
stable point where further training does not significantly improve performance. The behavior observed in the Fakeddit dataset in
dicates that the model has learned within a relatively small epoch. The initial improvement in performance suggests that the model 
quickly captures the relevant patterns in the dataset and adjusts its parameters accordingly. For the Pheme dataset, a longer training 
process is required for the model to reach its optimal performance. The convergence after 60 epochs suggests that the dataset contains 
complex patterns that take more time to learn effectively. The plateauing of the validation accuracy indicates that the model has 
captured the essential information in the dataset, and further training will not yield substantial improvements. 

4.8. Qualitative analysis 

We provide some instances to illustrate the success and limitations of the proposed model. Specifically, we analyze the fusion aspect 
of the model. To achieve this goal, we randomly select two pieces of news (one fake and one real) from the PolitiFact test set and 
qualitatively evaluate the model’s decision regarding the categorization into their respective labels. Fig 10 (a) and 10 (b) display the 
results of the quantitative analysis. 

The model in Fig 10 (a) correctly classify real news into its respective class label. A closer analysis of the image and corresponding 
caption suggest that the successful generation of caption words “jetliner … a tarmac next … city” and post-text words “airborne … 
buildings” may have given the semantics and context complementing each sentence pairs; thus, the correct label prediction. In Fig 10 
(b), the caption words "A man in a suit and tie is looking at his cell phone” and the post text “Barack Obama and John Lewis emotional 
hug” also seems to have given the model the semantic and context to classify the news label. While looking at the image, we can 
observe two men hugging each other emotionally, and neither is looking at the cell phone. Therefore, the complementary attention 
fusion captures these subtle differences since it captures the dependencies and interactions between the two modes, and ensures 
semantically meaningful contexts are incorporated. 

Fig. 9. (a – d) Validation accuracy Vs epochs on GossipCO, PolitiFact, Fakeddit and Pheme datasets.  

Fig. 10a. Success of fusion. A large jetliner sitting on top of a tarmac next to a city Label: Real [{’score’: 0.8758249394330129}] Success:   CAF- 
ODNN /R. 
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4.9. Discussion 

Tables 3 and 4 and Fig 5 (a-d) and Fig 6 (a-d) demonstrates the generalizability of the proposed method on four fake news datasets. 
This observation highlights the effectiveness of complementary attention fusion technique, which utilizes attention, feature alignment 
and optimization to learn a shared representation, thus capturing fine-grained correlations and interactions between modalities. Thus, 
the model is able to eliminate irrelevant and noisy features encouraging semantically meaningful fusion. Additionally, multimodal 
methods outperform single-modality approaches (La et al., 2022). The reason could be that the intricate relationship between images 
and text in news pieces enhances classification performance when efficiently combined (Wang et al., 2022). A more comprehensive 
understanding of the news pieces is obtained when text and visual information are exploited in unison. Therefore, multimodal evi
dence provides diverse perspectives that complement each other, resulting in superior performance. The advantage offered by the 
proposed method is its usefulness in multimodal learning tasks, where both image and text information are available. It is crucial to 
capture the relationships between these modalities in a shared space. The technique eliminates irrelevant and noisy features, 
addressing a common issue in multimodal datasets containing such information. By removing these features, the model can focus on 
the most relevant information, avoiding potential misinterpretation. For example, the proposed method improves accuracy on the 
GossipCO, PolitiFact, and Fakeddit datasets by 0.032 %, 0.056 %, and 0.096 % points, respectively (Tables 3 and 4). Furthermore, the 
CAF fusion mechanism enhances the model by selectively attending to informative features during the combination, alignment, and 
learning of sentence pairs (Fig 5a-d) (Kumari & Ekbal, 2021). We also attribute this performance to the proposed model’s effective 
extraction of deep features using deep neural network. Maximizing hyperparameter search via grid algorithm enhances the efficiency 
and accuracy of feature extraction process. Thus, the model captures relevant information from both modalities with efficiency, 
resulting in improved performance. Through systematic exploration of diverse hyperparameter combinations, the approach discovers 
the optimal configuration that maximizes performance, yielding more accurate and efficient results. 

4.10. Theoretical and practical implications 

Fake news has a detrimental impact that extends far and wide, posing a threat to the safety of individuals and the vitality of 
democratic societies. Hence, it is essential to identify and combat fake news to maintain the integrity of public discourse and foster an 
informed citizenry. The proposed approach offers a theoretical framework for effectively incorporating multimodal information in fake 
news detection systems. Image captions and text data enhances the model’s ability to capture broad and relevant information, 
improving the accuracy of the detection algorithm. An image captioning method is essential in fake news detection since it allows 
image features to be represented in a shared space, compatible with the text post. This approach enables the model to capture the most 
subtle yet salient visual features within a semantic space exhibiting a high correlation with textual features. The technique ultimately 
increases the model’s capability to detect fake news containing both text and image content. Moreover, multimodal datasets manifest 
numerous irrelevant or noisy features that do not contribute to the underlying relationships between image and text data (Jin et al., 
2022). Including these irrelevant or noisy features affects the model’s performance by introducing noise into the data. The proposed 

Fig. 10b. Success of fusion. A man in a suit and tie is looking at his cell phone Label: Fake [{‘score’: 0.04367451638718302}] Success:   CAF- 
ODNN /F. 
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technique overcomes this problem by employing complementary attention mechanisms that allows the algorithm to concentrate on 
relevant patterns selectively from both modalities. In addition, the multimodal fused features are aligned and normalized via channel 
statistics to enhance the fusion process. As a result, irrelevant and noisy features are minimized, preserving semantic meaningfulness. 
Furthermore, an optimized deep neural network with grid search offers a more effective means of refined feature extraction and 
parameter optimization enhancing the performance of deep learning models for multimodal data analysis. The optimal alignment of 
hyperparameters in the proposed approach significantly enhances the accuracy and efficiency of the model. 

We have demonstrated the practical implementation of a deep learning multimodal fake news detection framework in this study. A 
few studies (La et al., 2022), (Meel & Vishwakarma, 2021), (Qi et al., 2021) exist that utilize image captioning information, thus, this 
study provides a method to mitigate the spread and detection of fake news, particularly multimodal fake news, which has become a 
global concern. The presented approach can be useful to fact-checkers, organizations, and researchers in improving news authenticity. 
The advantage of the proposed method is that it can be seamlessly integrated as a plug- in existing single-modal methods and utilized 
by fact-checkers to enhance detection capabilities. 

5. Conclusion and future work 

In this study, we proposed a Complementary Attention Fusion with an Optimized Deep Neural Network (CAF-ODNN) for multi
modal fake news detection. The approach utilized image captions to represent images in a shared semantic space with text to capture 
subtle relationships. A complementary attention method based on scaled dot product was applied to fuse captions and text bi- 
directionally to capture fine-grained cross-modal interactions between the two modalities. To streamline and make the fusion 
robust, a dedicated alignment and normalization technique was introduced to calibrate fused features based on channel statistics of 
each channel dimension. This technique enhanced semantic significance and cross-modal interaction, mitigating feature variations 
and noisy features. ODNN was also implemented for refined feature extraction and model optimization. The ODNN learned higher- 
level abstracted features progressively from caption and text captured in CAF through compositional learning using three fully con
nected layers. A grid search was incorporated to optimize the hyperparameters systematically, and identify configurations maximizing 
feature extraction quality and overall accuracy. The proposed method outperformed comparable methods on standard metrics in four 
real-world datasets. 

The proposed model can be exploited to enhance single-modality models since it uses multimodal features to detect fake news. 
Single-modality models rely on a single feature type, such as text or image, which can limit detection effectiveness due to individual 
modality biases and limitations. In the future, we intend to develop a more robust approach for multimodal fusion that effectively 
integrates image captions with other modalities. Additionally, we will consider incorporating user engagement features into the 
detection system for improved effectiveness. This approach will enable identify patterns of misinformation and disinformation that 
would be challenging to detect using any single feature alone. 
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Abstract
The growth in the use of social media platforms such as Facebook and Twitter over the past decade has significantly facilitated 
and improved the way people communicate with each other. However, the information that is available and shared online is 
not always credible. These platforms provide a fertile ground for the rapid propagation of breaking news along with other 
misleading information. The enormous amounts of fake news present online have the potential to trigger serious problems 
at an individual level and in society at large. Detecting whether the given information is fake or not is a challenging problem 
and the traits of social media makes the task even more complicated as it eases the generation and spread of content to the 
masses leading to an enormous volume of content to analyze. The multimedia nature of fake news on online platforms has 
not been explored fully. This survey presents a comprehensive overview of the state-of-the-art techniques for combating fake 
news on online media with the prime focus on deep learning (DL) techniques keeping multimodality under consideration. 
Apart from this, various DL frameworks, pre-trained models, and transfer learning approaches are also underlined. As till 
date, there are only limited multimodal datasets that are available for this task, the paper highlights various data collection 
strategies that can be used along with a comparative analysis of available multimodal fake news datasets. The paper also 
highlights and discusses various open areas and challenges in this direction.

Keywords  Fake news detection · Rumor detection · Transfer learning · Pretrained models · Text embedding · Deep 
learning · Multimodal

1  Introduction

The propagation of information on social media is a fast-
paced process, with millions of individuals participating on 
these sites. However, unlike traditional news sources, the 
trustworthiness of content on social media sites is debatable. 
In the last decade, there is an upsurge in the use of social 
media and microblogging platforms such as Facebook and 
Twitter. Billions of users on daily basis use these platforms 
to convey their opinions through messages, pictures, and 
videos all over the world. Government agencies also uti-
lize these platforms  to disseminate critical information 

using their official Twitter handles and verified Facebook 
accounts, since information circulated through these plat-
forms can reach a large population in a short amount of 
time. Many deceptive practices, including as propaganda and 
rumor, might however, deceive consumers on a daily basis. 
Fake news and rumors are quite common in these COVID 
times, and they are widely circulated, causing havoc in this 
difficult time. People unknowingly spreading false informa-
tion is a considerably more serious problem than systematic 
disinformation tactics. Previously, attempts to influence pub-
lic opinion were gradual, but now, rumors are targeted at 
naive users on social media. Once people mistakenly trans-
mit incorrect or fraudulent content, it spreads across trusted 
peer-to-peer networks in all directions and as a result, in the 
current situation, the requirement for Fake News Detection 
(FND) is unavoidable.

Despite ongoing research efforts in the field of FND, 
ranging from comprehending the problem to building a 
framework to model evaluation, there is still a need to con-
struct a reliable and efficient model. Various approaches to 
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fake news and rumor detection have been formulated ranging 
from detection methods based on content [1]–[6], propa-
gation data [7]–[11], user profile [12]–[14], event-specific 
data [15]–[17], external knowledge [16, 18, 19], temporal 
data [20]–[24], multimodal data [4, 16, 25]–[28] etc. Source 
detection [29]–[34], Bot detection [35]–[37], Stance detec-
tion [38]–[43], Credibility analysis [44]–[48] are other 
related areas.

Earlier solutions used ML based approaches [32, 49]–[53] 
but suffer from the problem of manual feature engineer-
ing. With the advancement of Deep Learning (DL) based 
approaches for computer vision and NLP (Natural Language 
Processing), recent years have seen a paradigm shift from 
ML (Machine Learning) to DL-based fake news detection 
solutions. The DL models are trained using Convolution 
Neural Network (CNN), Recurrent Neural Network (RNN), 
Recursive Neural Networks (RvNN), Multi-Layer Percep-
tron (MLP), Generative Adversarial Networks (GANs) and 
many more.

It is imperative to spot fake news at the earliest before 
it reaches the masses. The multimodal aspect of the news 

article makes the content look much more credible than its 
counterparts. Most of the existing work focuses on text-
only content or the network structure and ignores the most 
important aspect of the news content i.e., the visual con-
tent and consistency between text-image. Currently, due to 
scarcity of multimodal training datasets, transfer learning 
and various pre-trained models, like VGGNet [54], ResNet 
[55], Inception [56], Word2Vec, GloVe, BERT [57], XLNet 
[58] etc. are utilized for a more efficient DL-based solution. 
A comparative analysis of available multimodal fake news 
datasets is provided in Sect. 4. Although various techniques 
and methods have been developed in the last decade to coun-
ter fake news there are still several open research issues and 
challenges as mentioned in Sect. 5. By evaluating several 
existing strategies and identifying potential models and 
approaches that can be used in this area, this paper aims at 
contributing to the ongoing research in the field of automatic 
multi-modal fake news detection. Our survey seeks to give 
an in-depth analysis of current state-of-the-art Multimodal 
Fake News Detection (MFND) frameworks, with a particu-
lar focus on DL-based models. Table 1 compares various 

Table 1   A relative comparison of proposed work with various related surveys

Notes: 1: Overview of ML/DL-based FND; 2: Open tools and initiatives; 3: DL frameworks & tools; 4: Review of MFND frameworks; 5: Data-
sets; 6: Data collection; 7: Open issues; Notations: ✔:Considered;×: Not considered

Ref. Discussion 1 2 3 4 5 6 7

[59] Proposes various visual and statistical features of a visual content ✔ × × × × × ×
[60] Presents a comprehensive review of fake news detection techniques on social media from the data min-

ing perspective
✔ × × × ✔ × ✔

[61] Provides an overview of techniques of developing a rumor classification system consisting of detection, 
tracking, stance classification, and veracity classification modules

✔ ✔ × × ✔ ✔ ✔

[22] Examined and compared the relative strength of the user, linguistic, network and temporal features of 
rumors over time

✔ × × × × × ×

[62] provides an extensive study of automatic rumor detection on three paradigms: the hand-crafted 
feature-based approaches, the propagation structure-based approaches and the neural networks-based 
approaches

✔ × × × ✔ × ✔

[63] Survey provides a review of techniques for manipulation and detection of face images including Deep-
Fake methods. In particular, facial manipulation are reviewed based on following four types: attribute 
manipulation, face synthesis, identity swap (DeepFakes), and expression swap

✔ × × × ✔ × ✔

[64] Gives an understanding of fake news creation, source identification, propagation patters, detection and 
containment strategies

✔ ✔ × × ✔ × ✔

[65] Presents a detailed review of state-of-the-art FND methods using DL, open issues along with future 
directions are also suggested

✔ × ✔ × ✔ × ✔

[66] Reviews the methods for detecting fake news from four verticals: the false information, writing style, 
propagation patterns, and the source credibility

✔ × × × × × ✔

[67] Presents an overview of the state-of-the-art fake news detection methods utilizing users, content, and 
context features

✔ ✔ × × ✔ × ✔

[68] Provides an overview of the different forms of fabricated content on social media ranging from text-
only to multimedia content and discusses various detection techniques for the same

✔ × × × × × ✔

[69] proposed work explores the problem of rumors detection using textual content of social media on col-
lected Twitter data

✔ × × × × ✔ ✔

[70] Compares, reviews and provides insights into twenty-seven popular fake news detection datasets × × × × ✔ × ✔
Present 

Study
The prime focus is on various deep learning approaches to fake news detection on social media keeping 

the multimodal data under consideration
✔ ✔ ✔ ✔ ✔ ✔ ✔
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existing fake news detection surveys with our survey, dem-
onstrating that our survey not only uses more recent state-
of-the-art MFND methods, but also includes widely used 
DL frameworks and tools, various data collection strategies 
from online platforms, a comparison of available datasets, 
and finally open issues and future scope in this direction.

1.1 � Scope of the survey

This survey is motivated by the increase in the usage of 
social networking sites for the spread of fake news where 
the multimodal nature of post/tweet increases the difficulty 
level of the detection task. The motivations of this paper 
can be summed up as follows, (1) Analyzing the text-only 
content of an article is not sufficient to model a robust and 
efficient detection system. In this era of social media, it is 
highly imperative to consider the visual content apart from 
the textual context and social context to get a complete 
understanding of overall statistics. (2) Promising DL frame-
works and transfer learning approaches are reviewed in this 
paper, which are advantageous for addressing the challenges 
and producing an improvement over the existing detection 
frameworks. (3) The studies performed for the detection of 
online fake news are diverse but these suffer from a lack of 
multimodal datasets. So, this study also gives an overview 
of some existing multimodal datasets and highlights vari-
ous data collection strategies as well. This survey presents 
a comprehensive review of the state-of-the-art multimodal 
fake news detection on online media which was absent in 
the previous surveys.

An exhaustive comparative analysis of various research 
surveys is compiled in Table 1 to provide an insight into the 
dimensions that have not been covered previously. Different 
from the previous studies, in this work, the prime focus is 
on various deep learning approaches including the transfer 
learning and pre-trained models used for fake news detection 
on social media keeping the multimodal data under consid-
eration. Apart from this, the paper also highlights the data 
collection methods and the datasets available for this task. 
Discussion on open areas and future scope is also provided 
at the end.

1.2 � Contribution

The key contributions of this paper are as follows:

•	 The paper gives a brief introduction to fake news its 
related terms and provides a clear taxonomy that focuses 
on different methods for Fake News Detection (FND).

•	 The paper highlights various DL models and frameworks 
that are used in the literature and the benefits of using the 
pre-trained models and the approach of transfer learning 

are highlighted. Critical analysis of different learning 
techniques and DL frameworks has also been presented.

•	 The paper discusses and reviews the various state-of-the-
art Multimodal Fake News Detection (MFND) frame-
works that are presented in the literature.

•	 The paper discusses various data collection techniques 
using APIs and Web crawlers in addition to a compara-
tive analysis of various benchmark multimodal datasets.

•	 Finally, open issues and future recommendations are pro-
vided to combat the issue of fake news.

1.3 � Methods and materials

This study is conducted using a suitable methodology to 
provide a complete analysis of one of the essential pillars 
in fake news detection, i.e., the multimodal dimension of 
a given article. To conduct this systematic review, various 
relevant articles, studies, and publications were examined. 
Before gathering the essential information for the conducted 
survey, quality checks are performed on the identified data 
with a focus on the most cited paper. In this work, the 
prime focus is on state-of-the-art research on multimodal 
fake news detection for assessing the authenticity of a news 
piece using deep learning algorithms. To obtain relevant 
literature, high-quality, highly cited, and reliable peer-
reviewed publications, as well as conferences proceedings, 
are preferred. Other sources that are referred to for this study 
include books, technical blogs, and tutorial papers. For the 
search criteria, keywords like fake news detection, rumor 
detection, multimodal feature extraction, deep learning, and 
pretraining have been used. We have analyzed and acknowl-
edged several works related to the reviewed theme of the 
proposed survey.

1.4 � Organization

Figure 1 describes the organization of the presented survey. 
Section 1 presents the introduction as well as the overall 
scope of the paper. In Sect. 2 an introduction to fake news 
along with a taxonomy of fake news detection techniques 
has been presented. This section also disuses existing tech-
niques and solutions to curb and combat fake news in this 
era of social media. Section 3 gives an overview of various 
DL models and transfer learning approaches that are widely 
in NLP, computer vision, and related fields. This section 
further presents a review of the DL-based state-of-the-art 
frameworks for Multimodal Fake news detection (MFND). 
Various data collection techniques and the details about 
the related datasets are discussed in Sect. 4. Section 5 and 
Sect. 6 deal with the challenges, open issues, and future 
direction, and the conclusion based on the survey.
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2 � Background

Social media in the past decade has become the most una-
voidable part of our society. With the shift of trend from 
Web 1.0 to Web 2.0 people have started not only to con-
sume but also to create and spread information online. But, 
is this information credible? Can these be trusted? Not 
always. Here is a popular quote by Mark Twain “A lie can 
travel halfway around the world while the truth is put-
ting  on  its  shoes”. This became quite evident in the 
COVID times when the internet was flooded with all kinds 
of information related to Government advisories, home 
remedies, etc.

The graph in Fig. 2 below shows a clear picture of how 
in the past decade the cases of fake news have increased 
exponentially. One of the major reasons is the rise in the 
use of social media and the unchecked circulation of mes-
sages on the platforms.

2.1 � Introduction to fake news—definition 
and taxonomy

Fake News is defined as “false stories that are created and 
spread on the Internet to influence public opinion and 
appear to be true” The issue of spread of fake news is not 
new and has been around for centuries but with the use of 
social media the whole dynamics of the proliferation of 
information has changed and is quite different from the slow-
paced traditional media. These sites provide a platform for 
intentional propaganda and trolling. Propaganda, fake news, 
satire, hoax, misinformation, rumors, disinformation, etc., 
are some of the terms that are used interchangeably. Some 
of them are discussed below (Fig. 3).

	 i.	 Propaganda: It is a form of news articles and stories 
created and disseminated by political parties to shape 
public opinion.
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	 ii.	 Misinformation: It is purposely crafted erroneous 
information that is broadcast intentionally or acciden-
tally, without regard for the true intent.

	 iii.	 Disinformation: It refers to a piece of misleading or 
partial information that is circulated to distort facts 
and deceive the intended audience.

	 iv.	 Rumors and hoaxes: These terms are often used inter-
changeably to refer to the purposeful fabrication of 
evidence that is intended to appear legitimate. They 
publish unsubstantiated and false allegations as true 
claims that are validated by established news outlets.

	 v.	 Parody and Satire: Humor is frequently used in parody 
and satire to provide news updates, and they frequently 
imitate mainstream news sources.

	 vi.	 Clickbait: Clickbait headlines are frequently used to 
attract readers' attention and encourage them to click, 
redirecting the reader to a different site. More adver-
tisement clicks equal more money.

With the increased usage of propaganda, hoaxes, and 
satire alongside real news and legitimate information, even 
regular users find it difficult to discriminate between true 
and fake news. However, there are a number of online tools 
and IFCN-certified fact-checkers throughout the world such 
as BSDetector, AltNews, APF Fact Check, Hoaxy, Snopes, 
and PolitiFact that evaluate, rate, and debunk false news on 
online platforms[72].

Table 2 provides some of the Fact-checking sites and 
online tools that are used for debunking false news online. 
This table also gives an overview of the methodology and 
set of actions that are taken to detect and combat fake news 
on online platforms.

2.2 � Existing detection techniques

A huge amount of content today is human-generated 
and most of these get published and people spread that 

information without even bothering about the credibility 
of these contents. Many technical giants are now commit-
ted to fight against the spread of fake information. Face-
book in certain countries has started to work with third-
party fact-checker organizations to help identify, review and 
rate the accuracy of information [73]. These fact-checkers 
are certified through the non-partisan International Fact-
Checking Network (IFCN).

Figure  4 shows some of the online claims that are 
debunked by fact-checking organizations. Twitter on the 
other hand took a step forward in May 2020 to curb the mis-
information around COVID-19 by introducing new labels 
and warning messages [74] to provide the users with addi-
tional context and information about the Tweets. This has 
made it easier for the users to find facts and make informed 
decisions about the tweets. In Jan 2021, Twitter introduced 
BirdWatch [75], a pilot in the US which is a community-
based approach that allows people to identify Tweets that 
they believe are deceptive and annotate these. The pilot par-
ticipants can also rate the preciseness of the notes added by 
other contributors.

The research community is also working tirelessly and 
many papers have been published to combat rumors and fake 
news on social media platforms. The earlier approaches [51, 
76]–[81] used various ML techniques like SVM, RF, NB, 
etc. but with the ever-increasing amount of data on social 
media platforms a shift to DL approaches [11, 23, 82]–[85] 
can be seen with includes the use of CNN, RNN, LSTM, 
GAN based approaches.

Figure 5 gives a detailed taxonomy of existing fake news 
detection methods and techniques. Table 3 below provides a 
detailed classification of prominent state-of-the art ML/DL 
FND techniques based on the proposed taxonomy.

In the case of online social media, the rumors proliferate 
in a short period and hence early detection becomes very 
important. By exploiting the dissemination structure on 
social media, Liu et al. [80] offers a model for early iden-
tification of misleading news. Each news story's propaga-
tion path is treated as a multivariate time series. It employs 
a hybrid CNN-RNN that gathers global and local fluctua-
tions in user attributes along the propagation path. In just 
5 min after it starts spreading, the model detects fake news 
on Twitter and Sina Weibo with an accuracy of 85 percent 
and 92 percent respectively. The work proposed by Varol 
et al. [86] works on the early detection of promoted cam-
paigns on online platforms. It proposed a supervised com-
putational framework that leverages temporal patterns of 
the message associated with trending hashtags on Twitter 
to catch how the posts evolve over time and successfully 
classifies it as either ‘promoted’ or ‘organic’. In addition 
to this, it also used network structure, sentiment, content 
features, and user metadata and achieves 75% AUC score 
for early detection, increasing to above 95% after trending.

Fake 
News

Propag-
anda

Satire

Misinfo-
rmation

Disinfo-
rmation

ClickBait

Rumour

Fig. 3   Key terms related to Fake News
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Various approaches for early rumor detection have been 
explored. In case of the content-based approach [18, 50, 
59, 90, 103], the content (text + images) within the arti-
cle is considered, in contrast to the social context-based 
approaches [7, 13, 118]–[120] where the propagation struc-
tures, data from the user profile is considered. The content-
based approaches have performed better as compared to the 
context-based approaches because the propagation structure 
and user data become available only after the news has trave-
led masses. Monti et al. [109] proposed a geometric deep 

learning approach (a non-Euclidean deep learning approach) 
for fake news detection on Twitter that uses a GRU-based 
propagation Graph Neural Network to utilize the network 
structure. In addition to the spreading patterns, it also uses 
features from the user profile, social network structure, and 
content. Dou et al. [121] proposes a framework, UPFD, 
which simultaneously captures various signals from user 
bias along with the news content to analyze the likelihood of 
user to forward a post based on his/her existing beliefs. Wu 
et al. [11] proposes a novel method to construct the network 

Table 2   Fact-checking sites and online tools that are used for debunking false news online

Name Tool/Extension Methodology/Action

AltNews Fact-checking website Continuously monitors social media and mainstream media 
platforms for identifying incorrect information related mainly 
to Indian politics and entertainment, and evaluates the veracity 
of a claim by Manual Fact-checking

APF Fact Check Fact-checking website It uses many simple tools to verify online information. Fact-
checking is carried out by editors and a worldwide network of 
journalists

BS Detector It is an extension of Google Chrome, Mozilla Identifies and marks fake and satirical news sites, as well as 
other suspected news sources. It puts a warning label to the 
top of potentially dangerous websites, as well as identifies fake 
links on Facebook and Twitter

Emergent Fact-checking website Emergent is a real-time rumor tracker that assesses news cred-
ibility and gives a True, False, or Unverified label

Fact-Checker Fact-checking website A project of The Washington Post, grades news articles from 
zero to four "Pinocchios” based on the factual accuracy of 
their content

FakerFact A Chrome and Firefox extension Distinguishes a fake news article from the real one and cat-
egorizes it as opinion, satire, agenda-driven, journalism, and 
sensationalism

InVid Verification Plugin Use with Chrome, Firefox A plugin to debunk fake images and videos. The tool uses 
reverse-image searching to debunk fake videos and also pro-
vide the users with metadata to take informed decision

PolitiFact Fact-checking website Tests the statements made on the Internet by political analysts 
and politicians and rate them. Its journalists evaluate original 
statements and each statement receives a “Truth-O-Meter” 
rating as “True”, “Mostly True”, “Half True”, “Mostly False”, 
“False”, and “Pants on Fire”

Snopes Fact-checking website Conducts in-depth fact-checking research on hot issues, which 
are frequently picked depending on reader interest. “True”, 
“Mostly True”, “Mostly False”, “False”, “Unproven”, “Mis-
captioned”, “Misattributed” are some of the annotations used 
to classify the content

Reverse Image Search (TinEye) Browser extension Can be used to see if the image has been taken from somewhere 
online. The tool comes with a Compare feature, which can be 
helpful to see how your image differs from the original one

BOOM Fact-checking website Manually checks the posts, debunks fake news, and prevents 
further spread

SurfSafe Browser Plugin Alerts users about misinformation by scanning images and 
videos on the web pages they’re looking at. Performs reverse-
image search by looking for the same content that appears on 
trusted source sites and flagging well-known doctored images

YouTube Data Viewer A web-based video verification tool Simple tool for extracting hidden data and metadata from 
YouTube videos which is particularly valuable for locating 
original content
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graph by taking the “who-replies-to-whom” structure on 
Twitter.

Most of the existing works are limited to using the data-
sets that cover domains such as politics, and entertainment. 
However, in a real-time scenario, a news stream typically 
covers various domains. Silva et al. [93] proposed a novel 
fake news detection framework to determine fake news from 
different domains by exploiting domain-specific and cross-
domain knowledge in news records. To maximize domain-
coverage, this research merges three datasets (PolitiFact, 
GossipCop and CoAID).

The content available in a post/ tweet in a microblog-
ging site is very limited and hence detection only based on 
the content available in that particular post i.e. Post-level 
becomes difficult in such scenarios but leveraging a com-
plete event is beneficial. [15, 16] are some state-of-the-art 
Event-level detection models. An event not only includes 
the particular post but also post-repost structure, comments, 
likes-dislikes, etc. and this auxiliary information makes the 
detection process efficient. Guo et al. [101] uses a frame-
work of Hierarchical Networks with Social Attention (HSA-
BLSTM) that aims to predict the credibility of a group of 

Fig. 4   False claims debunked by fact-checking organizations
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posts (reposts and comments) that constitute an event. The 
model uses user-based features and propagation patterns in 
addition to the post-based features.

Another popular approach to FND is Evidence-based or 
Knowledge-based Fact-Checking where the article at hand is 
verified with external sources. While manual fact checking 
is done either manually by expert journalists, editors or is 
sometimes crowdsourced on the other hand Automatic fact 
checking [18, 115] is done by employing various ML/DL 
techniques. A novel end-to-end graph neural model, Com-
pareNet [19], compares the news to the knowledge base 
(KB) through entities for automatic fact checking.

3 � Deep learning for multimodal fake news 
detection

With the rapid development of social media platforms, news 
content has transformed from traditional text-only pieces to 
multimedia stories with images and videos that provide more 
information. Multimodal news items engage more readers 
than standard text-only news articles because the photos and 
videos related to these articles make them more credible. 
The majority of online users are impacted by such mate-
rial, unwittingly spreading false information, and becom-
ing a part of this entire vicious network. With the growing 
quantity of articles on the Internet that include visual infor-
mation and the widespread usage of social media networks, 

the multimodal aspect is becoming increasingly important 
in better comprehending the overall structure of the content.

Due to exceptionally promising outcomes in several 
study areas, including Computer Vision and Natural Lan-
guage Processing, Deep Learning has become one of the 
most frequently researched domains by the research com-
munity in recent years. Feature extraction, which is a labo-
rious and time-consuming process in traditional machine 
learning algorithms, is done automatically by deep learn-
ing frameworks. Furthermore, these frameworks can learn 
hidden representations from complex inputs, both in terms 
of context and content, giving them an advantage in false 
news detection tasks when identifying relevant features for 
analysis is difficult.

3.1 � Deep learning models

The Deep Learning techniques can be broadly classified 
as Discriminative and Generative models among these are 
Recurrent Neural Networks (RNN) and Convolutional Neu-
ral Networks (CNN) are the most widely implemented para-
digms. As shown in Fig. 6, the DL models can be broadly 
classified as Discriminative and Generative models. The 
models are described under:

A.	 Discriminative Models: These models are supervised 
learning-based models and are used to solve classifica-
tion and regression problems. In recent years, several 
discriminative models (mostly CNN, RNN) have pro-

Table 3   Classification of prominent state-of-the art ML/DL FND techniques based on the proposed taxonomy

Level 1 Level 2 Level 3 Related work

Fake News Detection Methods Feature Based Content Single-Modal [17, 50, 59, 87]–[90]
Multi-Modal [4, 26, 28, 91]–[100]

Context Network [10, 11, 51, 85, 101]
User [13, 14, 53, 102]
Temporal [21]–[24, 86, 103]

Knowledge Based Automatic – [16, 19, 99]
Manual Expert Based [18, 40, 104, 105]

Crowdsourced [103, 106, 107]
Learning Based ML – [51, 76, 88, 108]

DL – [11, 26, 85, 92, 96, 
101, 109]–[111]

Detection Based Post-level – [18, 25, 106]
Event Level – [17, 112, 113]

Language Based Mono-Lingual – [22, 25, 27, 92]
Multi-Lingual – [87]

Degree of Fakeness Two-Class – [16, 25, 26, 95, 114]
Multi-Class – [106, 107]

Platform Main-Stream – [18, 106, 115]
Social Media – [60, 82, 86, 116, 117]
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vided promising results in detecting fake news on social 
media platforms.

B.	 Convolutional Neural Network (CNN): CNN is a type of 
neural network that has an input layer, an output layer, 
and a sequence of hidden layers, in addition to this they 
include pooling and convolution operations for apply-
ing a variety of transformations to the given input. For 
the Computer Vision tasks, CNNs have been extensively 
explored and are regarded as state-of-the-art. CNN is 
also becoming increasingly popular in NLP tasks.

C.	 Recurrent Neural Network (RNN): RNNs are powerful 
structures that allow modeling of sequential data using 
loops within the neural network. Deep neural networks 
(RNN) have shown promising performance for learn-
ing representations in recent research. RNN is capable 
of capturing long-term dependency but fails to hold it 
as the sequence becomes longer. LSTM and GRU, the 
two variants of RNN, are designed to have more per-
sistent memory and hence make capturing long-term 
dependencies easier. Additionally, the two networks 
also solve the issue of vanishing gradient problem that 
was encountered in traditional RNNs. LSTM includes 
memory cells for holding long-term dependencies in 
the text and includes input, output, and forget gates for 
memory orchestration. To further capture the contex-
tual information, bidirectional LSTM (Bi-LSTM) and 
bidirectional GRU (Bi-GRU) are used to model word 
sequences from both directions.

D.	 Recursive Neural Network (RvNN):A recursive neural 
network is a deep neural network that applies same set 
of weights recursively over a structured input, to pro-

duce a structured prediction over variable-size input 
structures, by traversing a given structure in  topo-
logical order. Ma et al. [122] proposes two recursive 
neural models based on a bottom-up and a top-down 
tree-structured neural networks for representing propa-
gation structure of tweet. A tree-structured LSTM with 
an attention mechanism is proposed in [123] learns the 
correspondence between image regions and descriptive 
words.

Fig. 7 provides a descriptive overview of the most widely 
used descriptive models, namely CNN, RNN and LSTM. 
In addition to these, several recent works have exploited 
a combination of RNNs and CNNs in their models for 
increased efficiency. Nasir et al. [124] proposed a hybrid 
CNN+RNN model that can generalize across datasets and 
tasks. This model use CNN and LSTM to extract local fea-
tures and learn long-term dependencies respectively.

B.	 Generative Models: These models are used in absence of 
labeled data and belong to the category of unsupervised 
learning. Among various generative models that have 
been used widely to solve a vast domain of problems, 
Generative Adversarial Network (GAN), Auto Encoder 
(AE), Transformer-based network and Boltzman 
Machine (BM) are mostly used and have also shown 
promising results in the field of FND.

	 i.	 Auto Encoder (AE): An autoencoder is a feed-for-
ward neural network that regenerates the input and 

Fig. 6   Classification of Deep 
Learning Models
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creates a compressed latent space representation. An 
autoencoder consists of i) an encoder that creates an 
intermediate representation of the input data, and ii) 
a decoder that regenerates the input as output. It is 
a self-supervised dimensionality reduction technique 
that generates its own labels from the training data and 
creates a lossy compression. A variation of AE is used 
in [27] that uses Multimodal Variational AE to capture 
the correlation between text and visual.

	 ii.	 Generative Adversarial Network (GAN): GAN is a 
class of unsupervised DL technique that consists of i) 
a generator that learns the generation of new sample 
data with the same statistics as training data, and ii) a 
discriminator that ties to classify the sample as true or 
fake. The discriminator is updated after every epoch to 
get better at classifying the samples, and the genera-
tor is updated to efficiently generate more believable 
samples. It is used widely for manipulating images 
and generating DeepFakes. To detect deepfake [125] 
detects and extracts a fingerprint that represents the 
Convolutional Traces (CT) left by GANs during image 
generation.

	 iii.	 Transformer: The Transformer-based networks [127] 
have come into existence in the past few years and 
have shown tremendous results for various NLP tasks. 
It aims to solve sequence-to-sequence tasks and han-
dles long-range dependencies. To compute representa-
tions of its input and output, it relies on self-attention 
without using sequence aligned RNNs or CNNs. A 
transformer network consists of the encoder stack 
and the decoder stack that have the same number of 

units. The number of encoder and decoder units act as 
hyperparameter. In addition to the self-attention and 
feed-forward layers that are present in both encoder as 
well as decoder, the decoders also have one more layer 
of Encoder-Decoder Attention layer to focus on the 
appropriate parts of the input sequence. BERT[57], 
RoBERT, ALBERT are some of the widely used 
transformer-based network that has been applied suc-
cessfully in FND [26, 128, 129]. These networks are 
pre-trained and can be fine-tuned for various NLP 
tasks. Various transformer-based word embeddings 
are introduced in Sect. 3.2.

	 iv.	 Boltzmann Machine: It is a type of recurrent neural 
network where the nodes make binary decisions and 
are present with certain biases. Several Boltzmann 
Machines (BM) can be stacked together to make even 
more sophisticated systems such as a Deep Boltz-
mann Machine (DBM). These networks have more 
hidden layers compared to BM and have direction-
less connections between the nodes. The task of train-
ing is to find out how these two sets of variables are 
actually connected to each other. For the large unla-
belled dataset, a DBM incorporates a Markov ran-
dom field for layer-wise pretraining and then provides 
feedback to previous layers. Restricted Boltzmann 
Machine (RBM) shares a similar idea as Encoder-
Decoder, but it uses stochastic units with particular 
distribution instead of deterministic distribution. RBM 
plays an important role in dimensionality reduction, 
classification, regression and many more which is used 
for feature selection and feature extraction. [130] pre-

Fig. 7   Discriminative Models 
(a) RNN (b) LSTM (c) CNN. 
[126]
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sents a Deep Boltzmann Machine based multimodal 
deep learning model for fake news detection.

Among various generative models (Fig. 8) that have 
been used widely to solve a vast domain of problems, 
Generative Adversarial Network (GAN), Auto Encoder 
(AE), Transformer-based network are widely used and 
have also shown promising results in the field of FND.

3.2 � Transfer learning and pre‑trained models

Transfer learning is a machine learning technique that lever-
ages and applies the weights of a model that is trained on one 
task to some other related tasks with different datasets for 
improving efficiency as shown in Fig. 9. This approach can 
be applied in one of the two ways (i) using the pre-trained 
model as feature extraction, or (ii) fine-tuning a part of the 
model. The first variant is directly applied without changing 
the weights of the pre-trained model e.g., using Word2Vec in 
the NLP task. For the second variant, fine-tuning is done by 
trial-and-error experiments. For two different tasks around 
50% of fine-tuning can be considered and if the tasks are 
very similar fine-tuning of the last few layers can be done. 
The nature and amount of fine-tuning needed take time and 
effort to explore depending on the nature of the task. Using 
Transfer Learning is beneficial when the target dataset is 
significantly smaller than the source dataset, as the model 
can learn features even with less training data without over-
fitting. Also, such a model exhibits better efficiency and 

Fig. 8   Generative Models (a) 
Auto Encoder (b) Generative 
Adversarial Network (c) Trans-
former. [131]

In
pu

t (
x)

O
ut

pu
t(

y)

Encoder Decoder

Regenerated 
Input 

Latent space 
representation  

Generator 

Discriminator 

Input (x)

Noise (z)

Back Propagation

G(z)

(a)

(b)

Encoder Decoder

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Input (x)

Output (y)

Real/ 
Fake

(c)

 

Source Model Target Model 

Source Dataset Target Dataset 

Knowledge 
Transfer 

Fig. 9   Transfer learning



2402	 S. Hangloo, B. Arora 

1 3

requires a lesser training time than a custom-made model. 
As a result, this idea finds vast usage in the field of Com-
puter Vision and Natural Language Processing.

A.	 Transfer learning with image data: Earlier with smaller 
datasets in the picture, the ML models were effectively 
used for computer vision tasks. But with the increase in 
the amount of data available we have seen a shift toward 
DL-based models that have proven to be very efficient 
in handling recognition tasks using these huge datasets. 
Effectively, there are many models available for Com-
puter Vision tasks, this section gives a brief overview of 
some of these models. Table 4 provides a comparison of 
pre-trained image models. Many of these models like the 
VGG, ResNet-50 Inception V3, and Xception models 
are pre-trained on the ImageNet (contains 1.28 million 
images divided among 1,000 classes) for object detec-
tion tasks.

B.	 AlexNET: Convolutional Neural Networks (CNNs) have 
typically been the model of choice for object recogni-
tion since they are powerful, easy to train, and control. 
AlexNET [132], a Deep convolutional network, con-
sists of eight layers (having five convolutional layers 
and three fully-connected layers), and Rectified Lin-
ear Unit (ReLU) function as it does not suffer from the 
issue of vanishing gradient. It also combats overfitting 
by employing drop-out layers, in which a link is deleted 
with a probability of p = 0.5 during training. Apart 
from this, it allows a multi-GPU training environment 
that helps to train a larger model and even reduces the 
training time. AlexNet is a sophisticated model that can 
achieve high accuracies even on huge datasets however, 
its performance is compromised if any of the convolu-
tional layers are removed.

C.	 VGG Model: The VGGNet (Visual Geometry Group 
Network) is a CNN model with a multilayered operation 
and is pre-trained on the ImageNet dataset. VGG [54] is 
available in two variants with 16 and 19 weight layers 
namely VGG-16 and VGG-19 respectively. These mod-
els are substantially deeper than the previous models and 
are built by stacking convolution layers but the model’s 
depth is limited because of an issue called diminish-
ing gradient which makes the training process difficult. 
To reduce the number of parameters in these very deep 
networks, a 3 × 3 convolution filter is used in all layers 

with stride set to 1. The model uses fixed 3 × 3 sized 
kernels that can reproduce all of Alexnet's variable-size 
convolutional kernels (11 × 11, 5 × 5, 3 × 3).

D.	 GoogLeNet: GoogLeNet (Inception V1) [56] was the 
first version of the GoogLeNet architecture, which was 
further developed as Inception V2 and Inception V3. 
While larger kernels are preferable for global features 
distributed over a vast area of the image, while smaller 
kernels detect area-specific features that are scattered 
across the image frame efficiently, and hence choos-
ing a set kernel size is a challenging task. To resolve 
the problem of recognition of a variable-sized feature, 
Inception employs kernels of varied sizes. Instead of 
increasing the number of layers in the model, it expands 
it by including several kernels of varied sizes within 
the same layer. The Xception architecture is a modifica-
tion of the Inception architecture that uses depth-wise 
separable convolutions instead of the usual Inception 
modules.

E.	 ResNET: To address the issue of diminishing gradient 
in VGG models, the ResNET (Residual Network) [55] 
model was developed. The primary idea is to use short-
cut connections to build residual blocks to bypass blocks 
of convolutional layers. CNN models can get deeper 
and deeper using Resnet models. There are many vari-
ations for Resnet models but Resnet50 and ResNet101 
are used mostly.

B.	 Transfer learning with Language data: Word Embed-
dings use vector representations of words to encode the 
relationships between them. The pre-trained word vector 
is related to the meaning of the word and is one of the 
most effective ways to represent a text since it intends 
to learn both the syntactic and semantic meaning of 
the given word. Figure 10 provides the classification of 
Word Embeddings that is broadly divided into four cat-
egories depending upon (i) whether these can preserve 
the context or not as Context-independent and Context-
dependent word embeddings, (ii) whether the underlying 
architecture of the model is RNN-based or Transformer 
based, (iii) the level at which the encoding is produced 
and (iv) whether the underlying task is supervised or 
unsupervised. An overview and comparative analysis of 

Table 4   Pretrained Image 
Models

Network Author(s), Year Salient Features Parameters FLOP Top 5 Accuracy

AlexNET Krizhevsky et al. (2012) Deeper 62 M 1.5B 84.70%
VGGNet Simonyan et al. (2014) Fixed-size kernel 138 M 19.6B 92.30%
Inception Szegedy et al. (2014) Wider parallel kernel 6.4 M 2B 93.30%
ResNET He et al. (2015) Shortcut connections 60.3 M 11B 95.51%
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the different types of word embedding techniques cat-
egorized under Traditional, Static, and Contextualized 
word embeddings is provided in [133]. Pretrained Word 
Embedding is a type of Transfer Learning approach 
where embeddings learned in one task on a larger data-
set are utilized to solve another similar job. These are 
highly useful in NLP tasks in a scenario where the train-
ing data is sparse and number of trainable parameters are 
quite large. [134] studies the utility of employing pre-
trained word embeddings in Neural Machine Translation 
(NMT) from a number of perspectives.

Some of the widely used text embeddings are discussed 
below (Fig. 10):

	 i.	 One-hot vector representation: It is one of the first and 
simplest word embeddings. It represents every word 
as an R |V| x 1 vector with all 0 s and only a single 1 at 
the index of that particular word in the sorted English 
language, where |V| represents the vocabulary. Though 
one-hot vectors are easy to construct, but these are not 
a good choice to represent a large corpus of words as 
it does not capture the similarity between the words 
in the corpus.

	 ii.	 Word2Vec: Word2Vec is developed by Google and 
is trained on Google News Dataset. It is one of the 
widely used pre-trained word embeddings, takes text 
corpus as input, and generates word vectors as out-
put. It is a Shallow Neural Network architecture that 

uses only one hidden layer in its feed-forward net-
work. It learns vector representations of words after 
first constructing a vocabulary from the training text 
input. Distance tools like cosine similarity are used 
for finding the nearest words for a user-specified 
term. Depending on how the embeddings are learned, 
the Word2Vec model can be categorized into one of 
two approaches: Continuous Bag-of-Words (CBOW) 
model that learns the target word from the surround-
ing words, and the Skip-gram model that learns the 
surrounding words given the target word.

	 iii.	 GloVe is an unsupervised learning technique that gen-
erates word vector representations by leveraging the 
relationship between the words from Global Statistics. 
The training produces linear substructures of the word 
vector space, which are based on aggregated global 
word-word co-occurrence statistics from a corpus. The 
basic premise of the model is that ratios of word-word 
co-occurrence probabilities can contain some form of 
meaning. A co-occurrence matrix shows the frequency 
of occurrence of a pair of words together.

	 iv.	 BERT (Bidirectional Encoder Representations from 
Transformer) [57] has an advancement over Word-
2Vec and generates dynamic word representations 
based on the context in which the word is being used 
rather than generating fixed representation like Word-
2Vec. A polysemy word e.g., bank, can have multiple 
embeddings depending on the context in which the 
word is being used. This has brought context-depend-

Fig. 10   Taxonomy of Word 
Embeddings
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ent embeddings into the mainstream in present times. 
BERT is a pre-trained bidirectional transformer-based 
contextualized word embedding that can be fine-tuned 
as per the need. Since its introduction, many variants 
like RoBERTa (Robustly Optimized BERT Approach) 
[135] and Albert (A Lite BERT) [136] have been 
introduced to further enhance the state-of-the-art in 
language representations.

	 v.	 ELMo: Unlike traditional word-level embeddings like 
Word2Vec and GLoVe that have the same vector for 
a given word in the vocabulary, the same word can 
have distinct word vectors under varied contexts in 
the case of ELMo representation like the representa-
tion of BERT. The ELMo vector assigned to a word is 
a function of the complete input sentence containing 
that word.

	 vi.	 XLNet learns unsupervised language representations 
based on a novel generalized permutation language 
modeling aim. It fuses the bidirectional facility of 
BERT with the autoregressive technology of Trans-
former-XL.

Table 5 provides a comparison between various embed-
dings and highlights the advantages and disadvantages of 
each one of them.

3.3 � Deep learning frameworks and libraries

Over the past few years, various detection methods have 
been proposed for solving the issue of fake news and rumors 
on online social media. Researchers are constantly working 
in these domains to find effective solutions and techniques. 
Deep learning is one of the several techniques that has 
become increasingly popular in solving problems in various 

domains. Neural networks such as CNN, RNN, LSTM are 
becoming increasingly popular. Although, using deep learn-
ing techniques complex tasks are performed easily compared 
to the machine learning counterparts but, successfully build-
ing and deploying them is a challenging task. Training a 
deep learning model takes a little longer when compared 
with traditional models but testing can be done rapidly. The 
deep learning frameworks are developed with an intention to 
accelerate and simplify the processing of the model. These 
frameworks combine the implementation of contemporary 
DL algorithms, optimization techniques, with infrastructure 
support. Figure 11 gives an overview of various DL/ML 
tools that are widely used to simplify the research problems.

Some of the ML/DL frameworks and libraries are dis-
cussed below:

Table 5   Comparison of various Text Embeddings

Embedding Advantage Weakness

Word2Vec Consume much less space than one-hot encoded vectors
Maintain semantic representation of word
Capable of capturing multiple degrees of similarity between 

words using simple vector arithmetic

Can’t handle OOV words
No shared representation is used at subword level
Scaling to new languages requires separate embedding matrices

GloVe Can handle Out-Of-Vocabulary words Gives random vectors to OOV words which confuses the model 
in long run

BERT Creates contextualized vectors
Learns representations at a “subword” (also called WordPieces) 

level

Computationally intensive
Neglects dependency present between the masked positions
Suffers from the pretrain-finetune inconsistency

ELMo Generates contextualized word embeddings
Can handle Out-Of-Vocabulary words

Complex Bi-LSTM structure makes train and embedding gen-
eration very slow

Representing long-term context dependencies becomes difficult
XLNet Provides autoregressive pretraining

Enables bidirectional learning by maximizing the expected like-
lihood over all permutations of the factorization order

XLNet is pre-trained to capture long-term dependencies but can 
underperform on short sequences

XLNet is generally more resource-intensive and takes longer to 
train and to infer compared to BERT
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i.	 TensorFlow: TensorFlow is an open-source, end-to-
end framework for deep learning published under the 
Apache 2.0 license. It is designed for large-scale distrib-
uted training and testing that can run on a single CPU 
system, GPUs, mobile devices as well as on distributed 
systems. It provides a large and flexible ecosystem of 
tools and libraries that allows developers to quickly 
construct and deploy ML applications. It uses data 
flow graphs to perform numerical computations. Model 
building and training with TensorFlow employs high-
level Keras API and is quite simple as it offers multiple 
levels of abstraction, allowing researchers to choose the 
level of abstraction that best suits their needs.

ii.	 Torch and PyTorch: Torch is one of the oldest frame-
works which provides a wide range of algorithms for 
deep machine learning. It provides a multi-GPU envi-
ronment. Torch is used for signal processing, parallel 
processing, computer vision, NLP etc. Pytorch is an 
open-source Python version of Torch, which was devel-
oped by Facebook in 2017 and is released under the 
Modified BSD license. PyTorch is a library for pro-
cessing tensors. It is an alternative to NumPy to use the 
power of GPUs and other accelerators. It contains many 
pre-trained models and supports data parallelism. It is 
one of the widely used Machine learning libraries, along 
with TensorFlow and Keras. It is particularly useful for 
small projects and prototyping.

iii.	 Caffe and Caffe2: Caffe is a general deep learning frame-
work that is based on C +  + launched with speed, and 
modularity in mind. It was developed by Berkeley AI 
Research (BAIR). Caffe is designed primarily for speed 
and includes support for GPU as well as Nvidia’s Com-
pute Unified Device Architecture (CUDA). It performs 
efficiently on image datasets but doesn’t produce similar 
results with sequence modeling. Caffe2, open-sourced 
by Facebook since April 2017, is lightweight and is 
aimed towards working on (relatively) computationally 
constrained platforms like mobile phones. Caffe2 is now 
a part of PyTorch.

iv.	 MXNet: Apache MXNet is a flexible and efficient deep 
learning library suited for research prototyping and pro-
duction. It works on multiple GPUs with fast context 
switching. MXNet contains various tools and libraries 
that enable tasks involving computer vision, NLP, time 
series etc. GluonCV and GlutonNLP are libraries for 
computer vision and NLP modeling, respectively. The 
Parameter Server and Horovod support enable scalable 
distributed training and performance optimization in 
research and production.

v.	 Theano: Theano is a python-based deep learning library 
developed by Yoshua Bengio at Université de Montréal 
in 2007. The latest version of Theano, 1.0.5, is Python 
3.9 compatible. Theano is built on top of NumPy and 

helps to easily define, evaluate, and optimize mathemati-
cal operations involving multi-dimensional arrays. It can 
be run on the CPU or GPU, providing smooth and effi-
cient operation. It offers its users with extensive unit-
testing which aids in code debugging. Keras, Lasagne, 
and Blocks are open-source deep libraries built on top 
of Theano.

vi.	 Chainer: Chainer is a robust and flexible deep learning 
framework that supports a wide range of deep networks 
(RNN, CNN, RvNN etc.). It supports CUDA computa-
tion and uses CuPy to leverage a GPU computation. Par-
allelization with multiple GPUs is also possible. Code 
debugging with Chainer is quite easy. It provides two DL 
libraries i) ChainerRL that implements a variety of deep 
reinforcement algorithms, and ii) ChainerCV which is a 
Library for Deep Learning in Computer Vision.

vii.	Computational Network Toolkit (CNTK): The Microsoft 
Cognitive Toolkit (CNTK) is an open-source toolkit, 
since April 2015, for providing commercial-grade dis-
tributed deep learning services. It is one of the first 
DL toolkits that supports the Open Neural Network 
Exchange (ONNX) format for shared optimization and 
interoperability. The newest release of CNTK, 2.7., 
supports ONNX v1.0. With CNTK neural networks are 
represented as a series of computational steps using a 
directed graph. It allows the user to easily develop and 
deploy various NN models such as DNN, CNN, RNN 
etc. CNTK can either be included as a library in Python, 
and C +  + code, or can be used as a standalone ML/
DL tool through BrainScript (its own model description 
language).

viii.	 Keras: Keras is Python wrapper library for DL 
written in Python, and runs on top of the ML/DL plat-
forms like TensorFlow, CNTK, Theano, MXNet and 
Deeplearning4j. Given the underlying frameworks, it 
runs on Python 2.7 to 3.6 on both GPU as well as on 
CPU. It was launched with a prime focus on facilitat-
ing fast experimentation and is available under the MIT 
license.

ix.	 TFLearn: TFlearn is a modular and transparent deep 
learning library built on top of Tensorflow and facilitates 
and speed-up experimentations using multiple CPU/
GPU environment. All functions are built over tensors 
and can be used independently of TFLearn.

x.	 TensorLayer: TensorLayer is a deep learning and rein-
forcement learning library built on top of TensorFlow 
framework. Other TensorFlow libraries including Keras 
and TFLearn hide many powerful features of Tensor-
Flow and provide only limited support for building and 
training customized models.

Table 6 shows some popular DL frameworks (such as 
Keras, Caffe, PyTorch, TensorFlow, etc.) along with their 
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comparative analysis. These frameworks and libraries are 
implemented in Python, are task-specific and allow research-
ers to develop tools by offering a better level of abstraction

Several machine learning and deep learning frameworks 
have emerged in the last decade, but their open-source 
implementations appear to be the most promising for sev-
eral reasons: (i) openly available source codes, (ii) a large 
community of developers, and, as a result, a vast number of 
applications that demonstrate and validate the maturity of 
these frameworks.

3.4 � Review of state‑of‑the‑art multimodal 
frameworks

With the rapid expansion of social media platforms, news 
content has evolved from traditional text-only articles to 
multimedia articles involving images and videos that carry 
richer information. Multimodal articles have the power to 
engage more readers as compared to the traditional text-only 
articles as the images and videos attached to these articles 
make them more believable. Most of the online users get 
affected by such information, unknowingly spread the misin-
formation, and become a part of this whole vicious network.

Traditionally, the great majority of methods for identify-
ing false news have focused solely on textual content analy-
sis and have relied on hand-crafted textual features to do so. 
However, with the growing quantity of articles on the Inter-
net that include visual information and the widespread usage 
of social media networks, multimodal aspects are becoming 
increasingly important in understanding the overall intent of 
the content in a better way.

Given the contents of a news claim ℂ with its text set T 
and image set I, the task of multimodal fake news detector is 
to determine whether the given claim can be considered as 
true or fake, i.e., to learn a prediction function F(ℂ) → 0, 1 
satisfying:

The following figure, Fig. 12, presents a general frame-
work that depicts various channels present in a multimodal 
fake news detection (MFND) framework. The framework 
illustrates how the features are extracted individually and 
then merged to detect the credibility of the claim.

Some multimodal FND frameworks, apart from fusing 
textual and image data, also evaluate the similarity between 

F(ℂ) =

{

1, if ℂ is confirmed to be fake

0, otherwise

Table 6   Comparison of popular Deep Learning Frameworks

Software Platform Written in Interface Open 
MP sup-
port

Open CL support CUDA 
support

RNN CNN Has pre-
trained 
Models

TensorFlow Windows, Linux, 
macOS, Android

Python,
C +  + ,
CUDA

C/C +  + , R, Python
(Keras),
Java, JavaScript

× via SYCL support ✔ ✔ ✔ ✔

PyTorch Windows,
Linux,
macOS,
Android

C/C +  + ,
Python,
CUDA

Python,
C +  + 

✔ Via separately 
maintained pack-
age

✔ ✔ ✔ ✔

Caffee Linux,
macOS,
Windows

C +  +  Python,
C +  + 
MATLAB,

✔ Under development ✔ ✔ ✔ ✔

Theano Cross-platform Python Python
(Keras)

✔ Under development ✔ ✔ ✔ Through 
Lasa-
gne's 
model 
zoo

Chainer Linux,
macOS

Python Python × × ✔ ✔ ✔ ✔

MXNet Linux,
AWS macOS,
iOS, Windows,
Android,
JavaScript

Small
C +  + 
core library

C +  + ,
Python, MATLAB, 

JavaScript, Scala,
Perl, R

✔ On roadmap ✔ ✔ ✔ ✔

Microsoft 
Cognitive 
Toolkit

(CNTK)

Linux, Windows,
macOS (via Docker on 

roadmap)

C +  +  Python
(Keras),
C +  + 
Command Line

✔ × ✔ ✔ ✔ ✔
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the two [97], or have used external knowledge and event-
specific information to check the credibility of a given news 
article. Others have also used social context including user 
data[25], propagation structure, sentiments[98], and other 
auxiliary information to effectively combat and detect fake 
news.

Figure 13 depicts the taxonomy of a MFND framework 
by focusing on the various techniques used in processing the 
individual channels.

A.	 Multimodal Features: With the increasing use of social 
media, a shift from all text to a multimodal news article 
can be seen. Now, the news articles comprise images and 
videos along with the text. The models for MFND have 
used two different channels for handling the text and 

image data. The section below summarizes how different 
models have exploited various techniques for the same.

	 i.	 Text channel: To capture the context from textual 
data, the researchers have used various word embed-
dings and pre-trained model, as discussed in Sect. 3.2. 
Word2Vec is one of the popular word embedding 
that is used by [4, 25, 27, 91]. But as word2vec can’t 
handle out-of-vocabulary words, researchers have 
exploited Glove, BERT, XLNet and other embeddings 
instead [26, 28, 92, 95, 96, 98, 110, 129]. FND-SCTI 
[4] considers the hierarchical document structure and 
uses Bi-LSTM at both word-level (from word to sen-
tence) and sentence-level (from sentence to document) 
to capture the long-term dependencies in the text. 
Ying et al. [92] proposed a multi-level encoding net-
work to capture the multi-level semantics in the text. 
The model KMAGCN [99] proposed by Qian et al. 
captures the non-consecutive and long-range semantic 
relations of the post by modeling it as a graph rather 
than a word sequence and proposes a novel adaptive 
graph convolutional network handle the variability in 
the graph data.

	 ii.	 Visual channel: The Visual sub-network uses the 
article's visual information as input to generate the 
post's weighted visual features. The image is initially 
resized (usually to 224 × 224 pixel size), after which it 
is placed into a pre-trained model to extract the image 
features. The visual channel in the framework cap-
tures the manipulation in image data using pre-trained 
models. VGG-19 is the most widely used model, apart 
from this VGG-16, ResNet50 are also utilized. [97] 
uses image2sentence to represent news images by 
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generating image captions. [110] uses Image foren-
sic techniques—Noise Variance Inconsistency (NVI) 
and Error Level Analysis (ELA) for the identification 
of manipulated images. [26, 96] uses the bottom-up 
attention pre-trained ResNet50 model to extract region 
features for every image attached with the article. As 
an article sometimes comes with multiple images, 
Giachanou et al. in [94] propose visual features that 
are extracted from multiple images.

	 iii.	 Apart from the visual and textual channels some of 
the researchers have also focused on other aspects of 
a social media post that might be helpful in detecting 
fake news. Cui et al. [98] proposed an end-to-end deep 
framework, named SAME that incorporates user senti-
ment extracted from users’ comments (with VADER 
-sentiment prediction tool) with the multimodal data. 
Experiments on PolitiFact and GossipCop shows F1 
score of 77% (approx.) and 80%(approx.) which is bet-
ter than the baseline methods. User profile, network, 
and propagation features are another set of vectors that 
are highly exploited [25].

B.	 Multimodal Feature Fusion: Dealing with multimedia 
data comes with an intrinsic challenge of handling the 
data of varied modalities while keeping intact the cor-
relation between them. In a multimodal social media 
post, finding the correlation between text and image is 
an important step in identifying a fake post. There are 
three techniques (Fig. 14) that are widely used for mul-
timodal data fusion.

	 i.	 Early fusion/ Data-level Fusion first fuses the multi-
modal features and then applies the classifier on the 
combined representation; The data-level fusion of 
multimodal features starts with feature extraction of 
unimodal features and after analysis of the different 
unimodal feature vectors these features are combined 
into a single representation. With early fusion as the 
features are integrated from the start, a true multi-
media feature representation is extracted. There are 
various methods like principal component analysis 
(PCA), canonical correlation analysis (CCA), inde-
pendent vector analysis (IVA) and independent com-
ponent analysis (ICA) which are used to accomplish 
this task [137]. One of the main disadvantages of this 
approach is the complexity to fuse the features into a 
common joint representation. Also, rigorous filtering 
of data is needed to make a common ground before 
fusion which poses a challenge if the dataset available 
is already limited in number.

	 ii.	 Late fusion/ Decision-level Fusion combines the 
results obtained from different classifiers trained 
on different modalities; Late fusion also starts with 
extracting the unimodal features. But in contrast to 
early fusion, the late fusion approach learns semantic 
concepts separately from each unimodal channel and 
different models are available to determine the opti-
mal approach to combine each of the independently 
trained models. It is based on the ensemble classifier 
technique. This method gives the flexibility to concat-
enate the input data streams that significantly varied 
in terms of the number of dimensionality and sam-
pling rate. Fusing the features at the decision-level is 
expensiveness in terms of the learning effort as sepa-
rate models are employed for each modality. Further-
more, the fused representation requires an additional 
layer of the learning stage. Another disadvantage is 
the potential loss of correlation in fused feature space.

	 iii.	 Intermediate Fusion allows the model to learn a 
joint representation of modalities by fusing different 
modalities representations into a single hidden layer. 
Intermediate fusion changes input data into a higher 
level of representation (features) through multiple lay-
ers and allows data fusion at different stages of model 
training. Each individual layer uses various linear and 
non-linear functions to learn specific features and gen-
erates a new representation of the original input data.

Several research works in the literature have come up 
with various techniques, [24] presents a neuron-level atten-
tion mechanism for aligning visual features with a joint rep-
resentation of text and social context, and as a result, greater 
weights are assigned to visual neurons with semantic mean-
ings related to the word. FND-SCTI proposed in [4] uses a 
hierarchical attention mechanism to put an emphasis on the 
important parts of the news article. Giachanou et al. in [94] 
propose the use of cosine similarity to find the image-text 
similarity between the title and image tags embeddings. To 
preserve semantic relevance and representation consistency 
across different modalities [98] uses an adversarial mecha-
nism. To filter out the noise and highlight the image regions 
that are strongly related to the target word, [16] uses a word-
guided visual attention module. To learn complementary 
inter-dependencies among textual and visual features [26, 
92, 96, 99, 129] uses multiple co-attention layers, hierarchi-
cal multi-modal contextual attention network, feature-level 
attention mechanism, blended attention module and multi-
modal cross-attention network respectively. The proposed 
the Crossmodal Attention Residual Network (CARN) in 
[111] can selectively extract information pertaining to a tar-
get modality from another source modality while preserv-
ing the target modality's unique information. Another model 
SAFE [97], jointly learns the text and image features and 
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also learns the similarity between them to evaluate whether 
the news is credible or not (Fig. 14).

	 III.	 Capturing External Knowledge channel: The Knowl-
edge module tries to capture background knowledge 
from a real-world knowledge graph to supplement 

Fig. 14   General schemes for 
multimodal fusion (a) Early 
Fusion, (b) Late Fusion, (c) 
Intermediate Fusion
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Fig. 15   Illustration of Knowl-
edge Distillation process [16] WHO demands ramped-up COVID-19 vaccination, declared Omicron as virus variant

WHO: The WHO is a specialized agency of the UN responsible for international public health .
COVID-19: is a contagious disease caused by (SARS-CoV-2). The first known case was …. 
Vaccine: It is a biological preparation that helps the immune system develop protection …
Omicron: It is a variant of SARS-CoV-2 that was first reported to the WHO from South ... 
Virus: A virus is a sub-microscopic infectious agent that replicates only inside the living cells …
Variant: a form or version of something that differs in some respect from other forms of the …

WHO: UN, International public health;     
COVID-19: contagious disease, 
SARS-CoV-2;
Vaccine: dose, shot, injection, jab, 
booster; 
Omicron: COVID variant,           
SARS-CoV-2 variant
Virus: infection, pathogen;  
Variant: variation, alteration, 
modification;
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the semantic representation of short text posts. An 
illustration of the knowledge distillation process is 
presented in Fig. 15. Given a post, [16, 99] utilize 
the entity linking technique to associate the entity 
mentions in the text with pre-defined entities in a 
knowledge graph. Rel-Norm [138], Link Detector 
[139], and STEL [140] are widely used entity link-
ing techniques. To gain the conceptual data of each 
distinguished entity from an existing knowledge 
graph, YAGO [141, 142], and Probase [143] can be 
exploited.

	 IV.	 Event-level Features: Individual microblog posts 
are short and have very limited content. An event 
generally contains various related posts relevant to 
the given claim. Detecting fake news at the event 
level comprises of predicting the veracity of the 
whole event instead of an individual post. Most of 
the existing MFND frameworks work at post level 
[4, 27, 28, 92, 95], and learn event-specific features 
that are not useful in predicting the unseen future 
events and suffer from generalization. But [15, 16] 
intends to accurately categorize the post into one of 
the K events based on the multimodal feature rep-
resentations. [96] incorporates topic memory mod-
ule that captures topic-wise global feature and also 
learns post representation shared across topics. The 
Event Adversarial Neural Network (EANN) model 
proposed in [15] captures the dissimilarities between 
different events using an event discriminator. The role 
of the event discriminator is to eliminate the event-
specific features and learn shared transferable fea-
tures across various events. This model is evaluated 
on two multimedia datasets extracted from Twitter 
and Weibo and shows an accuracy of 71% and 82% 
respectively which is better than the baseline models. 
Ying et al. offers a unique end-to-end Multi-modal 
Topic Memory Network (MTMN) [115] that captures 
event-invariant information by merging post repre-
sentations shared across global latent topics features 
to address real-world scenarios of fake news in newly 
emerging posts.

Table 7 gives the comparative analysis of various exist-
ing state-of-the-art deep learning-based multimodal fake 
news detection models focusing on the techniques used for 
processing individual channels and the methods used for 
concatenating the features for presenting a combined feature 
space. The table also discusses about the future perspective. 
In addition to this, Table 8 provides a detailed analysis of 
the experimental setup of the DL-based MFND frameworks. 
These tables provide some ideas about how one can practi-
cally approach the problem of fake news.

4 � Data collection

Before starting the data collection process, the developers 
must decide upon the size of the dataset, news domain (e.g., 
entertainment, politics etc.), media (e.g., texts, images, vid-
eos, etc.), type of disinformation (e.g., fake news, propa-
ganda, rumors, hoaxes, etc.) in advance. Various datasets 
for the task of FND have been developed by various studies 
and these vary in terms of the news domain, size, type of 
misinformation, content type, rating scale, language, and 
media platform.

[44] has laid down the requirements for fake news detec-
tion Corpus (Fig. 16). The study in [70] has introduced 
and divided the requirements of FND dataset into four cat-
egories, namely Homogeneity requirements, Availability 
requirements, Verifiability requirements, Temporal require-
ments (Fig. 17).

This section describes various data collection and annota-
tion strategies apart from the datasets that are available for 
the given task.

4.1 � Existing datasets

Several datasets are available for FND and related tasks like 
LIAR, CREDBANK, FEVER but most of these are text-only 
data. There are only a few datasets that have text along with 
visual data. The authors in [70] have systematically reviewed 
and done a comparative analysis of twenty-seven popular 
FND datasets by providing insights into existing dataset. 
Table 9 gives an overview of the multimodal datasets that 
are available and are widely used in the study.

Despite the fact that multimodal fake news datasets are 
available, but these datasets still have some shortcomings. 
The above table clearly shows that the multimodal datasets 
that are available are coarse-grained (have 2 or 3 labels 
only). These datasets fail to acknowledge fine-grained labe-
ling that may be found in datasets like, LIAR [106], but 
these datasets are unimodal and can’t be used in a multi-
modal setting.

Even though FakeNewsNet [120] dataset is one of the 
newest benchmark datasets that contains content, social 
context as well as socio-temporal data, but is not available 
as whole and only subsets of dataset can be retrieved using 
APIs provided. This is due to the fact that the dataset uses 
Twitter data for capturing user engagement, and so is not 
entirely publicly accessible according to license regulations.

While some datasets incorporate data from various 
domains, the existing multimodal datasets focus on lim-
ited domains. One of the main reasons that contribute to 
the compromised performance is due to the fact that the 
existing datasets only focus on specific topics like politics, 
entertainment etc. and hence have domain-specific word 
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usage, whereas a real news stream typically covers a wide 
range of domains.

4.2 � Dataset collection and annotation

Social media platforms are one of the best ways to reach 
the masses. Everyday a huge volume of data is circulated, 
but as most of the data goes unchecked and so the prolifera-
tion of fake news on these platforms becomes easy. Many 
researchers have used these platforms to collect data and 
create their datasets. But as only a few datasets are avail-
able which are suited to our requirement, this section gives 
a clear understanding of the collection of data from online 
platforms. Broadly speaking there are two ways of data col-
lection and sampling from online platforms, namely (i) top-
down approach, and (ii) bottom-up approach.

The top-down approach involves a collection of infor-
mation and posts keeping some keywords under considera-
tion. This approach is useful for debunking long-standing 
rumors that are already known, the data is crawled from 
fact-checking websites like Snopes, PolitiFact etc. [59] uses 
this approach for data collection. But, on the contrary, if 

emerging news articles are to be collected the bottom-up 
approach comes in handy and it collects all the relevant posts 
and articles in a given time frame. [12, 145] have used the 
bottom-up approach.

Collecting reliable datasets for FND is not a trivial task 
and requires the fact checking of news to label and rate the 
news items (as binary or multiclass rating scale). As the 
ground truth is already known if data is collected using the 
top-down approach, no further annotation is needed. But, in 
the case of the bottom-up approach annotation is necessary 
and can be performed in one of the three ways (1) manual 
expert-oriented fact checking; (2) automated fact checking 
via knowledge graphs and other web sources; or (3) crowd-
sourced fact checking.

Web APIs are one of the simplest ways to access, collect, 
and store data from social networking networks, and they 
usually come with documentation that explains how to get 
the required data. An application can use the APIs to request 
data using a set of well-defined methods. For example, 
retrieving all the data posted by some particular user or all 
the posts containing a specific keyword from a social media 
platform APIs are used. Twitter and Sina Weibo are two key 

Table 8    Experimental Setup of Multimodal Fake News Detection Models

Model Ref. Dataset Batch size Learning rate Dropout Epochs Optimizer Loss function Performance Evalu-
ation

Att-RNN [25] Twitter16, Weibo 128 – – 100 Stochastic 
gradient 
descent

Cross Entropy Acc- ~78%, ~68% 

EANN [15] Twitter15, Weibo 100 – – 100 – Cross Entropy Acc- ~71%, ~82% 
SAME [98] FakeNewsNet 128 0.001 0.5 – RMSprop Adversarial, 

Hybrid 
similarity, Cross 
entropy

Acc- ~77%, ~80%

MKEMN [16] Twitter15, 
PHEME

128 – – – – Cross Entropy Acc-    ~86%, ~81%

MVAE [27] Twitter15, Weibo 128 0.00001 – 300 Adam VAE Loss Acc-   ~74%, ~82%
SpotFake [28] Twitter15, Weibo 256 0.0005, 0.001 0.4 – Adam – Acc- ~72%, ~80%
SpotFake+ [95] FakeNewsNet – – 0.4 – – – Acc- ~84%, ~85% 
SAFE [97] FakeNewsNet – – – – – Cross Entropy Acc-   ~87%,  ~83%
– [94] FakeNewsNet 32 0.00005 0.2 60 Adam – F1 score- ~76%
MCAN [129] Twitter16, Weibo – – – 100 Adam Cross Entropy Acc- ~80%, ~89%
HMCAN [26] Weibo, Twitter15, 

PHEME
256 0.001 – 150 Adam Cross Entropy Acc- ~85%, ~89%, 

~88%
KMAGCN [99] Weibo, Twitter15, 

PHEME
128 0.01 – 300 Adam Cross Entropy Acc-  ~84%, ~78%, 

~86%
CARMN [91] Twitter16, Weibo 150 – – 150 Adam Cross Entropy Acc-   ~74%, ~85%
FND-SCTI [4] Twitter15, Weibo 128 0.00001 – 300 Adam VAE Loss Acc-   ~75%, ~83%
– [110] AllData, Kaggle 

datasets
32 – – 40 Adam Cross Entropy Acc- ~95%, ~95%, 

~95%
MMCN [92] Weibo,  PHEME 64, 

256
0.001 – 150 Adam Cross Entropy Acc- ~87%, ~87%

MTMN [96] Weibo,  PHEME 256 0.001 – 200 Adam Cross Entropy Acc- ~88%, ~88%
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platforms that have been widely explored for studying fake 
news. [61, 146] have provided and given an overview of 
several ways of data collection from social media sites. Twit-
ter provides REST APIs to allow users to interact with their 
service but the user should have a developer account. Tweets 
based on particular topics can be extracted in real-time from 
Twitter API using the Tweepy library. Similarly, Sina Weibo 
provides an API to help users access their data. Apart from 
this, the data can be also scaped from any website using web 
crawlers. Beautiful Soup is one of the Python libraries for 
pulling data out of HTML and XML files.

5 � Open issues and future direction—
discussion

In this section, we discuss several challenging problems of 
fake news detection (Fig. 18). To avoid any further spread 
of fake news on social media, it is particularly important 

Table 9   Multimodal Fake News datasets

Note: I—Total Number of Images, F—Number of Fake claims, R—Number of Real claims

Dataset Year of release Statistics Domain Contents Labels Collected from Used in

Twitter 15 [144] 2015 361 (I)
7032 (F)
5008 (R)

Posts related
to 11 events

Text, visual 2 Twitter [4, 15, 26–28, 99]

Twitter 16 [89] 2016 413 (I)
9596 (F)
6225 (R)

Posts related
to 17 events

Text, visual 2 Twitter [25, 91, 111, 129]

Weibo [25] 2016 9528 (I)
4749 (F)
4779 (R)

Crawl the verfi
ed false rumor 

posts from May, 
2012 to

Jan, 2016

Text, visual 2 Weibo (Non-rumor 
tweets are verifi

ed by Xinhua News
Agency, an authori-

tative news 
agency in China)

[4, 15, 25–28, 91, 
91, 99]

PHEME [12] 2016 2672 (I)
1972 (F)
3830 (R)

9 different events,
which include 5 

cases of breaking 
news

Tweet, conversa-
tional threads

3 Twitter [16, 92, 96, 99]

ALLData [100] 2018 20,015 (I)
11,941 (F)
8074 (R)

2016 US Presiden-
tial elections

The title, text, 
image,

author and website

2 Fake and real
news scraped from 

240 websites 
and authoritative 
news websites, 
i.e., the New 
York Times, 
Washington Post, 
etc. respectively

[100, 110, 111]

FakeNewsNet [120] 2019 19,200 (I)
5367 (F)
17,222 (R)

Politics, Entertain-
ment

Text, image url, 
conversational 
threads, location, 
and timestamp of 
engagement

2 Content is crawled 
from PolitiFact, 
GossipCop, E! 
online;

For user engage-
ments Twitter 
API is used

[94, 95, 97, 98]
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Fig. 16   Requirements for fake news detection datasets defined by [44]
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to identify fake news at an early stage. Because getting the 
ground truth and labeling the false news dataset is time-
consuming and labor-intensive, investigating the problem 
in a weakly supervised scenario, i.e. with few or no labels 
for training, becomes essential. In addition, there has been 
relatively little research into the multimodal nature of fake 
news on social media. It's also important to understand why 
a piece of news is labeled as fake by machine learning mod-
els because the resulting explanation can provide fresh data 
and insights that remain hidden when using content-based 
models.

There are several challenges associated with the FND 
problem. After extensive study and evaluation of the litera-
ture that is available and has been discussed in Sect. 2 and 
Sect. 3, the following research gaps have been identified.

	 i.	 Multimodality: With the rise of social media, there 
has been a change from all text to multimodal news 
articles. Images and videos are now included in 
news pieces, to complement the textual content. As 

a result, a model that can work with a multi-modal 
dataset must be built. Although several models have 
been established to combat such a problem, there has 
been very little research on the multimodal nature of 
fake news on social media, as working in a multimodal 
setting is difficult in and of itself. While some of the 
offered approaches have been successful in detecting 
fake news, they still face the challenge of determining 
the relationships between multiple modalities.

	 ii.	 Multi-linguality: Most of the existing works in this 
domain focus on detecting fake news in the English 
language, very limited work is done on multi-lingual 
and cross-lingual fake news detection models. Social 
media platforms are used by a huge population all over 
the world and hence are not limited to the usage of one 
language. Also, collecting and annotating fake articles 
in foreign languages is difficult and time-consuming.

	 iii.	 Varying levels of fakeness: The majority of existing 
fake news detection methods tackle the problem from 
a binary standpoint. However, in practice, a piece of 
news might be a mixture of factual and false state-
ments. As a result, it's critical to divide fake news into 
several categories based on the degree of deception. 
Nevertheless, for multiclass fake news detection, the 
classifier needs to offer better discriminative power 
and be more robust as the boundary between classes 
becomes more intricate as the number of classes 
increases.

	 iv.	 Early detection: Fake news or rumor has a very nega-
tive impact on the people and society at large. This 
kind of propaganda can even tarnish the image of a 
person or organization, so it becomes very crucial to 
track down a piece of fake news or rumor at an early 
stage. Fake news early detection aims to curb fake sto-

Fig. 17   Requirements for fake 
news detection datasets as 
defined by [70]

 

Homogeneity Requirements
• homogeneity of news length: news artiles in the dataset should be of comparable lengths;
• homogeneity in news domain: the text corpus should be aligned with the news domains;
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misinformation

Availability Requirements
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True and fake articles
• textual format availability: texts and textual transcriptions of audio and video should be 

available
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• multilingual: the availability of news items in multiple languages;
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Fig. 18   Fake news detection challenges
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ries at an early stage by giving prompt signals of fake 
news during the diffusion process.

	 v.	 Lack of available datasets: The data source is also a 
challenge. Unstructured data contains a lot of unneces-
sary data and junk values that can degrade the algo-
rithm's performance. The number of datasets in the 
subject of fake news is quite restricted, and only a few 
are available online. The multi-modal dataset present 
in this problem domain is scarce. A comparison of 
major benchmark multimodal fake news datasets is 
shown in the Table 9 in the above section.

	 vi.	 Weakly supervised fake news detection: Labels are 
predicted with low or no supervision labels in a 
weakly supervised environment. Because getting the 
ground truth of false news is time-consuming and 
labor-intensive, it's crucial to investigate fake news 
detection in a weakly supervised scenario, that is, with 
few or no labels for training.

	vii.	 Explainable fake news detection: The problem of 
detecting fake news has yielded promising break-
throughs in recent years. However, manually classi-
fying fake news is quite subjective, and there is a vital 
missing aspect of the study that should explain why 
a specific item of news is considered to be fake by 
providing the reader web-based proof. Traditionally, 
it used manual methods to verify the news content's 
validity with a variety of sources.

6 � Conclusion

In this paper, we have presented an overview of contempo-
rary state-of-the-art techniques and approaches to resolve 
the issue of detecting fake news on social media platforms 
with a focus on multimodal context. Our review is primarily 
concentrated on five key aspects. First, the paper provides a 
clear definition of Fake News and distinctions between vari-
ous related terms with an appropriately defined taxonomy 
of the fake news detection techniques. While surveying we 
found out that limited work has been done on the multimodal 
aspect of the news content. Secondly, various DL models, 
frameworks, libraries, and transfer learning approaches that 
are widely used in the literature have also been emphasized 
with TensorFlow being the one that is widely used. Third, 
we have provided an impression of various state-of-the-art 
techniques to perform fake news detection on social media 
platforms using deep learning approaches considering the 
multimodal data. The review shows that CNN-based models 
are widely used for handling the image data and the RNN-
based models are used for preserving the sequential informa-
tion present in the text. Additionally, various modifications 
of the attention network are used to preserve the correlation 

between text and image. These models take English as their 
primary language for detection and lack in processing the 
multi-lingual data which is prevalent with the use of social 
media. Fourth, the review sheds light on various data collec-
tion sources and data extraction techniques. Since this field 
of research is quite novel, there are only a few multimodal 
datasets that are available for this particular task. Finally, 
we have provided some insights to open issues and possible 
future directions in this area of research and found out that 
handling the multimodal data while maintaining the correla-
tion becomes a challenge.
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A B S T R A C T   

In recent years, fake news has become a global phenomenon due to its explosive growth and ability to leverage 
multimedia content to manipulate user opinions. Fake news is created by manipulating images, text, audio, and 
videos, particularly on social media, and the proliferation of such disinformation can trigger detrimental societal 
effects. False forwarded messages can have a devastating impact on society, spreading propaganda, inciting 
violence, manipulating public opinion, and even influencing elections. A major shortcoming of existing fake 
news detection methods is their inability to simultaneously learn and extract features from two modalities and 
train models with shared representations of multimodal (textual and visual) information. Feature engineering is a 
critical task in the fake news detection model’s machine learning (ML) development process. For ML models to be 
explainable and trusted, feature engineering should describe how many features used in the ML models 
contribute to making more accurate predictions. Feature engineering, which plays an important role in the 
development of an explainable AI system by shaping the features used in the ML models, is an interconnected 
concept with explainable AI as it affects the model’s interpretability. In the research, we develop a fake news 
detector model in which we (1) identify several textual and visual features that are associated with fake or 
credible news; specifically, we extract features from article titles, contents, and, top images; (2) investigate the 
role of all multimodal features (content, emotions and manipulation-based) and combine the cumulative effects 
using the feature engineering that represent the behavior of fake news propagators; and (3) develop a model to 
detect disinformation on benchmark multimodal datasets consisting of text and images. We conduct experiments 
on several real-world multimodal fake news datasets, and our results show that on average, our model out
performs existing single-modality methods by large margins that do not use any feature optimization techniques.   

1. Introduction 

The recent transformation of social media channels (Facebook, 
Twitter, YouTube, and WhatsApp, etc.) has changed the whole way we 
lead our lives and acquire information. Prior to approximately a decade 
ago, our primary source of news was traditional journalism, established 
media organizations, and other reliable sources that adhered to specific 
ethical standards (Hunt & Matthew, 2017). Most of the news we read 
today, particularly via social media feeds and tweets, might appear true 
to our eyes; however, that often is not the case. The intent behind 
misinformation spread is to deceive the readers, and the extensive 
growth of disinformation spread on media channels has particularly 
exploded in the last few years via platforms such as YouTube, LinkedIn, 
Facebook, Instagram, WhatsApp, Twitter, and Sina Weibo, among 

others. Whether through conspiracy planning or pandemic dealing, so
cial media sites have transformed the dissemination mode of informa
tion, and these platforms have always functioned as a platform for ‘fake 
news’ (Zafarani et al., 2019; Agarwal et al., 2022; Zhang et al., 2019). 
The extensive use of social websites to disseminate false and often in
cendiary information stirred alarm and highlighted the detection of fake 
news as a critical issue that needed serious attention. 

Ironically, the term ‘fake news’ was actually introduced by Donald 
Trump to highlight his accusations against the opposing party during the 
aforementioned US elections; however, he arguably emerged as the 
greatest beneficiary of the proliferation of misinformation. For example, 
a widespread claim that Trump fed police officers working protests in 
Chicago was initiated by a single tweet from a person who was not even 
present in the city. A study conducted during the election year found 
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E-mail address: akumar@em-lyon.com (A. Kumar).  

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

https://doi.org/10.1016/j.ejor.2023.10.003 
Received 12 December 2022; Accepted 2 October 2023   



European Journal of Operational Research 317 (2024) 401–413

402

that 88 % of US citizens believed that misunderstandings were being 
fomented by false news; however, 25 % of survey participants accepted 
the sharing of fake political news online due to ignorance (Barthel, 
Mitchell, & Holcomb, 2016). Another instance was also related to the 
2016 US presidential elections, which was immensely driven by 
misleading information on social sites. On Twitter, nearly 529 different 
rumours were spread, and malicious bot accounts which counted for an 
average of 19 million, tweeted or retweeted tweets in favor of Trump or 
Clinton. According to research (Silverman, 2016), fake stories and 
misinformation were more widely used on Twitter, WhatsApp, and 
Facebook platforms than the real stories in the 2016 election. Silverman 
and Singer-Vine (2016) proved that most of the people who read false 
news and misinformation or watch fake videos or stories on Facebook 
and Twitter, believe them and they also proved that most discussed fake 
news stories in the 2016 USA presidential election tended to favor 
Donald Trump over Hillary Clinton (Papanastasiou, 2020; Chang et al., 
2022). A recent study conducted in the USA tells that (i) 60 % of people 
in the United States received the news online from an online media 
platform (Gottfried & Shearer, 2016) (ii) Most of the time fake news and 
misinformation was shared on Facebook and Twitter than any other 
platforms on social media (Silverman, 2016) (iii) Most people report to 
believe the news to be true which is actually fake news (Silverman and 
Singer-Vine, 2016). Ever since these cases, various departments 
including social media companies came under pressure to build some
thing against the expansion of misinformation on media channels. 

The widespread disinformation can negatively affect people’s 
behavior and cause the detrimental societal effects. The Impact of fake 
forwarded messages is well known and how it is plotted to disturb so
cietal peace with the intent to spread violence, cause riots, humiliate 
emotions, influence elections, or initiate propaganda (Kim & Dennis, 
2020; Moravec et al., 2020; Reisach, 2021; Tanınmış et al., 2022). 
Another example is about Las Vegas massacre in October 2017, which 
reportedly killed 59 people and injured more than 500 people, began 
spreading on Facebook and Google with false reports of the deadly 
tragedy. In 2018, a theme issue about ‘Fake News’, which reported that 
fake stories tend to arise human feelings of fear and surprise (Vosoughi 
et al., 2018) leading to social panic, was published by Science magazine. 
An example of disinformation impact is a fake video with the name 
Somalis ‘pushed into shallow grave’ Ethiopia that lead to a fierce clash 
between two races in Ethiopia. Another clash between Greek police with 
travelers or migrants was caused due to rumor spread on social media 
stating the elevation of onward travel restrictions in Greece. These ex
amples explain the serious threat of the increasing spread of fake news in 
society (David et al., 2018). 

Fake news, misinformation, or disinformation are generally created 
and shared on social media by manipulating or tempering videos, text, 
and images. Although technology advancements and enhanced AI 
tracking have shown great progress in the detection of anomalous in
formation or fake news, but the threat still persists because of the 
complexity created by disinformation’s volume and velocity (George 
et al., 2018; Han et al., 2020). The issues created by fake news spread 
through various social media sites and other popular communication 
apps are worth taking note of for many reasons. There is a lot that goes 
behind the misinformation spreading such as alteration, distortion, or 
manipulation of texts, images, and videos with the help of several other 
contents. There are software and online platforms available with mul
tiple features to manipulate the content and publish it as pieces of real 
news. Fake news makes the best possible use of videos and images to 
give an intuitive experience for readers. Facebook, Twitter, and other 
online media channels have transformed the whole news market 
evolving from text-only news to news with multimodal news which has 
images, text, audio, and videos. This transformation provides an inter
active storytelling experience and has the magical power to delight and 
engage readers by leveraging visual context-powered news. Fake news 
articles can contain misrepresented, irrelevant, and forged images to 
mislead the readers (Han et al., 2020; Borchert et al., 2023). The recent 

increase in fake news is affecting the social fabric, dynamics, public 
affairs, policies, and events negatively. Spreading such news through 
messages is easily achieved through social media by targeting the 
vulnerable audience who would forward and share the content. Sean 
Parker, who is Facebook’s first president, is strictly critical of social 
networks and accuses these platforms of being vulnerable to humans 
(Moravec et al., 2020). 

While most of the existing fake news detectors used only one mo
dality (image or text) to identify the suspicious behavior of fake news 
propagators but one modality is not enough to handle such a compli
cated problem. Existing content-based fake news detection methods 
either solely consider textual information (Zhou et al., 2019), or visual 
information, or combine textual with visual data to analyze the fakeness 
of a forwarded message without investigating the behavior of fake news 
propagators (Wang et al., 2018; Yang et al., 2018). Most of the fake news 
propagators prefer to write fake news with tempting images whose 
content does not have any relationship with actual news to engage the 
users and attract the publish attention. Furthermore, when fake news 
propagators create a fake message with fictional scenarios, it is very 
difficult for users or any news agency to find the original and tempered 
images to verify the realness of these messages. Therefore, a research 
gap exists in the literature between multimodal (text and images) di
mensions of misinformation when fake news propagators use real im
ages (non-manipulated) to spread non-factual news on social media 
channels (Yang et al., 2018). For example, there was a rumor on the 
internet in 2013, which claimed that United States President Obama was 
injured in an explosion in the white house, which crashed the share 
market and abolished over $150 billion in stock values (Rapoza, 2017). 
Thus, it has become the greatest threat to economies and freedom of 
expression. In this scenario, it becomes hard to differentiate between 
relevant or non-manipulated multimedia and such fictitious news. With 
non-manipulated images or videos alongside some fictional 
scenario-based news, there comes a justifying gap between both. 

Most of the existing research is still focused on text processing, 
unimodal features, and using traditional ML techniques to detect 
misinformation and fake news. With the recent development of 
advanced ML and deep learning models, there has been less previous 
evidence for developing multimodal fake news detectors. This is a sig
nificant and important gap; given that misinformation, disinformation, 
and fake news are becoming multimodal in nature in the past couple of 
years (Begley, 2017). 

In recent times, advanced ML and deep learning models have been in 
trend and are known to achieve excellent ML accuracy in various fields 
like computer vision, speech recognition, natural language processing, 
social network filtering, audio recognition, etc. It has shown tremendous 
results in tasks such as image captioning, visual question answering, and 
fake news detection. A model was proposed by Jin et al. (2017a) that 
extracts the visual, textual, and social content features, which are 
further fused by using the attention mechanism. The Attention mecha
nism is an effort mechanism by deep neural networks to concentrate on 
selective or relevant features- while neglecting the others in the 
network. Another model to learn event-invariant features was proposed, 
which made use of an adversarial fake news network with a few visual 
and textual features. However, there remains unclear room for discov
ering correlations between different modalities and the role of feature 
engineering to improve the accuracy of the fake news detection models, 
which is not covered by these models as well. This leads us to propose a 
novel multi-modal framework for fake news detection. The proposed 
model takes into account the two modalities present in an article – text, 
and images. Forging images is one of the most popular ways to tamper 
with the credibility of news and recent studies have shown that visual 
features (images) play a very important role in detecting fake news (Wu 
et al., 2015; Zhang et al., 2019). Rubin et al. (2015) use several ML 
techniques to analyze the textual data to classify a news item as real or 
fake but they only used one modality-text to develop the detecting 
model. Though important, but multimedia content has not been 
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explored much in the context of fake news detection. Although, basic 
features of images have been explored by Tian et al. (2013) but these 
features merely depict the complex distributions of image content and 
are handcrafted. Therefore, in order to improve the fake news detection 
systems, the complex relationship between different modes, the role of 
feature engineering, and varying distributions need to be addressed. 

Feature engineering and explainable AI are two interconnected 
concepts and this connection lies in the interpretability of features. 
When feature selection is done effectively, it can lead to more inter
pretable and explainable ML models. By selecting and constructing 
important features that are capable to capture relevant information from 
the data, it becomes easier to understand the decision-making process of 
the ML model, and this process could enable better transparency and 
interpretability. In summary, feature engineering plays an important 
role in the development of an explainable AI system by shaping the 
features used in the ML model, which in turn affects the model’s inter
pretability (Ali et al., 2023). In this paper, in order to effectively identify 
the disinformation we develop a multimodal fake news detector model, 
which extracts textual and visual features particularly to detect the 
disinformation on benchmark multimodal datasets. We extract several 
novel features e.g., content-based (topics of an image, contrast, bright
ness, the dominant and fraction representation of color spots in the 
manipulated area, etc.), emotions-based (sentiment polarity, adult 
content, violent content or smile, etc.) and manipulation-based (spoofed 
content, image sharpness/blur, pixel density difference in the manipu
lated area, etc.). There have been several efforts at developing fake news 
detection models in recent years (Horne & Adali, 2017). Overall, we 
found that no published literature that considers specific aspects of 
feature engineering in developing the multimodal fake news detector 
has been published to identify misinformation and fake news propaga
tors. To address these research gaps, we aimed to develop a fake news 
detector model to detect the behavior of fake news spreaders using an 
innovative modified JAYA feature optimization model. 

In addition, to developing the detector model, we also addressed the 
following research questions to investigate the behavior of fake news 
propagators: 

RQ-1: From the psychology perspective, do fake news propagators 
use a specific linguistic tone or write the news under a certain rule of the 
press (e.g., fewer words than real news, more question marks, excla
mation, use third-person pronouns more than first-person pronouns and 
capital letters than real news, etc.)? 

RQ-2: From the cognitive perspective in the text features, do fake 
news writers use exclusive words and negations more frequently than 
real news writers? 

RQ-3: From the emotional perspective in the text features, do fake 
news propagators use more anger, sexual, and swear words and use 
more lexical diversity to write the news? 

RQ-4: From the emotional perspective in the visual features, do fake 
news propagators use more artificial text and violence to promote vio
lent extremism? 

RQ-5: How do multimodal fake news detection methods perform 
compared to unimodal methods after combining the visual features with 
text features? 

RQ-6: How do feature engineering methods improve the classifica
tion accuracy of the proposed multimodal fake news detector model? 

This research work conducts several experiments on three datasets 
collected from popular social media platforms: Twitter, Weibo, and 
rFakeEdit, which use textual and visual analytics to extract the impor
tant features. The main innovation of our research work is to use the 
power of textual and visual analytics with an optimization feature en
gineering algorithm that selects the optimal features to develop the 
multimodal fake news detector model. 

2. Literature review, conceptual background, and theory 
building 

In this literature review and background sections, we discuss the 
published works related to the use of feature engineering for developing 
fake news detector models from single-modality and multimodal cate
gories. In the first part, we discuss several theories to extract useful 
features from the multimodal data and to make theoretical ground for 
developing a fake news detector model using these features. 

Johnson and Kaye, stated that most people specifically use social 
media for hedonic purposes, connecting with friends and seeking 
entertainment, rather than for anything that might be of use. When 
using social media, the user does it with a different mindset than when 
reading news items found elsewhere on the internet. This difference in 
the consumption of information affects how the user processes infor
mation. As an example, it is known that some product reviews are fake 
but users do not read them for entertainment, they only read them in 
order to make an informed choice as to whether to buy an item, knowing 
there is a monetary incentive when making the best decision. For this 
reason, users reading fake reviews have a purpose in mind, having a 
utilitarian mindset, and the goal is to understand the content of the re
view and whether the information should be considered in making a 
decision. A paper by Minas et al. investigated the utilitarian mindset in a 
decision-making context within virtual team interactions. Participants 
involved in a decision-making team-based chat were found to use 
confirmation bias. Contrastingly, when reading social media news, the 
user has a hedonic mindset and the goal is pleasure and enjoyment, not 
one where they have to decide whether the content is fake or not. The 
user wants to avoid any activity that feels like work, e.g., thoughtful 
information processing, and to avoid anything that they do not enjoy, e. 
g., reading stories where their favorite team has lost. Moravec, Minas 
and Dennis (2019) state that users want to read feel-good articles, i.e., 
ones that make them feel happy and that often support what they 
believe. Moravec, Minas and Dennis (2019) go further to say that on 
social media, the source of the news is not always clear, whereas when a 
user is looking at traditional sources for news on the internet, they will 
have to visit their favorite news network or newspaper online which 
they would consider trustworthy and would therefore have an under
standing of the source’s limitations. Facebook differs in that it uses an 
algorithm to choose the articles it publishes and they are not the user’s 
choice (Yfanti et al., 2023). 

Users may subscribe to some information sources by following them 
on social media platforms, but many sources of information come in the 
forms of advertisements, shares by friends, and decisions made by the 
algorithms employed. Therefore, there is a mixture of different sources, 
reputable and disreputable. For example, a fake news item may appear 
between a CNN article and an advertisement for Aunt Martha’s cookies! 
Kim and Dennis (2018), and Moravec et al. (2019) both concluded that if 
the source of the item is not clear, or is even deliberately hidden, users 
with a hedonic mindset will not bother to make the effort to find and 
understand the source. 

Fake news appears everywhere and in vast amounts resulting in it 
being hard to separate fact from fiction. Silverman (2016) pointed out 
that more fake news than real news is shared on social media. Moravec, 
Minas and Dennis (2019), state that the low cost and massive presence of 
fake news is a reason why it is so common on social media. They also 
claim that many fake sites have appeared on Twitter and Facebook 
solely to destroy a specific individual or to spread propaganda, carefully 
crafted for a specific reason. The hedonic mindset, not knowing the 
source and, the sheer volume of fake news, are three reasons, combined 
to form three contextual factors, why users do not think critically as they 
otherwise would when presented with news from a known reputable 
source. Gabielkov et al. (2016) proved further that more than half of the 
items shared on Twitter have not been completely read in the first place, 
and the users have not thought about the content in a critical manner. 

In the 1980s, two complementary models were proposed for 
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measuring the cognitive process. These were Elaboration Likelihood 
Model (ELM), Heuristic-Systematic Model (HSM), proposed by Chaiken 
(1980), and Chaiken and Eagly (1983), respectively. The basic funda
mental concept of HSM and ELM was common and both models discuss 
two different cognitive processes, which form cognitive attitudes, but 
differ in cognitive processing, which is used in information evaluation. 
These are a quantitative difference and a qualitative difference, 
respectively. HSM and ELM argue that the route that is chosen by an 
individual is based on the motivation and ability to participate in 
extensive cognition. Both models have evolved to say that cognition is a 
continuum of processing and that the routes are not separate. The most 
popular of the two is ELM and it is widely used today (Cacioppo et al., 
2018; Moravec, Minas & Dennis, 2019). That is why we decided to use 
ELM and framing theory concepts to identify the text and visual features 
in this research. 

Petty & Cacioppo, used the ELM model to show that online users can 
be influenced whether to accept social media channels’ information as 
true either by using the peripheral (heuristic) or central processing 
route. The individual needs to take time and cognitive effort to ratio
nally and objectively assess the truth of the item. It relies on people 
having emotions triggered and requires little cognitive effort. Rational 
judgment and assessment are often neglected when a news item, for 
example, uses specific language or tone with images that could trigger 
certain emotions or feelings: anxiety, violence, and fear. Machine- 
learning models need to take into account the emotions for developing 
the fake news detector models and the ELM model is useful in identifying 
how the peripheral processing route is targeted by text and images for 
fake news items. However, in order to get the true credibility of an 
article it is important to integrate images, videos, and text together. In 
2005, De Vreese presented the Framing Theory which states that an issue 
or event is defined by the way it is presented, (De Vreese, 2005). In 
framing theory, a frame consists of a set of ideas which are key, stock 
phrases, and images that support a specific event interpretation. The 
interpretation made with text and images is a dominant interpretation 
created strategically and it is easier to understand, more memorable, 
and easy to accept. The combination of images and text makes it easy to 
effectively manipulate ideas and give deniability to the website or the 
author. It is also hard for automated systems to identify fake news or 
misinformation if they rely only on text and images (Messaris & 
Abraham, 2001).In the work presented here, many theories are used in 
developing the fake news detector model. Lang used the LC4MP model 
that enables the understanding of how information-rich, multi-modal 
messages are processed. Apparently, there are several mechanisms that 
could determine that a person will register cognitively his profile on 
social media websites and share fake news consciously or unconsciously. 
It is, therefore, important that the deep learning and advanced 
machine-learning models that are used in the current work identifies 
fake reviewers and captures several media channels of information so 
that the salient features within a modality are processed as far as 
possible. 

In data science, feature engineering or feature selection (selecting the 
best features for building the ML models) is the most important data pre- 
processing challenge that is used to reduce the dimensions of the data
sets by removing unimportant, noisy, and irrelevant features or vari
ables (Kumar et al., 2022). Generally, we classify the feature selection 
methods into two categories: wrapper, and filter-based techniques. 
Filter-based methods (LDA, ANOVA, Chi-square, etc.) are used to rank 
the variables based on the scores of several statistical tests. All 
Filter-based methods use the similarity methods (fisher or Laplacian 
score), and statistical methods (F-score, Gini index, or Chi-square sta
tistic score) to select the best features for building ML models based on 
specific criteria. One of the major issues with the Filter-based methods is 
that method does not remove multicollinearity (Kumar et al., 2022). In 
wrapper-based methods, we use the inferences that we have drawn from 

the previous ML model and evaluate the quality of variables based on 
this score. For adding or removing the variables in the model, this 
method first searches the best subset of variables and after that, the 
model evaluates the fitness of the subset of variables before developing 
the ML model building block Kumar et al., 2022). The Wrapper-based 
methods are still unexplored and researchers are developing new 
methods using feature optimization techniques these days. Several 
wrapper-based feature selection methods have been developed by the 
researchers with their own challenges. Too et al. developed the feature 
optimization algorithms to find the best subset of suitable features for 
developing the ML models. All these feature optimization algorithms are 
developed by specific controlling parameters such as weights, number of 
iterations, crossover probability, etc. that need to be tuned to get the 
best subset of optimized features. To achieve good accuracy in the ML 
building process, parameter tuning is essential and a good choice of 
parameters can make the ML model succeed after getting the best subset 
of important features (Peng & Xintong, 2022). 

Recently, deep learning models have been used to develop fake news 
multimodal detector models. Most of the published literature (Singhal 
et al., 2019; Shah & Kobti, 2020; Peng & Xintong, 2022; Uppada & 
Patel, 2022) used convolutional neural network (CNN), and Visual Ge
ometry Group (VGG)− 19 deep learning architectures that use the 
attention-based mechanism and combines it with other ML model - long 
short-term memory (LSTM) to develop a microblogging detector model 
for identifying the characteristics of fake news propagators. The pub
lished literature used the CNN model to extract several emotions and 
manipulation-based fine-grained features and used the LSTM for 
coarse-grained feature extraction and after that, these extracted features 
are classified into fake or credible news stories to achieve better accu
racy of the misinformation detector models. 

However, all of the above detection methods (unimodal and multi
modal) have delivered promising results but we observed several limi
tations in the published literature for identifying the behavioral 
characteristics of fake news propagators using feature engineering. The 
multimodal nature of a dataset is always a challenge for researchers for 
extracting useful features for building ML models. Feature engineering 
(selecting the best features/variables) or data pre-processing is the most 
important and critical step in developing fake news ML detector models. 
Although a few researchers have used feature engineering on the 
unimodal dataset and developed JAYA and modified JAYA algorithms 
(Rao, 2016; Das et al., 2020) for finding an optimal feature set of best 
variables to detect fake news propagators, feature engineering remains 
uncommon in multimodal dataset modeling. In addition, to the best of 
our knowledge, a few studies have used unimodal text datasets with 
preexisting feature sets to detect the behavior of fake news propagators, 
accounting for feature engineering in multimodal data remains insuffi
ciently explored. Our proposed fake news detector model also differs 
from other published literature by focusing on investigating the 
behavior of fake news propagators on psychological, emotional, and 
cognitive perspectives in a hierarchical manner using the optimized set 
of best features. Singh et al. (2017) research could be considered the first 
step towards understanding the behavior of fake news propagators on 
multimodal datasets; however, a number of questions regarding feature 
engineering to improve the accuracy of fake news detector models 
remain to be addressed. Similarly, Kumari and Ekbal (2021), Zhang 
et al. (2022) contributed to the multimodal fake news detection litera
ture mainly focused on developing the model using deep learning but 
they devoted less attention to identifying the behavior of fake news 
propagators and improving the accuracy of the detector with feature 
engineering tasks. Thus, the use of feature engineering in predicting the 
behavior of fake news propagators and developing the multimodal fake 
news detector model is a promising area of research. The main contri
bution of our research study is summarized below. 
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1 To the best knowledge, we develop an approach that investigates the 
behavior of fake news propagators and establishes the relationship 
between textual, and visual features in predicting misinformation & 
fake news;  

2 We propose a novel multimodal (with text and image features) fake 
news detector model to examine the behavior of fake news propa
gators through psychological, cognitive, and emotional perspectives; 
and  

3 After developing the fake news multimodal detector model, we 
conduct several experiments on real-world datasets to prove the 
effectiveness of our proposed model. 

3. Feature design, data description, and fake news detector 
model development 

The theoretical concepts, Framing Theory, LC4MP, and ELM, 
described in the last section, helped us to identify the features for 
developing the fake news detector model. Five broad sub-categories 
(user-based, content-based, style-based, emotions-based, and 
manipulation-based) were identified into two categories (text and vi
sual) from this review: 

3.1. Text-based features 

Linguistic approaches that are used to detect news, which is fake 
generally, rely on the use of language and its analysis (Singh, Ghosh & 
Sonagara, 2020). There are two user-based features: user profiling fea
tures and user credibility features. User profiling features (account 
name, geolocation information, registration information, verified, not 
verified (Zhang & Ghorbani, 2019), has a description and does not have 
a description) and user credibility features (user’s credibility score (Chu 
et al., 2012), number of users’ friends and followers, the ratio between 
friends and followers, number of tweets post/tweets (Castillo et al., 
2011; Zhang & Ghorbani, 2019) have been used in the investigation of 
suspicious user and non-human accounts by capturing their unique 
characteristics. Content-based features correspond to the Framing 
Theory’s Issue Selection and central persuasion route for ELM. 
LIWC-based categories of textual content were used in accordance with 
the work done by Horne and Adali (2017). Tausczik and Pennebaker 
give an extensive list of LIWC-based features. LIWC contains five main 
categories and a few sub-categories, e.g., social, cognitive, affective, and 
perceptual (Pennebaker, Mehl & Niederhoffer, 2003). 

Style-based features correspond to the peripheral persuasion route 
for ELM. In order to analyze the overall complexity of fake messages or 
stories, punctuation (e.g., question marks, exclamation points), quotes, 
negations (e.g., no, never, not), and grammar are used (Singh et al., 
2020). The framing theory and previous research is done to investigate 
fake news to accentuate the importance of the relatability and impres
sion of the overall article, Horne and Adali (2017). Ahmed found that 
fake writers take longer to write articles and make more mistakes 
because of the timespan features, the namely the average interval be
tween words, average time span of a word, timespan of document, and 
editing patter features, such as a number of deletions, arrow keystrokes 
and “Mouse-Up”s. In the Emotions-based features, Messaris and 
Abraham (2001), point out that a major determinant of the quality of 
information is considered by the ELM to be sentiment polarity, Osatuyi 
and Hughes (2018). LIWC dictionaries are used to measure the effect of 
words, sentiment score, and SentiStrength which are important mea
sures to identify the intensity of positive and negative emotions (Dick
erson et al., 2014; Horne & Adali, 2017; Zhang & Ghorbani, 2019). 

3.2. Visual features 

Images require a smaller cognitive load than text and are not as 

intrusive; therefore considered powerful framing tools. This means that 
the peripheral route in the brain is activated and the users are much 
more interested to see the visual frames in their mind without ques
tioning it (Singh et al., 2020). Identification of a fake news item using 
content-based features can be made by examining the image content for 
clues. It corresponds to Framing Theory’s Issue Selection and the central 
persuasion route for ELM. Features identified can be objects in an image, 
and the presence and number of faces in an image. Other indicators of 
fake news are an analysis of color components and properties of images. 
Style-based features discuss that Fake news can also be identified from 
features such as size, width, etc., of the image (Blei, Ng & Jordan, 2003; 
Papadopoulou et al., 2017), and it corresponds to the issue salience 
component for framing theory and peripheral persuasion route for ELM. 
In the Emotions-based features, emotions and expressions can also be 
portrayed by the faces in the image and the presence of violence and so 
these are also included as features. Pantti and Sirén (2015) showed that 
when fake news is compared to credible news, it is more visually striking 
and eye-catching. The images also tend to show accidents, abuse, injury, 
conflict, and other disturbing material (Jin et al., 2017b). 

Manipulation-based features in visual features correspond to the 
peripheral persuasion route for ELM. Lin et al. (2009) showed that any 
tampering or manipulation of the image in an article is very important 
for the determination of fake news. Jin et al. (2017b), Zhang and 
Ghorbani (2019) investigated visual-based features, namely: similarity 
distribution histogram, image ratio, clarity score, diversity score, long & 
hot image ratios, clarity score, and coherence score for identifying the 
fake news propagators from the data sets. Castillo et al. (2011) shows 
that the statistical features of an image can also be useful in detecting 
fake news. The imagetweet ratio, from basic image statistics, is already 
used as a feature for distinguishing fake news, Jin et al. (2017b). One of 
the most important inspections of images is that most images have a 
standard resolution, while others do not. Therefore, the different types 
of tweets can be described in two ways- popularity (hot image) and long 
image. A hot image is the news event’s most popular tweet and popu
larity is the number of re-tweets of the hot image. A long image is an 
image with a length-to-width ratio that is greater than 1.9. Generally, it 
is composed of several different images. The summary of textual and 
visual features used in the research can be seen in Table 1. 

3.3. Data description and model development 

One of the most important challenges of building fake news multi
modal detector models is obtaining news items that are clearly classified 
as fake or real. We used several real-world multimodal datasets (Twitter, 
Weibo, and rFakeEdit) to test our proposed detector model, which has 
several textual and visual behavioral characteristics of fake news 
propagators. 

We used the Twitter dataset for developing, and testing the fake news 
detector model that was released by Boididou et al. (2015) as part of a 
data science challenge (MediaEval, 2015), and the aim of the challenge 
was to detect the misinformation & fake news content on Twitter web
site. The Twitter dataset is publically available and has text (in the form 
of tweets), visual (in the form of images), and additional social 
contextual dimensions of users. The Twitter dataset encompasses around 
18,000 multimodal tweets, of which 10,000 are fake news and 8000 
belong to the real news category. In the data pre-processing stage, we 
deleted a few tweets or messages from the original dataset that do not 
have any text or image because we are focusing on developing a 
multimodal detector tool. The other dataset, we used to test the accuracy 
of our proposed fake news detector model was the Weibo dataset, which 
is also publically available and used in this research work (Wang et al., 
2018). In the Weibo dataset, authors collected the multimodal dataset 
from the official Chinese news agency (Xinhua agency) and released this 
dataset to track the misinformation and behaviors of fake news 
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propagators in the China region. The authors scrapped this Weibo 
dataset from 2012 to 2016 and verified it with the Weibo official rumor 
debunking system. 

Fig. 1 presents the four different phases of fake news detector model 
development: (i) visual data processing using Google vision deep 
learning architecture, and textual data processing using LC4MP; (ii) 
textual and visual feature extraction and adding new variables in the 
original dataset; (iii) modified JAYA feature engineering algorithm 
development for identifying the important features; and (iv) fake news 
detector model development. This detector model receives multimodal 
textual and visual data and the relevant information of Twitter users or 
news propagators as input. 

For the first task, we used the LC4MP framework to extract several 
textual features (see Table 1) from the original dataset and after that, we 
used the Google vision deep learning architecture to extract a wide va
riety of visual features from the images that are associated with the text 
data. In the next stage, we perform feature engineering and develop a 
novel M-JAYA algorithm to select the important features for ML model 
building and remove the noisy and irrelevant features from the dataset. 
After that, we develop several ML models for identifying the fake news 
propagators and use the majority voting concept to select the best three 
ML models based on their rank of classifiers’ performances. We use a 
simple rule in the majority voting section, and output label Y could be 
predicted based on three top ML hyperplanes (output = mode{M1(Z), 
M2(Z), M3(Z)}). We can understand it with this example, if the proposed 
fake news detector model selects the best three ML models based on 
accuracy and if model_1 classifies the instance as fake, model_2 classifies 
the same instance in the fake category, and model_3 classifies it in the 
real news propagator category, then the detector model uses the ma
jority voting concept and provide the final output as a fake class Y=
mode {1, 1, 0} =1. This is the final output of our proposed detector 
model. 

4. Feature engineering, M-JAYA algorithm development, 
experimentation, results, and discussion 

Based on the data set, we had 11,498 news with 6643 of them 
identified as fake news and 4864 of them identified as real news. We 

accessed them in different features including language features, word 
features, linguistic features, grammar features, affective processes fea
tures, text search, manipulation techniques, objectives, and visual fea
tures. The general null hypothesis was set that for each feature the fake 
news was not statistically different from real news, i.e. fake news 
propagators did not use any specific features or techniques to produce 
the fake news. To check the details of the difference between fake news 
and real news based on the effect of the feature, the list of null hy
potheses from research questions with corresponding features were 
developed in Table 2. 

To give the answer to the RQ1, RQ2, RQ3, and RQ4, and to test the 
significance of the hypotheses, we used several t-tests to test the dif
ference in the language features between fake news and real news in the 
data set. Tables 2–7 presented the mean and standard deviation for each 
variable as well as the p-values. 

From Table 2, we found that the P value was less than 0.05 for the 
language features (analytical thinking words, clout words, authentic 
words, and emotional tone). Therefore, the null hypothesis was rejected, 
and the conclusion was presented that the fake news propagators write 
the news using a specific linguistic tone, i.e., using less analytical 
thinking words, fewer clout words, less authentic words, and less 
emotional tone. From Table 3, we found that fake news propagators 
write the same count of total words and dictionary words as real news 
writers. Also, the fake news propagators write fewer sentences, but more 
big words (words larger than 6 letters) than the real news. From Table 4 
results, we found that fake news propagators write the news using ne
gations (e.g., ‘no’, ‘not’) more frequently than real news writers, but use 
conjunctions less than real news writers. From Table 5 results, we 
concluded that both fake news and real news use more first-person 
pronouns but there was no difference in the use between fake news 
and real news. From Table 6, the conclusion was presented that fake 
news propagators use more verbs, but fewer comparisons, in
terrogatives, numbers, and quantifiers than the real news. From Table 7 
results, we found that the P value was less than 0.05 for the use of anger, 
sexual, sadness, and swear words. Therefore, the null hypothesis was 
rejected, and the conclusion was presented that the fake news propa
gators use more anger words and swear words, but fewer sexual words 
and sadness words than the real news propagators. From Tables 8 and 9 

Table 1 
Summary of features (textual and visual) used in developing the fake news detector model.  

Feature’s 
Classification 

Theoretical 
Research Support 

Sample Text Features Sample Visual (Image) Features Empirical Literature Support 

User-based 
Features 

Central route 
processing with 
ELM framing issue 

Username length, number of tweets, has 
personal URL, is account verified, friends 
count, followers count, follower-friend ratio, 
the time listed (number of times the user has 
been listed/tagged) 

Number of hot, and long images in a tweet, 
popularity score of users (number of shares, 
re-tweets, and comments obtained by the 
multimodal tweet) 

Singh et al. (2020), Castillo et al. 
(2011), Jin et al. (2017b) 

Content-based 
Features 

Framing: Issue 
selection ELM: 
central route 
processing 

Sentistrength, topics for personal concern like- 
work, home, money, religion, number of 
external links, tags, and URLs in a tweet, social 
words like- friends, male referents, family, 
female referents 

Topics of image labels, fraction 
representation of colours, contrast, 
dominant color in the focused area, celebrity 
presence, brightness, gender, number of 
faces in image 

Hong (2013), Shu et al. (2017b),  
Pérez-Rosas et al., (2017), Singh 
et al. (2020) 

Style-based 
Features 

Peripheral route 
processing with 
ELM framing issue 

Word or sentence level of features, Average 
length of tweet, average sentence length, 
sentence complexity, use of punctuation, use of 
these types of negations (e.g., no, nope, not, 
never, fake, etc.), slang terms (e.g., lol, brb, 
etc.) 

Multi-image and hot image ratio, number of 
images, long image ratio 

Castillo et al. (2011), Hong (2013),  
Conroy et al. (2015), Rubin et al. 
(2016), Jin et al. (2017b), Horne and 
Adali (2017), Singh et al. (2020) 

Emotions-based 
Features 

ELM: peripheral 
route processing 
using LC4MP 

Average polarity of sentence, swear words, 
affect words, anger words, assent, emotional 
tone, sadness, anxiety related words 

Adult content in image, violent content in 
image, blood content or any other medical 
content, emotions portrayed in image 

Gupta et al. (2013), Jin et al. 
(2017b), Singh et al. (2020) 

Manipulation- 
based Features 

Issue salience 
Framing 

Discrepancy, certainty, number of impersonal 
and personal pronouns, tentativeness, 

Spoofed content, blurred ratio, multi-image 
and hot image ratio, image ratio II, image 
sharpness score, long image ratio 

Farid (2006), Lin et al. (2009),  
Pantti and Sirén (2015), Jin et al. 
(2017b), Horne and Adali (2017),  
Singh et al. (2020)  
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results, the conclusion was presented that the fake news propagators use 
more artificial text and violence than real news to promote violent 
extremism and we can identify patterns in the behavior of fake news 
propagators by checking the “Object” column, i.e., Animal, Building, 
Person, Sculpture, and Plants and “object” variable could be an impor
tant factor for understanding the behavior of fake news propagators. 

In the next phase, we used the features in the univariate and multi
variate logistic regression (LR) model to understand the behavior of fake 

news propagators and to evaluate the effect of each feature to develop 
the fake news detector model. We used the GEE model (Generalized 
Estimating Equations) to process the analysis. The importance of the 
GEE model is that it produces efficient estimates of all coefficients by 
taking the over-time correlations into account when producing the es
timates and it will typically be a block-diagonal matrix. The models were 
fitted to check the effect on the outcome, and the fake news detection 
rate, from each dependent variable in different categorical features. We 
also identified whether the effect varies by each variable throughout the 
feature. For this, we used multivariate logistic regression to control for 
the specific effect of each variable in the feature, which is allowed by the 
panel dimension of our dataset, and estimate the following equation for 
the detection rate of fake news.  

Fig. 1. Proposed Multimodal fake News detector Model.  

Table 2 
.  

Hypothesis Features Test 

Fake news propagators use the same linguistic 
tone as real news writers do 

Language Features t Test 

Fake news is produced under the same rule of 
the press as the real news 

Word Features t Test 

Frequency of exclusive words and negations 
used in fake news is the same as in real news 

Linguistic Features t Test 

No difference for use of third- and first-person 
pronouns between fake news and real news 

Linguistic Features t Test 

Fake news propagators use the same lexical 
diversity as real news writers do 

Grammar Features t Test 

The use of anger, sexual, sadness, and swear 
words in fake news are the same as in real 
news 

Processes Features t Test 

No difference in the use of artificial text and 
violence between fake news and real news 

Text Search Chi-Square 
Test 

Fake news propagators do not use specific 
manipulation techniques 

Manipulation 
Technique 

t Test 

No specific pattern of difference from objective 
between fake news and real news 

Objectives Chi-Square 
Test 

Fake news propagators use the same visual 
features as real news writers do 

Visual Features Chi-Square 
Test  

Table 3 
Summary Statistics of Language Features by Fake or Real News.   

Total Fake News Real News P Value 

Language Features, MEAN (STD) 
Analytical 

thinking 
86.35 
(19.19) 

85.7 (20.24) 87.24 
(17.62) 

<0.0001 

Clout 54.3 (21.34) 52.21 
(20.91) 

57.15 
(21.59) 

<0.0001 

Authentic 15.38 
(23.49) 

14.71 
(23.03) 

16.29 
(24.08) 

0.0004 

Emotional tone 42.1 (35.57) 40.2 (34.76) 44.7 (36.48) <0.0001  

Table 4 
Summary Statistics of Word Count and Language Features by Fake or Real News.   

Total Fake News Real News P Value 

Word Features, MEAN (STD) 
Word Count 16.65 (20.65) 16.4 (20.44) 17 (20.93) 0.1247 
Words / Sentence 10.68 (5.58) 10.58 (5.69) 10.81 (5.43) 0.0304 
Words > 6 letters 22.9 (9.79) 23.37 (10.06) 22.27 (9.37) <0.0001 
Dictionary words 49.36 (14.5) 49.5 (15.05) 49.19 (13.71) 0.2553  

Table 5 
Summary Statistics of Linguistic Features by Fake or Real News (from cognitive 
perspectives).   

Total Fake News Real News P Value 

Linguistic Features, MEAN (STD) 
Conjunctions 1.02 (2.50) 0.96 (2.51) 1.10 (2.47) 0.0030 
Negations 0.62 (2.02) 0.68 (2.14) 0.54 (1.83) 0.0004  

Table 6 
Summary Statistics of Linguistic Features by Fake or Real News (from psychol
ogy perspectives).   

Total Fake News Real News P Value 

Linguistic Features, MEAN (STD) 
Difference of singular 

use 
− 0.45 
(2.14) 

− 0.48 
(2.31) 

− 0.40 
(1.89) 

0.0502 

Difference of plural use − 0.04 
(1.56) 

− 0.02 
(1.61) 

− 0.07 
(1.50) 

0.0601  
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The outcome variables were identified as the probability of news 
being detected as fake news. The independent variables included lan
guage features, word features, linguistic features, grammar features, 
process features, text search, manipulation techniques (copy-move 
techniques and splicing techniques), objectives, and visual features. 
Error term, μi included an idiosyncratic error term, εi and fixed effect 
(μi). The idea is that if given news was with some specific features, i.e., 
specific linguistic tone, certain rules of the press, more lexical diversity, 
or particular objectives, etc., we would expect to see the rate pattern of 
detection as fake news. Therefore, β1 through β9 capture the average 
effect of the different features on this pattern. Table 10 presented the 
output of the model below. 

Based on the model output, the predicted probability plots of fake 
news detection are shown in Fig. 2, we can conclude that  

- Fake news detection was significantly affected by language features. 
The decrease of analytical thinking words, clout words, authentic 
words, and emotional tone would increase the possibility of the 
detection of fake news. In addition, the clout words had more effect 
than other words.  

- From the word features, sentences had a positive effect and big words 
(words larger than 6 letters) had a negative effect on the fake news 
detection rate. The strengths of the effect were almost the same. But 
dictionary works did not have any effect on the detection rate.  

- For the linguistic features, if negations would be found 20 % more in 
a news than others, the probability of this news being detected as 
fake news would be increased by 15 %− 20 %. In addition, if news 
found 20 % more conjunctions, the probability of fake news detec
tion would be decreased by 10 %.  

- By increasing the detection rate of 10 % for the grammar features 
(including verbs, comparisons, interrogatives, numbers, and quan
tifiers), fake news detected possibility varied from less than 5 % to 
around 20 %. Among these variables, quantifiers had the largest ef
fect. In other words, more quantifiers in a news would make less 
possibility of fake news.  

- Anger words and swear words had a positive effect, and sexual words 
and sadness words had a negative effect on fake news detection. All 
the effects were significant.  

- Fake news detection rate was significantly affected by image ratio. If 
this ratio was increased by 60 %, the probability of fake news 
detection would be increased by 20 %, which means that the copy- 
move technique played an important role in the process of fake 
news producing.  

- For the splicing technique used in producing fake news, the effect 
from the visual score (visual clarity score, visual clustering score, 
visual coherence score, and visual diversity score) reflected this sit
uation. A lower score indicated a higher rate of fake news detection. 

Table 8 
Summary Statistics of Affective Processes Features by Fake/Real News 
(emotional perspectives).   

Total Fake News Real News P Value 

Affective Processes Features, MEAN (STD) 
Anger words 0.57 (2.18) 0.61 (2.28) 0.50 (2.04) 0.0113 
Sexual words 0.14 (1.04) 0.12 (0.94) 0.17 (1.17) 0.0026 
Sadness words 0.22 (1.20) 0.15 (0.95) 0.32 (1.46) <0.0001 
Swear words 0.64 (2.41) 0.71 (2.53) 0.54 (2.23) 0.0003  

Table 9 
Summary Statistics of Text Search by Fake/Real News (emotional perspective in visual features).   

Total Fake News Real News P Value 

Text Search: Adult, N (%)    <0.0001 
Very unlikely 11,188 6412 (96.7 %) 4776 (98.2 %) 
Unlikely 307 222 (3.3 %) 85 (1.7 %) 
Possible 3 – 3 (0.1 %) 
Text Search: Spoof, N (%)    <0.0001 
Very unlikely 9498 5227 (78.8 %) 4271 (87.8 %) 
Unlikely 1142 963 (14.5 %) 179 (3.7 %) 
Possible 382 310 (4.7 %) 72 (1.5 %) 
Likely 101 76 (1.2 %) 25 (0.5 %) 
Very likely 375 58 (0.9 %) 317 (6.5 %) 
Text Search: Medical, N (%)    <0.0001 
Very unlikely 10,965 6123 (92.3 %) 4842 (99.5 %) 
Unlikely 533 511 (7.7 %) 22 (0.5 %) 
Text Search: Violence, N (%)    <0.0001 
Very unlikely 8887 4735 (71.4 %) 4152 (85.4 %) 
Unlikely 2607 1898 (28.5 %) 709 (14.5 %) 
Possible 4 1 (0.1 %) 3 (0.1 %) 
Text Search: Racy, N (%)    <0.0001 
Very unlikely 9601 5426 (81.8 %) 4175 (85.8 %) 
Unlikely 1677 1066 (16.1 %) 611 (12.6 %) 
Possible 55 27 (0.4 %) 28 (0.6 %) 
Likely 139 89 (1.3 %) 50 (1.0 %) 
Very likely 26 26 (0.4 %) –  

P(FakeNewsDetectioni) = α + β1Languagei + β2Wordi + β3Linguistici + β4Grammari+
β5Processi + β6Texti + β7Manipulationi + β8Objectivei + β9Visuali + μi + εi   

Table 7 
Summary Statistics of Grammar Features by Fake or Real News.   

Total Fake News Real News P Value 

Grammar Features, MEAN (STD) 
Common verbs 5.45 (6.06) 5.67 (6.33) 5.15 (5.66) <0.0001 
Common adjectives 8.89 (6.08) 8.89 (6.44) 8.90 (5.54) 0.8930 
Comparisons 0.72 (2.15) 0.63 (2.02) 0.85 (2.31) <0.0001 
Interrogatives 0.46 (1.65) 0.43 (1.67) 0.50 (1.62) 0.0262 
Numbers 0.90 (2.95) 0.81 (2.66) 1.04 (3.30) <0.0001 
Quantifiers 0.43 (1.59) 0.36 (1.48) 0.52 (1.73) <0.0001  
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- By checking text search of “Adult”, “Medicine”, “Racy”, “Violence”, 
and “Spoof”, except “Spoof”, all the other texts had a positive effect 
on the detection of fake news, which means that fake news propa
gators use more artificial text and violence to promote violent 
extremism.  

- On the behavior of information identification, if the objectives came 
to “Sculpture”, “Plant” and “Animal”, the probability of fake news 
increased by 35 %− 45 %; if the objectives were chosen from “Per
son” or “building” the rate decreased by 15 %− 25 %.  

- From the last section of the plot, all the visual feature (face of joy, 
face of exposed, face of blurred, and face of headwear) had a negative 
effect on the fake news detection possibility, which presented 
opposite results to our research questions. That was because the 
sample power was too small. Based on the summary statistics, news 
without faces shown took place about 90–95 %. Therefore, only 
around 5 %− 10 % of the sample was used to check the effect of visual 

features on fake news detection, which was a lack of power. Fake 
news multimodal messages use a specific manipulation technique, i. 
e., resampling/copy-move/ splicing. For instance, fake news was 
detected using a larger image ratio, but less hot image ratio and less 
image sharpness. In addition, fake news was found with a signifi
cantly lower score of visual diversity, visual clarity, visual coherence, 
and visual clustering. 

After understanding the characteristics and behavior of fake news 
propagators, we started to work on the first phase of any ML project- 
data processing and feature engineering. One of the main contributions 
of this research is to build a novel fake news detector framework based 
on an optimized set of important features. In order to identify the best 
features and understand the importance of individual variables of the 
fake news detector model, we tried to control the parameters of the 
JAYA algorithm and we modified it to design the optimal subset of 
important features for improving the ML classifier’s performance. The 
detailed description of the modified JAYA algorithm is described in 
detail below. In the first step, we initialize JAYA algorithm parameters 
and four parameters need to be initialized: Population Size (P), Number 
of Executions (E), Maximum Number of Iteration (MaxIter), and the 
minimum number of features (D). Once parameters are initialized, it is 
essential to define the training and testing datasets. After that, the al
gorithm needs the objective function to start the process. This objective 
function aims to select the optimal subset of the features that minimize 
the fitness function of the selected classification models. The error is 
computed as the difference between the actual output, and the selected 
model estimation is presented by Eq. (1), where k = 1,2,…m and m is 
the number of testing observations m = MTe

ma for a dataset. 
The fitness function values of the model are computed by dividing 

the summation of errors by the number of observations presented by Eq. 
(2). 

Error(k) = (ŷ(k) ∕= y(k)) (1) 

For each population p where, p = 1, 2,…, P, the objective function 
(Eq. (2)) is calculated using Eq. (1). 

Fitness(p) =
∑m

k=1Error(k)
m

(2) 

After that, the binary JAYA population is reconstructed using the S- 
shape transfer function and a selected subset of features and this S-shape 
function is used to convert the input to binary values (Kennedy & 
Eberhart, 1997). After that, the updated solution vector X(d) will be 
assigned into Eq. (3) to calculate its binary vector. 

B(Xnew(p, d)) =
1

1 + exp(− 5 × Xnew(p,d) − 0.25)
(3) 

The binary value from Eq. (3) further needs to label Xnew into either 
`1′ or `0′. Two methods are proposed here. For Random r 

Xnew =

{
1, B(Xnew(p, d))〉rand

0 Otherwise (4) 

Here, rand () is the random number distributed between the range of 
0 and 1. 

Default r 

Xnew =

{
1, B(Xnew(p, d))〉0.5

0 Otherwise (5) 

The next step would be to execute the binary JAYA algorithm and 
construct the initial binary populations. In this step, each binary popu
lation is generated using a random selection of features. Later on, the 
fitness function cost of each generated population is calculated. In the 
next step, the best and the worse solutions are selected based on the 
objective function’s value. If it selects (objective function = error 
function) option, the minimum value will generate the best solution, and 

Table 10 
Multivariate Generalized Linear Mixed Model for Fake New Detection by each 
Feature through Logistic Regression.   

aOR (95 %CI) P-Value 

Total Number of News 11,498 – 
Language Features   
Analytical thinking 0.996 (0.994,0.998) 0.0003 
Clout 0.989 (0.988,0.991) <0.0001 
Authentic 0.996 (0.994,0.997) <0.0001 
Emotional tone 0.997 (0.996,0.998) <0.0001 
Word Features   
Words / Sentence 0.991 (0.984,0.998) 0.0078 
Words > 6 letters 1.014 (1.010,1.018) <0.0001 
Dictionary words 1.005 (1.002,1.007) 0.0006 
Linguistic Features   
Conjunctions 0.976 (0.961,0.990) 0.0011 
Negations 1.038 (1.018,1.058) 0.0002 
Grammar Features   
Common verbs 1.020 (1.013,1.027) <0.0001 
Common adjectives 1.005 (0.999,1.012) 0.1248 
Comparisons 0.954 (0.937,0.971) <0.0001 
Interrogatives 0.960 (0.938,0.982) 0.0005 
Numbers 0.975 (0.963,0.988) 0.0001 
Quantifiers 0.943 (0.921,0.966) <0.0001 
Affective Processes Features   
Anger words 1.002 (0.974,1.031) 0.8927 
Sexual words 0.893 (0.856,0.930) <0.0001 
Sadness words 0.888 (0.859,0.917) <0.0001 
Swear words 1.053 (1.025,1.081) 0.0002 
Copy-move technique   
Image Ratio 1.012 (1.008,1.016) <0.0001 
Long Image Ratio 1.000 (0.996,1.003) 0.8277 
Hot Image Ratio 0.964 (0.953,0.974) <0.0001 
Image Sharpness 1.030 (1.015,1.044) <0.0001 
Blurred Ratio 1.017 (1.013,1.021) <0.0001 
Splicing technique   
Visual Diversity Score 0.993 (0.991,0.995) <0.0001 
Visual Clarity Score 0.988 (0.987,0.989) <0.0001 
Visual Coherence Score 0.958 (0.955,0.961) <0.0001 
Visual Clustering Score 1.034 (1.032,1.036) <0.0001 
Test Search   
Adult 0.387 (0.269,0.557) <0.0001 
Spoof 0.559 (0.523,0.597) <0.0001 
Medical 2.255 (1.420,3.582) <0.0001 
Violence 5.061 (4.347,5.892) <0.0001 
Racy 0.907 (0.820,1.003) 0.0571 
Objective   
Animal 4.293 (3.321,5.551) <0.0001 
Building 0.861 (0.755,0.982) 0.0257 
Person 1.617 (1.466,1.784) <0.0001 
Sculpture 3.223 (1.820,5.708) <0.0001 
Plant 0.942 (0.680,1.304) 0.7175 
Visual Feature   
Face of Joy 2.447 (2.038,2.937) <0.0001 
Face of Exposed 1.210 (1.101,1.329) <0.0001 
Face of Blurred 0.415 (0.379,0.455) <0.0001 
Face of Headwear 0.606 (0.514,0.714) <0.0001  
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the maximum value will generate the worse. If it selects (objective 
function = AUC score) option, the maximum value will generate the best 
solution, and the minimum value will generate the worse. 

In the next improvement step, each and every decision variable of all 
iterations are modified using the JAYA operator formulated in Eq. (6) 
(Awadallah, Al-Betar, Hammouri & Alomari, 2020). 

Xnew(p, d) = x(p, d) + r1 × (bestX − |x(p, d)|) − r2(worseX − |x(p, d)|)
(6) 

In the next step of the selection process, when a new solution is 
generated, it compares to the current solution Xp that is stored in the 
population’s pth position. Suppose the fitness value of a new solution 
Xnew is better than the current solution Xp and in this case, the new 
solution will replace the current solution. This new fitness is compared 
with the old fitness.  

- Objective function = error function: If the new fitness value is less 
than the old fitness value, its corresponding population is selected for 
the next iteration and otherwise dropped.  

- Objective function = AUC score: If the new fitness value is more than 
the old fitness value, its corresponding population is selected for the 
next iteration and otherwise dropped. 

The last step is the stop criterion. The Second to fourth steps are 
repeated until either one of the following conditions is satisfied:  

- The maximum number of iterations (i.e., Max_itr) are satisfied.  

- Only one population is left. 

In the next phase, the effectiveness of the modified JAYA algorithm is 
tested and compared with several other methods on a few benchmark 
datasets (PIMA, Musk, Sonar, Madelon, Colon, Leukemia, and Vehicle) 
that are available freely on the UCI machine learning repository 
(Table 11–13). 

5. Method validation and performance comparison with other 
studies 

For methodological validation, we tested our fake news detector 
model on the other two datasets – Weibo and, r/Fakeddit. We developed 
and repeated the data pre-processing and feature optimization steps on 
two new datasets and our proposed model provided better classification 
accuracy as compared to other studies. Table 14 shows the accuracy and 
performance comparison of the proposed fake news detector model with 
other several published works of literature EANN (Wang et al., 2018), 
MVAE (Khattar et al., 2019), and cultural algorithm-based multimodal 
(Shah & Kobti, 2020), and observed that all the key learning perfor
mance metrics (Recall and Accuracy) of our model are better than other 
models. In comparison with other fake news detector models, our 
modified-JAYA model achieves better Recall (95.5 %), and AUC (96.9 
%) scores on the Weibo dataset. We have achieved high accuracy and 
Recall scores on the third rFakeEdit dataset. Over proposed fake news 
detector model on the Weibo and rFakeEdit datasets gains 4 % and 8 % 
improvement in accuracy over the cultural algorithm-based model, 

Fig. 2. Predicted Probability Plots of Fake News Detection by each Features.  
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MVAE, and EANN multimodal models. 

6. Conclusion, managerial implications, and future research 
directions 

In this research work, we developed a novel M-JAYA-based fake 
news detector model that can help social media managers, society, or
ganizations, and online users to detect misinformation and identify the 

Fig. 2. (continued). 

Table 11 
Performance comparison of all ML models with and without feature engineering.   

Without feature engineering After using feature engineering by the M-JAYA algorithm 

Algorithms Precision Recall F-1 AUC Precision Recall F-1 AUC 

XGBoost Method 0.716 0.713 0.732 0.713 0.873 0.842 0.882 0.880 
LR (Logistic Regression) 0.712 0.696 0.705 0.759 0.804 0.811 0.843 0.856 
LSTM 0.693 0.682 0.663 0.747 0.826 0.816 0.811 0.831 
ANN 0.670 0.641 0.681 0.731 0.690 0.713 0.742 0.775 
RNN 0.641 0.632 0.649 0.736 0.659 0.717 0.729 0.784 
RBF- SVM 0.603 0.581 0.592 0.641 0.677 0.688 0.729 0.797 
Logistic Regression 0.567 0.734 0.657 0.731 0.739 0.723 0.745 0.781 
k-NN (k = 10) 0.556 0.712 0.656 0.723 0.652 0.723 0.744 0.784 
Naïve Bayes 0.642 0.591 0.614 0.671 0.689 0.614 0.723 0.741 
Random Forest 0.644 0.581 0.589 0.647 0.666 0.681 0.682 0.728  

Table 12 
Final Model Results.   

After using feature engineering by the M-JAYA algorithm (Top 3 ML 
models) 

After applying majority vote rule on feature engineering results Y¼mode {0, 1, 
1} ¼1 

Algorithms Precision Recall F-1 AUC Precision Recall F-1 AUC 

XGBoost 0.873 0.842 0.882 0.880 0.932 0.955 0.966 0.969 
LR 0.804 0.811 0.843 0.856 
LSTM 0.826 0.816 0.811 0.831  

Table 13 
Performance improvement in ML after incorporating visual features.  

Algorithms Precision (%) Recall (%) F-1 (%) AUC (%) 

XGBoost method +8.6*** +3.9*** +6.8 %*** +6.2*** 
LR +2.6 +4.6 − 2.6 +2.4 
LSTM 3.9 +4.8 +6.2 +6.8 
*** denote the significance at the 0.001 level.  
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suspicious behavior of fake news propagators through social media 
posts. However several fake news detector models have already been 
developed, but none of these fully exploits data pre-processing chal
lenges and optimized feature selection, and the characteristics of fake 
propagators’ behavior to understand the fake news phenomenon in new 
dimensions. Our analysis revealed several new deceptions dimensions in 
investigating the behavior of fake news propagators. We proved that the 
decrease of analytical thinking words, clout words, authentic words, and 
emotional tone can increase the possibility of the detection of fake news. 
Fake news propagators use more anger and swear words and use the 
copy-move technique to temper the images in writing the fake news. The 
fake news detection rate was significantly affected by the image ratio. If 
this ratio was increased by 60 %, the probability of fake news detection 
would be increased by 20 %. The effect from the visual score reflected 
this situation and a lower score indicated a higher rate of fake news 
detection. We also proved that multimodal analysis can improve the 
accuracy of the fake news detector model if feature engineering is per
formed on the dataset before building the model. For the feature engi
neering task, a new modified JAYA algorithm has been proposed in this 
research work to find an optimal subset of important features and to 
improve the accuracy of the fake news detector model. The proposed 
model selects the best variables/features from the raw dataset and 
removes the unimportant, noisy, redundant, and irrelevant features that 
do not contribute to improving the accuracy of the detector model. The 
experiments and results show that our proposed model is removing the 
unimportant features effectively and giving better classification results 
as compared to other traditional feature selection models. The limitation 
of the proposed feature engineering approach is the high computational 
cost which is due to searching for the optimal subset of important var
iables and removing the noisy and irrelevant variables which lead 
sometimes to the loss of information or important variables. 

Developing a fake news & disinformation detection model carries 
significant managerial implications in businesses, as it involves a com
bination of technical, ethical, and strategic considerations. A disinfor
mation detection model can improve the decision-making power of 
managers and it can help to make better decisions by providing them 
with accurate information about the news they are reading on social 
media channels; especially important in situations where the news is 
related to business decisions, such as investment decisions or new 
product launches. A fake news detection model can help to reduce the 
risk of businesses being harmed by fake news and increase trust in or
ganizations. For example, a fake news about a company’s financial 
performance can lead to investors selling their shares, which could 
damage the company’s stock price. When investors and customers know 
that companies are taking steps to combat fake news, they are more 
likely to believe the information that they are being told. This can help 
businesses to protect their reputation and avoid negative publicity. So, 
businesses can use the detector model and can enhance their brand 
reputation to identify and remove fake news stories that are damaging 
their brand reputation. This can help businesses to improve the public’s 
perception and make it more attractive to customers and investors. 
Overall, a misinformation or disinformation detection model develop
ment can have a number of positive implications for organizations. By 
helping to improve decision-making, reduce risk, increase trust, improve 
public relations, and enhance brand reputation, a fake news detection 
model can be a valuable tool for businesses in today’s digital age. 

Feature engineering, which plays an important role in the development 
of an explainable fake news detection system by shaping the features 
used in the ML models, is an interconnected concept with explainable AI 
as it affects the model’s interpretability. 

In future research work, multimodal visual and text variables iden
tified in this research could be used to develop a single web application 
or dashboard that could help social media managers and online users to 
understand the consumption of their own misinformation and disinfor
mation on daily/hourly basis. Our proposed model can also be applied to 
other broad and diversified applications (e.g. big NLP datasets, 
biomedical and clinical datasets, etc.) in which the datasets have a large 
number of features or variables. 

References 

Agarwal, P., Al Aziz, R., & Zhuang, J (2022). Interplay of rumor propagation and 
clarification on social media during crisis events-A game-theoretic approach. 
European Journal of Operational Research, 298(2), 714–733. 

... & Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., 
Confalonieri, R., & Herrera, F. (2023). Explainable artificial intelligence (XAI): What 
we know and what is left to attain trustworthy artificial Intelligence. Information 
Fusion, Article 101805. 

Awadallah, M. A., Al-Betar, M. A., Hammouri, A. I., & Alomari, O. A. (2020). Binary 
JAYA algorithm with adaptive mutation for feature selection. Arabian Journal for 
Science and Engineering. 

Barthel, M., Mitchell, A., & Holcomb, J. (2016). Many Americans believe fake news is 
sowing confusion. https://www.pewresearch.org/journalism/2016/12/15/many 
-americans-believe-fake-news-is-sowing-confusion/. 

Begley, J. (2017). The rise of the image: Every NY times front page since 1852 in under a 
minute. Colossal. Retrieved from https://www.thisiscolossal.com/2017/02/the-rise- 
of-the-image-everyny-times-front-page-since-1852-in-under-a-minute/. 

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of 
Machine Learning Research, 3, 993–1022. 

Boididou, C., Andreadou, K., Papadopoulos, S., Dang-Nguyen, D. T., Boato, G., 
Riegler, M., & Kompatsiaris, Y. (2015). Verifying multimedia use at mediaeval 2015. 
MediaEval, 3(3), 7. 

Borchert, P., Coussement, K., De Caigny, A., & De Weerdt, J. (2023). Extending business 
failure prediction models with textual website content using deep learning. European 
Journal of Operational Research, 306(1), 348–357. 

Cacioppo, J. T., Cacioppo, S., & Petty, R. E. (2018). The neuroscience of persuasion: A 
review with an emphasis on issues and opportunities. Social Neuroscience, 13(2), 
129–172. 

Castillo, C., Mendoza, M., & Poblete, B. (2011). Information credibility on Twitter. In 
Proc. 20th Int. Conf. World Wide Web (pp. 675–684). 

Chaiken, S., & Eagly, A. H. (1983). Communication modality as a determinant of 
persuasion: The role of communicator salience. Journal of Personality and Social 
Psychology, 45(2), 241–256. 

Chaiken, S. (1980). Heuristic versus systematic information processing and the use of 
source versus message cues in persuasion. Journal of Personality and Social 
Psychology, 39(2), 752–766. 

Chang, Y., Keblis, M. F., Li, R., Iakovou, E., & White, C. C., III (2022). Misinformation and 
disinformation in modern warfare. Operations Research, 70(3), 1577–1597. 

Chu, Z., Gianvecchio, S., Wang, H., & Jajodia, S. (2012). Detecting automation of twitter 
accounts: Are you a human, bot, or cyborg? IEEE Transactions on Dependable and 
Secure Computing, 9(6), 811–824. 

Conroy, N. J., Rubin, V. L., & Chen, Y. (2015). Automatic deception detection: Methods 
for finding fake news. In Proceedings of the 78th ASIS&T annual meeting. 

Das, H., Naik, B., & Behera, H. (2020). A Jaya algorithm based wrapper method for 
optimal feature selection in supervised classification. Journal of King Saud University - 
Computer and Information Sciences. 

Lazer, D. M. J., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., 
Metzger, M. J., Nyhan, B., Pennycook, G., Rothschild, D., Schudson, M., 
Sloman, S. A., Sunstein, C. R., Thorson, E. A., Watts, D. J., & Zittrain, J. L. (2018). 
Science of fake news. Science (New York, N.Y.), 359(6380), 1094–1096. 

De Vreese, C. H. (2005). News framing: Theory and typology. Information design journal+
document design, 13(1), 51–62. 

Dickerson, J. P., Kagan, V., & Subrahmanian, V. (2014). Using sentiment to detect bots 
on Twitter: Are humans more opinionated than bots?. In 2014 IEEE/ACM 
international conference on advances in social networks analysis and mining (ASONAM) 
(pp. 620–627). 

Farid, H. (2006). Digital doctoring: How to tell the real from the fake. Significance, 3(4), 
162–166. 

Gabielkov, M., Ramachandran, A., Chaintreau, A., & Legout, A. (2016). Social clicks: 
What and who gets read on Twitter?. In ACM Sigmetrics /IFIP Performance 2016. 
France: Antibes Juan-les-Pins.  

George, J. F., Gupta, M., Giordano, G., Mills, A. M., Tennant, V. M., & Lewis, C. C (2018). 
The effects of communication media and culture on deception detection accuracy. 
MIS Quarterly, 42(2), 551–575. 

Gottfried, J., & Shearer, E. (2016). News use across social media platforms 2016. 
Gupta, A., Lamba, H., Kumaraguru, P., & Joshi, A. (2013). Faking sandy: Characterizing 

and identifying fake images on twitter during hurricane sandy. In Proceedings of the 
22nd international conference on world wide web (pp. 729–736). ACM.  

Table 14 
Performance comparison of the proposed fake news detector model with other 
models on Weibo dataset.  

Algorithms Precision Recall F-1 AUC 

EANN Model 0.795 0.806 0.795 0.800 
MVAE Model 0.824 0.854 0.769 0.809 
Cultural algorithm-based multimodal 0.891 0.873 0.822 0.932 
Our proposed Model 0.932 0.955 0.966 0.969  

A. Kumar and J.W. Taylor                                                                                                                                                                                                                   



European Journal of Operational Research 317 (2024) 401–413

413

Han, Y., Lappas, T., & Sabnis, G. (2020). The importance of interactions between content 
characteristics and creator characteristics for studying virality in social media. 
Information Systems Research. 

Hong, S. C. (2013). Scare sells? A framing analysis of news coverage of recalled Chinese 
products. Asian Journal of Communication, 23(1), 86–106. 

Horne, B. D., & Adali, S. (2017). This just in: Fake news packs a lot in title, uses simpler, 
repetitive content in text body, more similar to satire than real news. Association for 
the Advancement of Artificial Intelligence. 

Hunt, A., & Gentzkow, M. (2017). Social Media and fake news in the 2016 election. 
Journal of Economic Perspectives, 31(2), 211–236. 

Jin, Z., Cao, J., Zhang, Y., Zhou, J., & Tian, Q. (2017a). Novel visual and statistical image 
features for microblogs news verification. IEEE Transactions on Multimedia, 19(3), 
598–608. 

Jin, Z., Cao, J., Guo, H., Zhang, Y., & Luo, J. (2017b). Multimodal fusion with recurrent 
neural networks for rumor detection on microblogs. In Proceedings of the 2017 ACM 
on multimedia conference (pp. 795–816). ACM.  

Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm 
algorithm. In , 5. IEEE International conference on systems, man and cybernetics. 
Computational and cybernetics and simulations (pp. 4104–4108). 

Khattar, D., Goud, J. S., Gupta, M., & Varma, V. (2019). Mvae: Multimodal variational 
autoencoder for fake news detection. In The web conference (pp. 2915–2921). 

Kim, A., & Dennis, A. R. (2020). Says who? The effects of presentation format and source 
rating on fake news in social media. MIS Quarterly, 43, 3. 

Kumar, A., Gopal, R. D., Shankar, R., & Tan, K. H. (2022). Fraudulent review detection 
model focusing on emotional expressions and explicit aspects: investigating the 
potential of feature engineering. Decision Support Systems, 155, 113728. 

Kumari, R., & Ekbal, A. (2021). Amfb: Attention based multimodal factorized bilinear 
pooling for multimodal fake news detection. Expert Systems with Applications, 184, 
Article 115412. 

Lin, Z., He, J., Tang, X., & Tang, C. K. (2009). Fast, automatic and fine-grained tampered 
JPEG image detection via DCT coefficient analysis. Pattern Recognition, 42(11), 
2492–2501. 

MediaEval (2015). http://www.multimediaeval.org/mediaeval2015/. 
Messaris, P., & Abraham, L. (2001). The role of images in framing news stories. Framing 

public life (pp. 231–242). England, UK: Routledge: Abingdonon- Thames. 
Moravec, P., Minas, R. A., & Dennis, A. R. (2019). Fake news on social media: People 

believe what they want to believe when it makes no sense at all. MIS Quarterly, 43 
(4), 1343–1360. 

Moravec, P., Minas, R. A., & Dennis, A. R. (2020). Fake news on social media: People 
believe what they want to believe when it makes no sense at all. MIS Quarterly (in 
press). 

Osatuyi, B., & Hughes, J. (2018). A tale of two internet news platforms-real vs. fake: An 
elaboration likelihood model perspective. In Proceedings of the 51st Hawaii 
International Conference on System Sciences. 
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Abstract: Over the last few years, there has been an unprecedented proliferation of fake news. As
a consequence, we are more susceptible to the pernicious impact that misinformation and disinfor-
mation spreading can have on different segments of our society. Thus, the development of tools
for the automatic detection of fake news plays an important role in the prevention of its negative
effects. Most attempts to detect and classify false content focus only on using textual information.
Multimodal approaches are less frequent and they typically classify news either as true or fake. In
this work, we perform a fine-grained classification of fake news on the Fakeddit dataset, using both
unimodal and multimodal approaches. Our experiments show that the multimodal approach based
on a Convolutional Neural Network (CNN) architecture combining text and image data achieves
the best results, with an accuracy of 87%. Some fake news categories, such as Manipulated content,
Satire, or False connection, strongly benefit from the use of images. Using images also improves the
results of the other categories but with less impact. Regarding the unimodal approaches using only
text, Bidirectional Encoder Representations from Transformers (BERT) is the best model, with an
accuracy of 78%. Exploiting both text and image data significantly improves the performance of fake
news detection.

Keywords: Multimodal Fake News Detection; Natural Language processing; deep learning learning;
BERT

1. Introduction

Digital media has provided a lot of benefits to our modern society, such as facilitating
social interactions, boosting productivity, and improving sharing information. However,
it has also led to the proliferation of fake news [1]; that is, news articles containing false
information that has been deliberately created [2]. The effects of this kind of misinformation
and disinformation spreading can be seen in different segments of our society. The Pizzagate
incident [3], as well as the mob lynchings that occurred in India [4], are some of the most
tragic examples of the consequences of fake news dissemination. Changes in health
behavior intentions [5], an increase in vaccine hesitancy [6], and significant economic
losses [7] are also some of the negative effects that the spread of fake news may have.

Every day, a huge quantity of digital information is produced, making the detection
of fake news by manual fact-checking impossible. Due to this, it becomes essential to use
techniques that help us to automate the identification of fake news so that more immediate
action can be taken.

During the last few years, several studies have already been carried out to perform
the automatic detection of fake news [8–13]. Most previous works only exploit textual
information for identifying fake news. These approaches can be considered unimodal
methods because they only use a type of input data to deal with the task. The last few
years have shown great advances in the field of machine learning by combining multiple
types of data, such as audio, video, images, and text [14], for different tasks such as text
classification [15] or image recognition [16]. These systems are known as multimodal
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approaches [14]. The use of multimodal data (combining texts and images) for detecting
fake news has been explored little [10,11,17]. These approaches have shown promising
results, obtaining better results than the unimodal approaches. However, these studies
typically address the problem of fake news detection as a binary classification task (that is,
consisting of classifying news as either true or fake).

The main goal of this paper is to study both unimodal and multimodal approaches
to deal with a finer-grained classification of fake news. To do this, we use the Fakeddit
dataset [18], made up of posts from Reddit. The posts are classified into the following six
different classes: true, misleading content, manipulated content, false connection, imposter
content, and satire. We explore several deep learning architectures for text classification,
such as Convolutional Neural Network (CNN) [19], Bidirectional Long Short-Term Memory
(BiLSTM) [20], and Bidirectional Encoder Representations from Transformers (BERT) [21].
As a multimodal approach, we propose a CNN architecture that combines both texts and
images to classify fake news.

2. Related Work

Since the revival of neural networks in the second decade of the current century,
many different applications of deep learning techniques have emerged. Many Natural
Language Processing (NLP) advances are due to the incorporation of deep neural network
approaches [22,23] .

Text classification tasks such as sentiment analysis or fake news detection are also one
of the tasks for which deep neural networks are being extensively used [24]. Most of these
works have been based on unimodal approaches that only exploit texts. More ambitious
architectures that combine several modalities of data (such as text and image) have also
been tried [25–29]. The main intuition behind these multimodal approaches is that many
texts are often accompanied by images, and these images may provide useful information
to improve the results of the classification task [30].

We review the most recent studies for the detection of fake news using only the
textual content of the news. Wani et al. [31] use the Constraint@AAAI COVID-19 fake
news dataset [32], which contains tweets classified as true or fake. Several methods were
evaluated: CNN, LSTM, Bi-LSTM + Attention, Hierarchical Attention Network (HAN) [33],
BERT, and DistilBERT [34], a smaller version of BERT. The best accuracy obtained was
98.41% by the DistilBERT model when it was pre-trained on a corpus of COVID-19 tweets.

Goldani et al. [35] use a capsule network model [36] based on CNN and pre-trained
word embeddings for fake news classification of the ISOT [37] and LIAR [38] datasets.
The ISOT dataset is made up of fake and true news articles collected from Reuters and
Kaggle, while the LIAR dataset contains short statements classified into the following six
classes: pants-fire, false, barely-true, half-true, mostly-true, and true. Thus, the authors
perform both binary and multi-class fake news classification. The best accuracies obtained
with the proposed model were 99.8% for the ISOT dataset (binary classification) and 39.5%
for the LIAR dataset (multi-class classification).

Girgis et al. [39] perform fake news classification using the above-mentioned LIAR
dataset. More concretely, they use three different models: vanilla Recurrent Neural Net-
work [40], Gated Recurrent Unit (GRU) [41], and LSTM. The GRU model obtains an accuracy
of 21.7%, slightly outperforming the LSTM (21.66%) and the vanilla RNN (21.5%) models.

From this review on approaches using only texts, we can conclude that deep learning
architectures provide very high accuracy for the binary classification of fake news; however,
the performance is much lower when these methods address a fine-grained classification of
fake news. Curiously enough, although BERT is reaching state-of-the-art results in many
text classification tasks, it has hardly ever been used for the multiclassification of fake news.

Recently, some efforts have been devoted to the development of multimodal approaches
for fake news detection. Singh et al. [10] study the improvement in performance on the binary
classification of fake news when textual and visual features are combined as opposed to using
only text or image. They explored several traditional machine learning methods: logistic
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regression (LR) [42], classification and regression tree (CART) [43], linear discriminant analy-
sis (LDA) [44], quadratic discriminant analysis (QDA) [44], k-nearest neighbors (KNN) [44],
naïve Bayes (NB) [45], support vector machine (SVM) [46], and random forest (RF) [47].
The authors used a Kagle dataset of fake news [48]. Random forest was the best model, with
an accuracy of 95.18%.

Giachanou et al. [11] propose a model to perform multimodal classification of news
articles as either true or fake. In order to obtain textual representations, the BERT model [21]
was applied. For the visual features, the authors used the VGG (Visual Geometry Group)
network [49] with 16 layers, followed by an LSTM layer and a mean pooling layer.
The dataset used by the authors was retrieved from the FakeNewsNet collection [50].
More concretely, the authors used 2745 fake news and 2714 real news collected from the
GossipCop posts of the collection. The proposed model achieved an F1 score of 79.55%.

Finally, another recent architecture proposed for multimodal fake news classification
can be found in the work carried out by [17]. The authors proposed a model that is made
up of four modules: (i) ABS-BiLSTM (attention-based stacked BiLSTM) for extracting the
textual features), (ii) ABM-CNN-RNN (attention based CNN-RNN) to obtain the visual
representations, (iii) MFB (multimodal factorized bilinear pooling), where the feature
representations obtained from the previous two modules are fused, and (iv) MLP (multi-
layer perceptron), which takes the fused feature representations provided by the MFB
module as input, and then generates the probabilities for each class (true of fake). In order
to evaluate the model, two datasets were used: Twitter [51] and Weibo [52]. The Twitter
dataset contains tweets along with images and contextual information. The Weibo dataset is
made up of tweets, images, and social context information. The model obtains an accuracy
of 88.3% on the Twitter dataset and an accuracy of 83.2% on the Weibo dataset.

Apart from the previous studies, several authors have proposed fake news classifica-
tion models and have evaluated them using the Fakeddit dataset. Kaliyar et al. [53] propose
the DeepNet model for the binary classification of fake news. This model is made up of one
embedding layer, three convolutional layers, one LSTM layer, seven dense layers, ReLU
for activation, and, finally, the softmax function for the binary classification. The model
was evaluated on the Fakeddit and BuzzFeed [54] datasets. The BuzzFeed dataset contains
news articles collected within a week before the U.S. election, and they are classified as
either true or fake. The models provided an accuracy of 86.4% on the Fakeddit dataset
(binary classification) and 95.2% on the BuzzFeed dataset.

Kirchknopf et al. [55] use four different modalities of data to perform binary classifica-
tion of fake news over the Fakeddit dataset. More concretely, the authors used the textual
content of the news, the associated comments, the images, and the remaining metadata
belonging to other modalities. The best accuracy obtained was 95.5%. Li et al. [56] pro-
posed the Entity-Oriented Multimodal Alignment and Fusion Network (EMAF) for binary
fake news detection. The model is made up of an encapsulating module, a cross-modal
alignment module, a cross-model fusion module, and a classifier. The authors evaluated
the model on the Fakeddit, Weibo, and Twitter datasets, obtaining accuracies of 92.3%,
97.4%, and 80.5%, respectively.

Xie et al. [57] propose the Stance Extraction and Reasoning Network (SERN) to obtain
stance representations from a post and its associated reply. They combined these stance
representations with a multimodal representation of the text and image of a post in order
to perform binary fake news classification. The authors use the PHEME dataset [58] and
a reduced version of the Fakeddit dataset created by them. The PHEME dataset contains
5802 tweets, of which 3830 are real, and 1972 are false. The accuracies obtained are 96.63%
(Fakeddit) and 76.53% (PHEME).

Kang et al. [59] use a heterogeneous graph named News Detection Graph (NDG) that
contains domain nodes, news nodes, source nodes, and review nodes. Moreover, they
proposed a Heterogeneous Deep Convolutional Network (HDGCN) in order to obtain the
embeddings of the news nodes in NDG. The authors evaluated this model using reduced
versions of the Weibo and Fakeddit datasets. For the Weibo dataset, they obtained an
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F1 score of 96%, while for the Fakeddit dataset they obtained F1 scores of 88.5% (binary
classification), 85.8% (three classes), and 83.2% (six classes).

As we can see from this review, most multimodal approaches evaluated on the Fakked-
dit dataset have only addressed the binary classification of fake news. Thus far, only
work [59] has addressed the multi-classification of fake news using a reduced version of
this dataset. To the best of our knowledge, our work is the first attempt to perform a fine-
grained classification of fake news using the whole Fakeddit dataset. Furthermore, contrary
to the work proposed in [59], which exploits a deep convolutional network, we propose a
multimodal approach that simply uses a CNN, obtaining a very similar performance.

3. Materials and Methods

In this section, we describe our approaches to dealing with the task of fake news
detection. First, we present the unimodal approaches that only use texts. Then, we describe
our multimodal approach, exploiting texts and images.

3.1. Dataset

In our experiments, we train and test our models using the Fakeddit dataset [18], which
consists of a collection of posts from Reddit users. It includes texts, images, comments,
and metadata. The texts are the titles of the posts submitted by users, while the comments
are made by other users as an answer to a specific post. Thus, the dataset contains over
1 million instances.

One of the main advantages of this dataset is that it can be used to implement systems
capable of performing a finer-grained classification of fake news than the usual binary
classification, which only distinguishes between true and fake news. In the Fakeddit
dataset, each instance has a label that distinguishes five categories of fake news, besides the
unique category of true news. We briefly describe each category:

• True: this category indicates that the news is true.
• Manipulated Content: in this case, the content has been manipulated by different

means (such as photo editing, for example).
• False Connection: this category corresponds to those samples in which the text and

the images are not in accordance.
• Satire/Parody: this category refers to the news in which the meaning of the content is

twisted or misinterpreted in a satirical or humorous way.
• Misleading Content: this category corresponds to the news in which the information

has been deliberately manipulated or altered in order to mislead the public.
• Imposter Content: in the context of this project, all the news that belongs to this

category include content generated by bots.

The Fakeddit dataset is divided into training, validation, and test partitions. Moreover,
there are two different versions of the dataset: the unimodal dataset, whose instances
only contains texts, and the multimodal dataset, whose instances have both text and
image. The full dataset contains a total of 682,661 news with images. There are almost
290,000 additional texts without images. Therefore, 70% of the instances include both texts
and images, while 30% only contain texts. Actually, all texts of the multimodal dataset are
also included in the unimodal dataset.

Table 1 shows the distribution of the classes in the unimodal dataset. Table 2 provides
the same information for the multimodal dataset. As we can see, all classes follow a similar
distribution in both versions of the dataset (unimodal and multimodal) as well as in the
training, validation, and test splits. Moreover, both datasets, unimodal and multimodal, are
clearly imbalanced (the classes true, manipulated content, and false connection have more
instances than the other classes satire, misleading content, and imposter content, which are
much more underrepresented in both datasets). This imbalance may cause the classification
task to be more difficult for those classes with fewer instances.
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Table 1. Class distribution for the unimodal scenario.

Class Training Validation Test

True 400,274 (49.86%) 42,121 (0.5%) 42,326 (0.5%)
Satire/Parody 42,310 (5.27%) 4450 (0.05%) 4446 (0.05%)

Misleading Content 141,965 (17.68%) 14,964 (0.18%) 14,928 (0.18%)
Imposter Content 23,812 (2.97%) 2514 (0.03%) 2471 (0.03%)
False Connection 167,857 (20.91%) 17,810 (0.21%) 17,472 (0.21%)

Manipulated Content 26,571 (3.31%) 2677 (0.03%) 2838 (0.03%)
Total 802,789 84,536 84,481

Table 2. Class distribution for the multimodal scenario.

Class Training Validation Test

True 222,081 (39.38%) 23,320 (0.39%) 23,507 (0.4%)
Satire/Parody 33,481 (5.94%) 3521 (0.06%) 3514 (0.06%)

Misleading Content 107,221 (19.01%) 11,277 (0.19%) 11,297 (0.19%)
Imposter Content 11,784 (2.09%) 1238 (0.02%) 1224 (0.02%)
False Connection 167,857 (29.76%) 17,810 (0.3%) 17,472 (0.29%)

Manipulated Content 21,576 (3.83%) 2176 (0.04%) 2305 (0.04%)
Total 564,000 59,342 59,319

3.2. Methods

We now describe our approaches to deal with the task of fake news detection.
First, we present the unimodal approaches that only use texts. Three models only us-
ing the texts are proposed: CNN, BiLSTM, and BERT. Then, we describe our multimodal
approach, exploiting texts and images.

All texts were cleaned by removing stopwords, punctuations, numbers, and multiple
spaces. Then, we split each text into tokens and we apply lemmatization. After lemmatiza-
tion, we transform the texts into sequences of integers. This is performed first, by learning
the vocabulary of the corpus and building a dictionary where each word is mapped to a
different integer number. This dictionary is used to transform each text into a sequence of
integers. Every non-zero entry in such a sequence corresponds to a word in the original
text. The original order of the words in the text is respected.

As we need to feed the deep learning models with vectors of the same length, we
pad and truncate the sequences of integers so that they have the same number of entries.
This has the disadvantage that those vectors that are too long will be truncated, and some
information will be lost. In order to select the length of the padded/truncated vectors, we
computed the percentage of texts that are shorter than 10, 15, 20, and 25 tokens. We saw
that 98% of the texts have less than 15 tokens.

Since the number of texts that will have to be truncated is very small (less than 2%),
very little information is lost. Therefore, we selected 15 as the length of the vectors after
padding and truncating.

Then, an embedding layer transforms each integer value from the input sequence
into a vector of word embeddings. Thus, each text is represented as a sequence of word
embeddings, which is the input of each deep learning model. In particular, every text is
transformed into a matrix of 15 rows and 300 columns (300 being the dimension of the
word embeddings).

3.2.1. CNN

We now explain the CNN architecture for the text classification of fake news. As was
mentioned above, the first layer is an embedding layer. We initialize the embedding matrix us-
ing both random initialization and the pre-trained GloVe word embeddings of dimension 300.
We chose this size for the word embeddings over other options (50, 100 or 200) because word
embeddings of a larger dimension have been proven to give better results [60].
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After the embedding layer, we apply four different filters in a convolutional layer. A
convolutional operation is essentially the multiplication of the embedding matrix with a
filter to extract the most representative features from the matrix. Each of these filters slides
across the (15 × 300) matrix with the embeddings of the input sequence and generates
50 output channels. The 4 filters have sizes (2 × 300), (3 × 300), (4 × 300), and (5 × 300),
respectively, since these are the typical filter sizes of a CNN for text classification [61]. As a
consequence, the outputs of the previous filters have shapes (14 × 1), (13 × 1), (12 × 1),
and (11 × 1), respectively.

The next step is to pass the outputs obtained from the previous layer through the
ReLU activation function. This function is applied element-wise, and, therefore, it does not
alter the size of the outputs obtained after the previous step. The effect of this function is to
set all the negative values to 0 and leave the positive values unchanged.

To reduce the size of the model, after going through the ReLU activation, we will
apply a maxpooling layer that selects the biggest element out of each of the 200 feature
maps (50 feature maps per each of the 4 filters). Thus, 200 single numbers are generated.

These 200 numbers are concatenated, and the result is passed through 2 dense layers
with 1 ReLU activation in between [24]. The resulting output is a vector of six entries (each
entry corresponding to a different class of the Fakeddit dataset) that, after passing through
the logsoftmax function, can be used to obtain the predicted class for the corresponding
input text.

Early stopping [62] with the train and validation partitions is used in order to select the
appropriate number of epochs. We use the Adam optimization algorithm [63] for training
the model and the negative log-likelihood as the loss function.

3.2.2. BiLSTM + CNN

We now present a hybrid model that uses a bidirectional LSTM followed by a CNN
layer. First, texts are processed as was described above, and these inputs are passed through
the same embedding layer that was used for the CNN model. Therefore, each input vector
of length 15 is transformed into a matrix of shape 15 × 300.

Then, the matrix with the word embeddings goes through a bidirectional LSTM layer
with hidden states of length 70. The output of this layer is a matrix of size 15 × 140 that
contains two hidden states (corresponding to the two directions of the BiLSTM) for each
word embedding. The output of the BiLSTM layer is the input of a convolutional layer,
which applies 240 filters of size (3 × 140). Therefore, it generates 240 output arrays of size
(13 × 1). Then, the ReLU activation is applied, followed by a maxpooling layer that selects
the largest element within each of the 240 feature maps. Thus, this layer outputs a sequence
of 240 numbers.

Similar to what was done for the CNN model, the output of the maxpooling layer
is concatenated and passed through two dense layers with ReLU activation in between.
The resulting vector goes through the logsoftmax function, and the predicted class is
obtained. Figure 1 shows the architecture of the BiLSTM for text classification.

Early stopping is again used for selecting the optimal number of epochs. We use Adam
as the optimization algorithm and the negative log-likelihood as the loss function.

3.2.3. BERT

In this case, instead of using random initialization of the pre-trained Glove embed-
dings, we now use the vectors provided by BERT to represent the input tokens. As opposed
to the GloVe model [64], BERT takes into account the context of each word (that is, the words
that surround it).

For the preprocessing of the texts, the steps are similar to those described above.
The main differences are that we tokenize the texts by using the BertTokenizer class from
the transformers library [65]. This class has its own vocabulary with the mappings between
words and ID, so it was not necessary to train a tokenizer with the corpus of texts. We also
add the [CLS] and [SEP] tokens at the beginning and at the end of each tokenized sequence.
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It was also necessary to create an attention mask in order to distinguish what entries in each
sequence correspond to real words in the input text and what entries are just 0 s resulting
from padding the sequences. Thus, the attention mask is composed of 1 s (indicating
non-padding entries) and 0 s (indicating padding entries). We use the BERT base model in
its uncased version (12 layers, 768 hidden size, 12 heads, and 110 million parameters).

Figure 1. BiLSTM + CNN for text classification.

Then, we fine-tune it on our particular problem; that is, the multi-classification of
fake news. To do this, we add a softmax layer on top of the output of BERT. The softmax
layer receives a vector of length 768 and outputs a vector of length 6 (see Figure 2), which
contains the probabilities for each class.

Figure 2. BERT for text classification.
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For the training process, we used the Adam algorithm for optimization with a learning
rate of 2 × 10−5. We trained the model for two epochs since the authors of BERT recom-
mended using between two and four epochs for fine-tuning on a specific NLP task [21].

3.2.4. Multimodal Approach

Our multimodal approach uses a CNN that takes both the text and the image corre-
sponding to the same news as inputs. The model outputs a vector of six numbers, out of
which the predicted class is obtained. In the following lines, we describe the preprocessing
steps applied before feeding the data into the network, as well as the architecture of the
network (see Figure 3).

Figure 3. Architecture of the multimodal approach for fake news detection.

Regarding the preprocessing of the images, we only reshaped them so that they all
have the same shape (560 × 560). Once the preprocessed data are fed into the network,
different operations are applied to the texts and images. We use the same CNN architecture
that we have used for the unimodal scenario, except for the fact that we eliminate the last
two dense layers with ReLU activation in between.

We now describe the CNN model to classify the images. The data first goes through a
convolutional layer. Since each image is made up of three channels, the number of input
channels of this layer is also three. Moreover, it has six output channels. Filters of size
(5 × 5) are used with a stride equal to 1 and no padding. The output for each input image
is, therefore, a collection of 6 matrices of shape (556 × 556). The output of the convolutional
layer passes through a non-linear activation function (ReLU), and then maxpooling is
applied with a filter of size (2 × 2) and a stride equal to 2. The resulting output is a set of six
matrices of shape (278 × 278). The output from the maxpooling layer again passes through
another convolutional layer that has 6 input channels and 3 output channels. The filter
size, stride length, and padding are the same as those used in the previous convolutional
layer. Then, the ReLU non-linear activation function and the maxpooling layer are applied
again over the feature maps resulting from the convolutional layer. Thus, for a given input
(image), we obtain a set of 3 feature maps of shape (137 × 137). Finally, these feature maps
are flattened into a vector of length 56,307.

The texts are also processed by using the same CNN model for texts, which was
described previously. However, instead of feeding the output of the dense layer to the
softmax layer in the CNN model, this output vector representing the text is concatenated
to the vector obtained by the CNN model for images. Then, this vector is passed through
two dense layers with a ReLU non-linear activation in between. Finally, the logsoftmax
function is applied, and the logarithm of the probabilities is used in order to compute the
predicted class of the given input.
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4. Results

In this section, we present the results obtained for each model. We report the recall,
precision, and F1 scores obtained by all the models for each class. The accuracy is computed
over all the classes. It helps us to compare models and find the best approach. Moreover,
we are also interested in knowing which model is better at detecting only those news
containing false content. For this reason, we also compute the micro and macro averages
of the recall, precision, and F1 metrics only over five classes of fake news without the
true news. Macro averaging computes the metrics for each class and then calculates the
average. Micro averaging calculated the sum of all true positives and false positives for all
the classes, and then computes the metrics. We use the F1micro score and the accuracy to
compare the performance of the models.

4.1. CNN Results

Our first experiment with CNN uses random initialization to initialize the weights of
the embedding layer, which are updated during the training process. This model obtains an
accuracy of 72%, a micro F1 of 57%, and a macro F1 of 49% (see Table 3). We can also see that
True and Manipulated content are the classes with the highest F1 (79%). A possible reason
for this could be that they are the majority classes. On the other hand, the model obtains
the lowest F1 (13%) for Imposter content, which is the minority class in the dataset (see
Table 1). Therefore, the results for the different classes appear to be related to the number of
instances per class. However, the model achieves an F1 of 61% for the second minority class,
Misleading content. As was explained before, the content of this news has been deliberately
manipulated. Identifying these manipulations appears to be easier than detecting humor
or sarcasm in the news (Satire) or fake news generated by bots (Imposter content).

Table 3. Results of CNN with random initialization.

Class P R F1

True 0.71 0.87 0.79
Manipulated content 0.75 0.84 0.79

False connection 0.70 0.48 0.57
Satire 0.63 0.26 0.37

Misleading content 0.71 0.54 0.61
Imposter content 0.72 0.07 0.13

micro-average 0.73 0.62 0.57
macro-average 0.70 0.44 0.49

Interestingly, although the model only exploits the textual content of the news, it
achieves an F1 of 57% for classifying the instances of False connections. In these instances,
the text and the image are not in accordance.

We also explore CNN with static (see Table 4) and dynamic (see Table 5) GloVe
embeddings [64]. In both models, the embedding layer is initialized with the pre-trained
Glove vectors. When dynamic training is chosen, these vectors are updated during the
training process. On the other hand, if static training is chosen, the vectors are fixed
during the training process. The model with dynamic vectors overcomes the one with
static vectors, with a slight improvement in accuracy (74%) (roughly one percentage point).
However, in terms of micro F1, the static model is better than the dynamic one. Both models
provide the same macro F1 (69%). Regarding the classes, there are no significant differences,
except for Imposer content. For this class, updating the pre-trained Glove vectors results in
a decrease of seven percentage points in F1.
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Table 4. Results of CNN with static Glove vectors.

Class P R F1

True 0.76 0.81 0.79
Manipulated content 0.75 0.82 0.79

False connection 0.65 0.59 0.62
Satire 0.60 0.40 0.48

Misleading content 0.71 0.59 0.64
Imposter content 0.35 0.21 0.26

micro-average 0.70 0.67 0.69
macro-average 0.61 0.52 0.56

Table 5. Results of CNN with dynamic Glove vectors.

Class P R F1

True 0.74 0.87 0.80
Manipulated content 0.76 0.83 0.80

False connection 0.71 0.54 0.61
Satire 0.67 0.35 0.46

Misleading content 0.74 0.58 0.65
Imposter content 0.70 0.11 0.19

micro-average 0.74 0.65 0.69
macro-average 0.71 0.48 0.54

We also compared the effect of the pre-trained Glove vectors with random initialization
(see Table 3). In both dynamic and static approaches, initializing the model with the pre-
trained GloVe word embeddings gets better results than random initialization. The reason
for this is that the GloVe vectors contain information about the relationship between
different words that random vectors can not capture.

As the dataset is highly unbalanced, we use the micro F1 to assess and compare the
overall performances of the three models. Thus, the best model is a CNN with dynamic
Glove vectors. However, dynamic training takes much more time than static training
(around 6000 to 8000 s more). This is due to the fact that, in a dynamic approach, word
embeddings are also learned, and this significantly increases the training time.

4.2. BiLSTM + CNN Results

As a second deep learning model, we explore a hybrid model based on a BiLSTM
followed by a CNN. We replicate the same experiments as described for CNN; that is, using
random initialization and pre-trained Glove vectors.

The BiLSTM initialized with random vectors (see Table 6) very similar results to those
achieved by CNN with random initialization (see Table 3). In fact, both models provide the
same accuracy of 0.72. However, in terms of micro F1, the BiLSTM model obtains up to
nine points more than the CNN model with random initialization. This improvement may
be because the BiLSTM improved its scores for Imposter content.

Table 6. Results of BiLSTM with random initialization.

Class P R F1

True 0.70 0.88 0.78
Manipulated content 0.73 0.85 0.79

False connection 0.73 0.44 0.55
Satire 0.58 0.25 0.35

Misleading content 0.71 0.54 0.61
Imposter content 0.86 0.08 0.14

micro-average 0.73 0.61 0.66
macro-average 0.74 0.41 0.48
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The use of static Glove vectors (see Table 7) appears to have a positive effect on
the performance of the BiLSTM model. The model shows significant improvements for
False connection, Satire, Misleading content, and Imposter content, with increases of
6, 12, 3, and 10 points, respectively. The model obtains an accuracy of 73%. Therefore,
the pre-trained Glove vectors achieve better results than random initialization.

Table 7. Results of BiLSTM with static Glove vectors.

Class P R F1

True 0.74 0.85 0.79
Manipulated content 0.77 0.82 0.79

False connection 0.68 0.55 0.61
Satire 0.55 0.41 0.47

Misleading content 0.77 0.55 0.64
Imposter content 0.45 0.17 0.24

micro-average 0.72 0.65 0.69
macro-average 0.65 0.50 0.55

Table 8 shows the results obtained by BiLSTM with dynamic Glove vectors. If these
vectors are updated during the training of the BiLSTM model, an accuracy of 75% is
achieved; that is, two points more than BiLSTM with static Glove vectors. Moreover, this
model with dynamic Glove vectors improves the results for all classes, with increases
ranging from one to four points. In terms of micro F1, using dynamic Glove vectors is
the best approach for BiLSTM. Moreover, this model slightly overcomes the CNN model
with dynamic Glove vectors by roughly one percentage point. However, as mentioned
above, dynamic training takes much more time than static training.

Table 8. Results of BiLSTM with dynamic Glove vectors.

Class P R F1

True 0.75 0.86 0.80
Manipulated content 0.77 0.84 0.80

False connection 0.72 0.55 0.63
Satire 0.63 0.41 0.50

Misleading content 0.78 0.57 0.66
Imposter content 0.57 0.18 0.28

micro-average 0.74 0.67 0.70
macro-average 0.69 0.51 0.57

4.3. Bert Results

Table 9 shows the results obtained by BERT. This model achieves an accuracy of 78%
and a micro F1 of 74%. Therefore, it outperforms all the previous unimodal deep learning
approaches. This proves the advantage of the pre-trained contextual text representations
provided by BERT, as opposed to the context-free GloVe vectors or random initialization
for neural networks.

Table 9. BERT results.

Class P R F1

True 0.81 0.86 0.83
Manipulated content 0.80 0.86 0.83

False connection 0.72 0.64 0.68
Satire 0.70 0.53 0.61

Misleading content 0.77 0.70 0.73
Imposter content 0.61 0.28 0.38

micro-average 0.76 0.73 0.74
macro-average 0.72 0.60 0.65
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Moreover, BERT is better in all classes. Comparing the classes, the behavior of BERT is
very similar to the previous deep learning models; that is, the more training instances for a
class, the better predictions for it. In this way, True and Manipulated content both get the
highest F1 (83%), while the worst-performing class is Imposter content (F1 = 38%). As in
previous models, Misleading content gets better scores than Satire, despite the fact that this
class is more represented than the first one, Misleading content (see Table 2).

4.4. Multimodal Approach Results

The multimodal approach obtains an accuracy of 87% and a micro F1 of 72% (see
Table 10), which are the highest scores out of all the unimodal models.

Table 10. Multimodal approach results.

Class P R F1

True 0.85 0.88 0.86
Manipulated content 1 1 1

False connection 0.77 0.76 0.76
Satire 0.82 0.72 0.77

Misleading content 0.75 0.79 0.77
Imposter content 0.46 0.25 0.32

micro-average 0.88 0.86 0.87
macro-average 0.76 0.70 0.72

As expected, the training set size for each class strongly affects the model scores. While
True and Manipulated content, the majority classes, get the highest scores, Imposter content,
the minority class, shows the lowest F1 (32%), even six points lower than that provided
by BERT for the same class (F1 = 38%). Thus, we can say that the image content provides
little information for identifying instances of Imposter content. Manipulated content shows
an F1 of 100%. This is probably due to the fact that the images in this category have been
manipulated. These manipulations may be easily detected by CNN.

As expected, the use of images significantly improves the results for False connection.
The multimodal model shows an F1 of 76%, 8 points higher than that obtained by BERT,
the best unimodal approach, and 15 points higher than the unimodal CNN model using
only texts. The improvement is even greater for detecting instances of Satire, with an
increase of 16 points higher than those obtained by BERT and by the unimodal CNN model.

5. Discussion

In addition to the deep learning algorithms, we also propose a Support Vector Machine
(SVM) as a baseline for the unimodal approaches. SVM is one of the most successful algo-
rithms for text classification. For this algorithm, the texts were represented using the tf-idf
model. Table 11 shows a comparison of the best models (traditional algorithms, CNN, BiL-
STM, BERT, and multimodal CNN) according to their accuracy and micro average scores.

Table 11. Comparison of the best models (micro_averages).

Model P R F1 Acc.

SVM 0.71 0.64 0.67 0.72
CNN (Dynamic + GloVe) 0.74 0.65 0.69 0.74

BiLSTM + CNN (Dynamic + GloVe) 0.74 0.67 0.70 0.75
BERT 0.76 0.73 0.74 0.78

Multimodal CNN 0.88 0.86 0.87 0.87

We can see that the multimodal CNN outperforms all the unimodal approaches. In
fact, the multimodal approach achieves higher accuracy than that provided by the best
model of the unimodal approaches, BERT, with a difference of 9% in overall accuracy.
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In terms of micro-F1, the improvement is even greater, 13 points over the micro F1 of
BERT. This proves the usefulness of combining texts and images for a fine-grained fake
news classification.

Focusing on the unimodal approaches, the BERT model is the best both in terms
of accuracy and micro F1 score, which shows the advantage of using contextual word
embeddings. In terms of accuracy, BERT achieves a significant improvement over the other
deep learning models. The third best approach is BiLSTM + CNN with dynamic Glove
vectors, with an accuracy of 0.75 (three points lower than the accuracy achieved by BERT).
The fourth approach is the CNN model, with an accuracy of 0.74 (four points lower than
the accuracy provided by BERT). In terms of micro F1, BERT also outperforms the other
deep learning models, with improvements of around 4–5%. Finally, all the deep learning
approaches outperform our baseline SVM, with an accuracy of 0.72. This also shows that
when a large dataset is available, as in the case of the Fakeddit dataset, the deep learning
models provide better performance than traditional machine learning algorithms.

6. Conclusions

Fake news could have a significant negative effect on politics, health, and economies.
Therefore, it becomes necessary to develop tools that allow for the rapid and reliable
detection of misinformation.

Apart from the work carried out by the creators of the Fakeddit dataset [18], this is,
to the best of our knowledge, the only study that addresses a fine-grained classification
of fake news by performing a comprehensive comparison of unimodal and multimodal
approaches based on the most advanced deep learning techniques.

The multimodal approach overcomes the approaches that only exploit texts. BERT
is the best model for the task of text classification. Moreover, using dynamic GloVe word
embeddings outperforms random initialization for the CNN and BiLSTM architectures.

In future work, we plan to use pre-trained networks to generate the visual representa-
tions. In particular, we will use the network VGG, which was pre-trained on a large dataset
of images, such as ImageNet. We also plan to explore different deep learning techniques,
such as LSTM, BiLSTM, GRU, or BERT, as well as different methods of combining the visual
and textual representations. In our current study, we have built our multimodal CNN using
an early fusion approach, which consists of creating textual and visual representations,
combining them, and then applying a classifier over the resulting combined representa-
tion to get the probabilities for each class. Instead of this, we plan to study a late fusion
approach, which would require two separate classifiers (one for the textual inputs and the
other for the image inputs). The predictions from both classifiers are then combined, and
the final prediction is obtained.
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Positive Unlabeled Fake News Detection via
Multi-Modal Masked Transformer Network

Jinguang Wang , Shengsheng Qian , Member, IEEE, Jun Hu , and Richang Hong , Senior Member, IEEE

Abstract—Fake news detection has gotten continuous attention
during these years with more and more people have been posting
and reading news online. To enable fake news detection, existing
researchers usually assume labeled posts are provided for two
classes (true or false) so that the model can learn a discriminative
classifier from the labeled data. However, this supposition may not
hold true in reality, as most users may only label a small number of
posts in a single category that they are interested in. Furthermore,
most existing methods fail to mask the noise or irrelevant context
(i.e., regions or words) between different modalities to assist in
strengthening the correlations between relevant contexts. To tackle
these issues, we present a curriculum-based multi-modal masked
transformer network (CMMTN) for positive unlabeled multi-
modal fake news detection by jointly modeling the inter-modality
and intra-modality relationships of multi-modal information and
masking the irrelevant context between modalities. In particular,
we adopt BERT and ResNet to obtain better representations
for texts and images, separately. Then, the extracted features of
images and texts are fed into a multi-modal masked transformer
network to fuse the multi-modal content and mask the irrelevant
context between modalities by calculating the similarity between
inter-modal contexts. Finally, we design a curriculum-based PU
learning method to handle the positive and unlabeled data. Massive
experiments on three public real datasets prove the effectiveness of
the CMMTN.

Index Terms—Fake news detection, multi-modal learning, social
media.

I. INTRODUCTION

OVER the past decades, more and more people have been
posting and reading news online because of the increasing

ease of social media. With the rise in the number of internet users,
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multifarious information data has appeared on social media plat-
forms. However, since users do not evaluate the dependability of
the given information, the authenticity of the information data is
difficult to guarantee, resulting in the widespread propagation of
significant fake news. Besides, the widespread dissemination of
misinformation has a significant detrimental influence on indi-
viduals and society due to its malicious distortion and fabrication
of facts [1]. For example, a conspiracy theory that claims that
5 G internet is behind the coronavirus outbreak has led to arson
attacks on more than 70 cell phone towers in the U.K. [2]. Hence,
discovering fake news is desirable and beneficial to society.

In recent years, many approaches are proposed to identify
fake news. They can basically be separated into two groups: (1)
One is the traditional hand-crafted feature based methods [3],
[4], which generally obtain features from post content and train
a classifier to debunk fake news. However, the content of fake
news is highly complicated and difficult to be fully captured
with hand-crafted features. (2) The other is deep learning based
approaches [5], [6], [7], which are good at capturing deep fea-
tures by using neural networks. For example, Ma et al. [5] extract
hidden features of posts through Recurrent Neural Networks. Yu
et al. [6] utilize Convolutional Neural Networks to learn latent
representations and capture the high-level relationships of fake
news. Lately, with the multimedia technology developing by
leaps and bounds, the news content has changed from mere text
to multi-modal auxiliary descriptions such as images or videos,
which has largely deepened readers’ understanding. Different
modalities (e.g., images and text) have imbalanced and com-
plementary relations that include imbalanced information when
representing the same semantic meaning. For instance, as shown
in Fig. 1, images usually provide some details that textual de-
scriptions cannot convey and vice versa. Unfortunately, most
of the approaches listed above only consider text content and
disregard the posts containing multi-modal content (e.g., text,
images.) that is an important constituent of social media sites.
Recently, many approaches [8], [9] are proposed to deal with
multi-modal news content to accelerate the detection of fake
news. For example, the multimodal Variational Autoencoder
(MVAE) was proposed by Khattar et al. [9] for learning and ex-
tracting the latent complicated multi-modal features and these
multimedia posts were categorized through the binary classifier.
Although this methods [8], [9] prove competitive performance in
detecting fake news, most of them simply concatenate different
modal features together or build a collective space for differ-
ent modalities to explore the potential alignment between them,
they still have some shortcomings in using multi-modal data.

1520-9210 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. A multi-modal post composed of text and picture.

As mentioned above, the core challenge of multi-modal fea-
ture fusion is to tackle the heterogeneous problem between
modalities and explore the essential correlation between them. In
general, different modalities have imbalanced and complemen-
tary relations that supply varying amounts of information in rep-
resenting the same semantics, because some modality-specific
features within one modality cannot be completely matched with
other modalities. However, there is also irrelevant context and
mutual interference between different modalities. Therefore, it is
not enough to only consider the complementary relationship be-
tween modalities of multi-modal data, but also consider the noise
or irrelevant context (i.e., regions or words) between modalities.
Recently, a hierarchical multi-modal contextual attention net-
work [10] was proposed for detecting fake news by applying
two transformer units to jointly model the multi-modal data.
However, it only captures the intra-modality and inter-modality
relationship of multi-modal data, while ignoring the noise or
irrelevant context between different modalities.

Furthermore, the general depth learning model usually needs a
big quantity of manually labeled data during training. However,
it is costly and time-consuming to get a big quantity of labeled
data. Recently, positive unlabeled (PU) learning [11], [12], [13]
has been proposed and widely employed in many tasks, which
train a classifier through smidgen positive data and abundant
unlabeled data. Many works have confirmed the superior per-
formance of PU learning in semi-supervised learning [14], [15].
For example, Wang et al. [14] apply PU learning for high-quality
content recognition. Wu et al. [15] first apply positive unlabeled
learning to the graph for node classification to solve the prob-
lem of only a small number of labeled samples. However, these
approaches ignore the learning capability of the model itself,
which may have given dependable supervision.

Therefore, the following challenges need to be addressed in
order to establish a productive framework for detecting fake
news:
� Challenge 1: How to propose a more effective method to

better fuse multi-modal data to capture complementary in-
formation between different modalities? How to mask the
noise or irrelevant context between modalities to strengthen
the detection of fake news?

� Challenge 2: How to perform better fake news detection
with little labeled data? And how to consider the learn-
ing capability of the model itself, so as to provide reliable
supervision?

To address the aforementioned challenges, we present a
Curriculum-Based Multi-modal Masked Transformer Network
(CMMTN) for positive unlabeled multi-modal fake news de-
tection by modeling the inter-modality and intra-modality rela-
tionships of multi-modal information and masking the noise or
irrelevant context between modalities. (1) For Challenge 1, we
present a multi-modal masked transformer network to make full
use of the similarity and difference between modalities, which
can obtain both inter-modality and intra-modality relationships
and mask the noise or irrelevant context between modalities to
assist in strengthening the correlations between relevant con-
texts. (2) For Challenge 2, we introduce a curriculum-based PU
learning, which can adaptively discover and augment confident
positive examples and negative examples as training progress
to investigate the model’s ability to learn on its own, so as to
provide reliable supervision.

To sum up, the following are the contributions of our article:
� We explore positive unlabeled multi-modal fake news

detection and present a curriculum-based multi-modal
masked transformer network (CMMTN) by fusing the
multi-modal information in a unified network as a solu-
tion.

� A multi-modal masked transformer network is proposed to
consider the similarity and differences between modalities,
which can obtain both inter-modality and intra-modality
relationships, and mask the noise or irrelevant context be-
tween modalities to assist in strengthening the correlations
between relevant contexts.

� We introduce a curriculum-based PU learning method
to adaptively discover and augment confident posi-
tive/negative examples as the training proceeds to inves-
tigate the model’s ability to learn on its own.

� A large number of experiments have proved the superior ro-
bustness and effectiveness of our presented CMMTN com-
pared with state-of-the-art methods on three public real
datasets.

II. RELATED WORK

A. Fake News Detection

Recently, detecting fake news intelligently and effectively has
become a popular research issue on social media platforms. To
date, there are many methods [8], [16], [17], [18], [19] which
have been proposed, and existing methods are mainly separated
into two groups: single-modal approaches and multi-modal ap-
proaches.

In the single-modal approaches, existing approaches [16],
[17], [18], [20] usually simply concatenate the extracted text
features and visual features together (i.e. the concatenate op-
eration). For instance, Yu et al. [6] capture high-level inter-
actions and important information about the post by utilizing
CNNs. Ma et al. [5] extract hidden features of posts through
RNNs. In addition, some methods take into account emotional
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signals to detect fake news [21], [22]. However, social media
platforms often contain multiple modal data (e.g. images, text,
and video), which can supplement each other semantically and
be useful to the understanding of social media [23], [24], [25],
[26].

Researchers have realized that multi-modal representation
plays a critical role in fake news detection, thanks to the enor-
mous effectiveness of deep neural networks in learning image
and word representations. In recent years, multi-modal fake
news detection has attracted large quantities of interest. Some
methods [8], [27], [28], [29], [30] use multi-modal content to
detect fake news and achieve competitive performance. Khattar
et al. [9] design a multimodal variational autoencoder that is
capable of learning a common representation for texts and im-
ages. Shivangi et al. [31] introduce a multi-modal framework that
takes into consideration information from different modalities
(text and image) and then concatenated them together to classify
the post. In [32], the author proposed a model, which can simul-
taneously learn the characteristics of news text information and
visual information and capture the relationship between them
according to their similarity. Zhang et al. [33] utilize the post
information replied to by users to increase the ability to detect
fake news. Moreover, a hierarchical multi-modal contextual at-
tention network [10] was proposed for detecting fake news by
applying two transformer units to jointly model the multi-modal
data.

Despite the fact that the approaches listed above perform well,
they still have shortcomings in making full use of multi-modal
data, and they ignore the noise between different modalities. In
this article, we develop a multi-modal masked transformer net-
work by fusing the multi-modal information in a unified network
for fake news detection.

B. Positive Unlabeled Learning

Positive unlabeled (PU) learning is a research direction of
semi-supervised learning, and it utilizes smidgen positive (P )
data and abundant unlabeled (U ) data to learn a classifier. Ex-
isting positive unlabeled learning approaches can be classified
into two groups according to how they handle unlabeled data
U . The first group is known as the two-step technique, which
first determines potentially negative (N ) data in U , and then
conducts regular supervised learning (PN learning) from both
trustworthy positive and negative instances [34], [35]. The sec-
ond group is known as a direct learning approach, and it views
U data as N data with lesser weights. Direct learning methods
(e.g. One-class SVM [36], Biased-SVM [37]) learn a classifica-
tion model from the P data and U data directly. However, the
first is largely dependent on heuristic methods that recognize
N data, while the second group is largely dependent on various
selections of U data weights, which is computationally costly to
tune.

In order to address these limitations, some unbiased positive
unlabeled learning approaches [11], [12], [13], [38] are pro-
posed. The main strategy of these methods is to use an unbiased
risk estimator to eliminate the PU classification bias. Niu et al.
[12] provide an unbiased risk estimator to prevent the intrinsic

bias for unbiased PU learning. And then, a non-negative risk es-
timator [13] is presented, which is more resistant to overfitting
when the loss function is minimized, allowing some models to
be utilized with a limited quantity of P data. Recently, some
researchers have applied PU learning to the fake news detec-
tion task [39], [40]. Liu et al. [39] propose a novel deep learning
framework for fake news early detection and utilize PU-Learning
to improve fake news early detection given unlabeled and imbal-
anced data. They first conduct undersampling over the unlabeled
news samples. Then, they use PN learning to train an instance
on the combination of the pseudo-true news samples and the
positive news samples. M. C. de Souza et al. [41] propose a new
approach for detecting fake news based on PU-LP to minimize
the news labeling effort, where the authors use Label propa-
gation to handle unlabeled documents. Then, M. C. de Souza
et al. [40] add a representative terms selection module based on
the previous work [41] to further improve the model. Although
these methods have made a fairly good performance, most of the
existing methods can not make full use of unlabeled data, and ig-
nore the existence of some confident data in unlabeled data that
can be used for supervised learning. In contrast to other works,
we try to improve the learning capability of the model itself by
using the confident data in the unlabeled data. In our article, we
introduce a curriculum-based PU learning method to adaptively
discover and augment confident positive/negative examples as
the training proceeds to investigate the self-learning ability of
the model.

III. PROBLEM STATEMENT

A. General Fake News Detection

The issue of general fake news detection can be described
as a binary classification task in which the goal is to determine
whether or not the posts on social media are fake. Suppose a
multi-modal news post composed of text and imageP = {W, I}
(W represents the text and I represents the image), the model
will output Y = {0, 1} to signify the post’s label, with Y = 0
and Y = 1 denoting true real news and fake news, respectively.

1) Positive Unlabeled Fake News Detection: Assume that
a set of data D = P

⋃
U , with P representing labeled posts

(∀di ∈ P , yi = 1) and U representing unlabeled posts. Posi-
tive Unlabeled Fake news detection intends to develop a binary
classification model, f : (D;P ) �→ Y , to predict the unlabeled
posts’ class labels. We are the first to present a complete deep
learning model for positive unlabeled fake news detection.

IV. METHOD

A. Overall Framework

We present a curriculum-based multi-modal masked trans-
former network (CMMTN) to fuse multi-modal information to
increase the ability to detect fake news. By trying to exploit a
multi-modal masked transformer network, the model CMMTN
can obtain the intra-modality and inter-modality relationship
and mask the noise or irrelevant context between modalities to
strengthen the correlations between relevant contexts. As shown
in Fig. 2, the components of our proposed model are as follows:
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Fig. 2. Overview of our Curriculum-Based Multi-modal Masked Transformer Network (CMMTN) architectures. For both labeled and unlabeled posts, we adopt
BERT and ResNet to obtain better representations for texts and images, separately. And then a multi-modal masked transformer network is employed to fuse the
multi-modal content. Finally, a curriculum-based PU loss is used to optimize the model.

� Text and Image Encoding Network: For the given input
text and picture, we use BERT [42] and ResNet50 [43]
to extract the text content embedding and visual content
embedding respectively.

� Multi-modal Masked Transformer Network: Because dif-
ferent modalities contain unequal amount of informa-
tion and they can supplement each other, we introduce
a multi-modal masked transformer network to fuse the
multi-modal data, which can obtain both intra-modality
and inter-modality relationships and mask the noise or ir-
relevant context between modalities.

� Curriculum-based Positive Unlabeled Learning for Fake
News Detection: To address the issue of a scarcity of la-
beled samples, we propose a curriculum-based positive un-
labeled (PU) learning for fake news detection, which can
adaptively discover confident instances from the unlabeled
data, which will then be labeled into trusted positive (or
negative) classes.

B. Text and Image Encoding Network

As stated in the problem statement, the input of the CMMTN
is a multi-modal news P = {W, I}, where W indicates text in-
formation and I indicates visual information. Qian et al. [10]
and Ying et al. [44] proved that BERT and ResNet50 can ob-
tain better text and image representation. Based on this, we use
BERT and ResNet50 to extract the text content embedding and
visual content embedding respectively.

1) Text Encoding Network: For the text content, we utilize
BERT [42] to obtain the features that contain the semantic of
the word and the linguistic contexts.

Given a sequence of words W = {w1, w2, . . . , wn} (n de-
notes the number of words in the text) of a text content, we
utilize the BERT [42] to generate a set of embedding oT =
{t1, . . . , tn}, where ti denotes the embedding feature of wi.

Each word representation ti is obtained using pre-trained BERT:

oT = {t1, . . . , tn} = BERT(W) (1)

where ti ∈ Rdt denotes the output feature of the i-th token by
BERT, and dt denotes the dimensionality of the word embed-
ding.

2) Image Encoding Network: We extract region features of
a given visual content I using the pre-trained ResNet50 [43],
which is pre-trained on ImageNet [45]. Before applying the pre-
trained ResNet50 model, we resize the image to 112 × 112 pix-
els. A 4× 4× 2048-dimensional feature tensor is generated
from the last convolution layer as the high-level semantic repre-
sentation, then it is flattened to a 16× 2048-dimensional matrix.
So we obtain a feature set of image regions oV = {v1, . . . , vm}
(m means the total number of image’s regions), where we con-
sider the penultimate pooling layer as the output, and each vj
represents the mean-pooled convolutional feature of the j-th re-
gion. During training, the pre-trained model is fixed. Given the
input visual content I , the output of the visual feature extractor
in the penultimate pooling layer can be described as follows:

oV = {v1, . . . , vm} = ResNet50(I) (2)

wherevj ∈ Rdv and dv denotes the dimensionality of the region
embedding of image.

In addition, we also add a 2D-convolutional layer to transform
the region embedding dimension dv to the word embedding di-
mension dt to fit our task.

C. Multi-Modal Masked Transformer Network

In order to effectively fuse multi-modal features and mask
the noise or irrelevant context between modalities, we design
a multi-modal masked transformer network to establish the
multi-modal information and capture complementary informa-
tion between different modalities. As depicted in Fig. 2, the
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multi-modal masked transformer network is made up of two
masked transformer units. The above one takes image features
as Q and text features as K,V . On the contrary, the next one
takes the text feature as Q and the image feature as K,V .

In the transformer [46] model, the key component is the self-
attention module, and it can build the long-range dependency
between inputs and outputs. Given a set of input X ∈ RL×D (L
represents the number of tokens and D represents the embedded
dimension), the following is a definition of single-headed self-
attention:

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V (3)

where QKT represents the attention score between queries Q
and keys K, and

√
d denotes the scaling factor.

In order to capture the relationship between different modali-
ties and mask the noise or irrelevant context between modalities,
we have improved the self attention in Transformer [46]. Take
the oV as Q and oT as K,V as an example. For a multi-modal
input oT = {t1, . . . , tn} ∈ Rn×dt and oV = {v1, . . . , vm} ∈
Rm×dv , the similarity score matrix S and masked matrix M are
calculated as follows:

S = softmax

(
oV o

T
T√
d

)
(4)

Mi,j =

{
1, if Si,j ≥ l
0, otherwise

(5)

l = FFN([oV ||oT ]) (6)

where Si,j represents the similarity score of the i-th region in
oV and the j-th word in oT , l is the context similarity threshold,
FFN is a two-layer fully-connected network, and || denotes the
concatenate operation. Note that, we do not set the threshold l as
a fixed constant, but use a two-layer full connection according
to the original characteristics of the text and the image and map
it to a one-dimensional space to get l, so that the network can
adaptively set different threshold l for different samples and the
model will be more robust. Then, the modified single-headed
multi-modal self-attention can be defined as:

Masked Attention(Q,K, V,M)

= softmax

(
M ∗ (QKT )√

d

)
V (7)

where Q = W 1
QoV ,K = W 1

KoT , V = W 1
V oT and W 1

Q,

W 1
K ,W 1

V are different linear transformations that project
the input into queries, keys and values respectively. ∗ means the
hadamard product.

D. Curriculum-Based Positive Unlabeled Learning for Fake
News Detection

After integrating the textual and visual features via a multi-
modal masked transformer network module, we will gain a new
features O = {o1, . . . ,oN},ok ∈ R(n+m)×dt in the final layer,
where N indicates the number of posts. According to the prob-
lem statement (Section III), one crucial question is how can we

use this new representation to achieve positive unlabelled learn-
ing for fake news detection?

1) Traditional Fake News Detection: In the traditional fake
news detection methods, researchers generally regard this as a
binary classification task and learn a model f : O → Y to cat-
egorize news posts into the predefined classes Y = {+1,−1},
where +1 refers to positive samples and −1 refers to negative
samples.

Assume thatL(y,′ y) is the predicting loss of the model, where
L indicates a loss function, y′ indicates the output and y indicates
the ground truth. Let f be a mapping function that maps the
input o between 0 and 1. The general binary classification issue
is recast as a risk minimization problem:

R(f) = E [L(f(O), Y )] = πpR
+
p (f) + πnR

−
n(f) (8)

which R+
p (f) = Ep[L(f(O),+1)] and R−

n(f) = Ep[L(f(O),
−1)] is the expectation loss of positive samples and negative
samples respectively. Here, the class-prior probability is de-
noted by πp = p(Y = +1) and πn = p(Y = −1) = 1− πp. πp

is assumed to be known throughout the work and can be derived
from positive data [47].

As a result, we may minimize an approximated R(f) for a
traditional binary classification problem (such as PN Learning)
by,

R̂pn(f) = πpR̂
+
p (f) + πnR̂

−
n(f) (9)

where R̂+
p (f) = (1/np)

∑np

i=1 L(f(op
i ),+1) and R̂−

n(f) =
(1/nn)

∑nn

i=1 L(f(oni ),−1). Besides, np indicates the number
of positive data, and nn indicates the number of negative data.

2) Positive Unlabeled Learning: In order to address the is-
sue of less labeled posts in fake news detection, we first recast
the general binary classification task as a risk reduction prob-
lem, and then offer two effective positive unlabeled learning
approaches (unbiased risk estimator [12] and non-negative risk
estimator [13]) to approximate the risk for fake news detection.

Unbiased Risk Estimator for Positive Unlabeled Learning:
Negative training data, on the other hand, is not available
for PU learning. As a consequence, we must use (9) to esti-
mate R̂−

n(f). In order to approximate R̂−
n(f), we employ an

unique unbiased risk estimator [11]. Specifically, through the
positive data loss R̂−

p (f) and unlabeled data loss R̂−
u (f), we can

acquire the negative loss R̂−
n(f), and its calculation formula is

as follows:

πpR̂
−
n(f) = −πpR̂

−
p (f) + R̂−

u (f) (10)

where R̂−
p (f) = (1/np)

∑np

i=1 L(f(opi ),−1), and R̂−
u (f) =

(1/nu)
∑nu

i=1 L(f(oui ),−1). In addition, np indicate the num-
ber of positive data and nu indicate the number of unlabeled
data.

As a result, the risk R(f) can be obtained by the following
formula:

R̂pu(f) = πpR̂
+
p (f)− πpR̂

−
p (f) + R̂−

u (f) (11)

Non-negative Risk Estimator for Positive Unlabeled Learn-
ing: Even though the unbiased risk estimator can handle the
positive unlabeled learning issue effectively. Nevertheless, since
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R̂−
p (f) is preceded by a minus sign, (11) may lead the risk value

to be negative. The R̂−
p (f) refers to the sample with negative

label expected risk value obtained through model projection in
the positive data set, i.e., if the prediction is a negative sample,
the loss is 0; otherwise, the loss is positive. For positive unla-
beled learning, this will result in an overfitting issue. We apply a
non-negative risk estimator R̂pu(f), which is motivated by [13],
as follows:

R̂pu(f) = πpR̂
+
p (f) + max

{
0, R̂−

u (f)− πpR̂
−
p (f)

}
. (12)

However, the above two PU learning methods ignore the learn-
ing capability of the model itself, which may have given depend-
able supervision.

3) Curriculum-Based Positive Unlabeled Learning: Follow-
ing existing studies [48], [49] that the model should be trained
from easy samples to hard ones. Inspired by the above work, we
rank the prediction results of all posts to discover simple exam-
ples and confidently label them, and then label it positive and add
it to the labeled pool for the next training step. As the training
process continues, the data in the trusted (confidence) set will
become larger and larger to provide confident full supervision.

We can calculate the output f(x) and then the probability
of o being positive as p(x) = P (Y = +1|x) = f(x) using the
model f , an input sample o, and corresponding label y. A higher
p(x) indicates a greater likelihood that o belongs to the positive
class as indicated by f , and vice versa. We can choose n most
confident positive and n most confident negative examples from
the current unlabeled data set U by sorting p(x) in ascending or-
der at each epoch. They will then be deleted from U and put into
our trustworthy subset Dt, which will be referred to as labeled
training examples during the later training process. Finally, our
hybrid loss for curriculum-based positive unlabeled learning be-
comes:

L(o, y) =
∑

(o,y)∈Dt

Lce(o, y) +
∑

o∈(U−Dt)

LnnPU (o) (13)

where Lce is the cross entropy loss. It’s worth noting that prior
studies have chosen only confidently positive data [50] or neg-
ative data [34], while our curriculum-based positive unlabeled
learning selects both positive data and negative data. One ben-
efit of using cross entropy as supervised loss is that the size
of the trusted set of positive / negative samples is balanced at
each sampling step, thus avoiding the possible risk of excessive
class imbalance that can occur when only sampling one class
incrementally.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Datasets: We compare our model CMMTN with state-of-
the-art baseline methods on three public datasets: WEIBO [19],
TWITTER [9], [19], and PHEME [51]. WEIBO dataset is used
in [19], where the real news is gathered from reliable Chinese
media platforms like the Xinhua News Agency,1 and the fake

1[Online]. Available: http://www.xinhuanet.com/

TABLE I
THE STATISTICS OF THREE REAL-WORLD DATASETS

news was collected from the Weibo2 data verified by Weibo’s
official rumor debunking system. The TWITTER dataset comes
from the MediaEval Verifying Multimedia Use benchmark [52],
which is designed to identify fraudulent Twitter posts. The
PHEME dataset [51] is built on five breaking news stories, each
of which comprises several posts. Here, all three datasets con-
tain a large quantity of labeled textual content (text) and labeled
visual content (images). Following [9], we divide WEIBO and
PHEME into a train set and test set by a 4:1 ratio, while TWIT-
TER is employed with the development set for training and
the test set for testing to maintain the same data segmentation
scheme as the baseline. Table I shows the records of the three
benchmark datasets.

2) Evaluation Metrics: In the binary categorization task
(e.g., fake news detection), people usually adopt Accuracy as
the evaluation metric. Nonetheless, if a dataset has the problem
of class imbalance, its trustworthiness will be significantly de-
graded. Thus, in our experiments, in addition to the Accuracy
metric, macro F1 and weighted F1 were also considered as sup-
plementary performance indicators for the task.

3) Implementation Details: We utilize the BERT [42] to ob-
tain word embeddings and the ResNet50 [43] to obtain image
features from multi-modal data of posts. The post embedding
dimension d = 768, the word embedding dimension is 768, and
the image features dimension is 2048. To match our task, we
employ a convolution layer to convert the image region feature
dimension from 2048 to 768. The Adam [53] optimizer is used
to train our algorithm, which is built on the Pytorch deep learn-
ing framework [54]. We train the model for 200 epochs and
set the learning rate of the model to 0.01. The Minibatch size
during the training process is set to 256. We divided each PN
dataset into positive sets and unlabeled sets at random for fair-
ness in comparison. Following [13], we sample r ∗NP (NP

denotes the overall amount of positive posts in the training set)
posts from P set as the positive data, and the remainder positive
posts and negative posts are regarded as the unlabeled posts (r
is the sampling ratio of positive posts in the training set). Each
experiment in our article is repeated 10 times to obtain a sta-
ble performance, and both the mean and standard deviation are
reported.

B. Baselines

Before introducing the baselines, let’s introduce two PU learn-
ing approaches as follows:
� uPU [12]: uPU is a positive unlabeled learning method

based on an unbiased estimator. For loss functions that
meet specific linear-odd requirements, it is convex.

2[Online]. Available: https://weibo.com/
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TABLE II
COMPARISON RESULTS OF DIFFERENT MODELS ON THREE DATASETS

� nnPU [13]: nnPU is a positive unlabeled learning method
based on a non-negative risk estimator that is more resis-
tant to overfitting when minimized. As a result, given a
limited set of P (positive) data, some flexible models can
be utilized.

We chose the following baselines with appropriate adapta-
tions to develop an impartial comparison and evaluate the avail-
ability of our model.
� SpotFake [31]: SpotFake applies the BERT to obtain better

textual information and uses the VGG-19 that pre-train on
ImageNet [55] to get better visual information to recognize
whether a post is true or fake.

� SAFE [32]: SAFE is a multi-modal fake news detection
approach, which uses TextCNN [56] to extract textual and
image features. Then a cross-modal similarity module is
applied to explore the correlation between modalities and
generate the final representation.

� HMCAN [10]: HMCAN is a model by applying two trans-
former units to jointly model the multi-modal data. In ad-
dition, it utilizes BERT [42] to extract the hierarchical se-
mantic information for textual content.

C. Results and Analysis

The results about CMMTN as well as all baseline approaches
are listed in Table II. We have got the following conclusions:
(1) SpotFake_* (* means uPU or nnPU model) has superior
performance than SAFE_*, which shows that the BERT [42]
and ResNet50 [43] can obtain better representations to en-
hance the model’s performance. (2) HMCAN_* can achieve
better results than SpotFake_* and SAFE_*, indicating that
better fusion of multi-modal features by capturing the inter-
modality and intra-modality relationships of multi-modal data
can contribute to improving the recognition of fake news. (3)

The proposed CMMTN outperforms all the baselines on the
TWITTER and PHEME datasets. Meanwhile, when r = 0.02,
CMMTN outperforms all the baselines on the WEIBO dataset.
The findings show that our suggested curriculum-based PU
Learning method can obtain better performance on the pos-
itive and unlabeled data by adaptively discovering and aug-
menting confident positive/negative examples as the training
proceeds to investigate the model’s ability to learn on its
own.

D. Analysis of CMMTN Components

Because our CMMTN contains more than one component,
we also compared various variants of CMMTN from the follow-
ing viewpoint to prove the availability of CMMTN—(1) influ-
ence of the visual content, (2) impact of the curriculum-based
PU Learning, and (3) impact of masked strategy (V , C, M )
for the multi-modal masked transformer network module. The
CMMTN variants listed below are offered for comparison.
� CMMTN¬V : A variant of CMMTN in which the visual

information is removed and just textual data is used.
� CMMTN¬C: A variant of CMMTN in which the

curriculum-based PU loss is removed and only applies the
general nnPU loss.

� CMMTN¬M : A variant of CMMTN in which the masked
strategy is omitted, and only uses the general transformer
module.

Table III shows the results of the ablation study.
1) Influence of the Visual Information: We make a compari-

son in performance between CMMTN and CMMTN¬V on three
datasets to show that the visual information is effective. As a re-
sult of the findings, we can conclude that CMMTN performs
better than CMMTN¬V , demonstrating that the visual informa-
tion can be adopted to enhance our model.

Authorized licensed use limited to: Universiti Malaysia Perlis. Downloaded on August 14,2024 at 03:19:46 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: POSITIVE UNLABELED FAKE NEWS DETECTION VIA MULTI-MODAL MASKED TRANSFORMER NETWORK 241

TABLE III
COMPARISON RESULTS OF DIFFERENT VARIANTS IN CMMTN ON THREE DATASETS

TABLE IV
COMPARISON RESULTS OF DIFFERENT MODELS ON THREE DATASETS IN THE LABEL-COMPLETE SCENARIO. (THE BASELINE RESULTS ARE FROM THE ARTICLE OF

HMCAN [10])

2) Impact of the the Curriculum-Based PU Learning:
We have conducted comparative experiments CMMTN and
CMMTN¬C on both three datasets, and checked out the ad-
vantages of the curriculum-based PU Learning component.
From the experiment results, we find our CMMTN outperforms
CMMTN¬C, confirming the advantage of curriculum-based PU
Learning for positive and unlabelled data.

3) Impact of the Masked Strategy: We have conducted com-
parative experiments CMMTN and CMMTN¬M on both three
datasets and checked out the advantages of the masked strategy.
From the experiment results, we can find that our CMMTN out-
performs CMMTN¬M , which demonstrates the efficacy of the
masked strategy in our model. In addition, we find that the per-
formance difference between CMMTN¬M and CMMTN is the
smallest on the TWITTER dataset and the larger on the WEIBO
and the PHEME dataset, which shows that our mask strategy
has the most obvious superiority when visual information is not
missing, and its superiority decreases when visual information
is missing.

E. Statistical Tests

To verify whether our method (CMMTN) is significantly bet-
ter than other methods, we adopt the Friedman test and Ne-
menyitest [57] to further compare the performance of CMMTN
with that of its rivals.

We first perform the Friedman test at the 0.05 significance
level under the null-hypothesis which states that the performance
of all algorithms is the same on all datasets and all r values
(i.e., the average ranks of all algorithms are equivalent). The
average ranks of CMMTN and its rivals when using different
evaluation metrics are summarized in Table V. From Table V,
we can see that the null hypothesis is rejected on these two
evaluation metrics. We also note that CMMTN performs better
than its rivals (the lower rank value is better).

To further analyze the difference between CMMTN and its
rivals, we perform the Nemenyi test, which states that the per-
formance levels of two algorithms are significantly different if
the corresponding average ranks differ by at least one critical
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TABLE V
THE AVERAGE RANKS OF CMMTN AND ITS RIVALS FOR ACCURACY AND MACRO F1

Fig. 3. Crucial difference diagram of the Nemenyi test for Accuracy and macro F1 on three datasets and two r values.

difference (CD). Fig. 3 provides the CD diagrams, where
the average rank of each algorithm is marked along the
axis (lower ranks to the right). From Fig. 3, we ob-
serve that CMMTN achieves a comparable performance
against HMCAN_nnPU, HMCAN_uPU, SpotFake_nnPU and
SpotFake_uPU, and CMMTN significantly outperforms the
SAFE_nnPU and SAFE_uPU. CMMTN is the only algorithm
that achieves the lowest rank value for both accuracy and macro
F1.

F. Results and Analysis in Label-Complete Scenario

To further verify the availability of the multi-modal masked
transformer network (MMTN), we compare it with some of
the latest methods in the label complete scenario (ie. p =
100%). In addition, we added three comparison models includ-
ing EANN [8], MVAE [9], SpotFake+ [58]. Table IV shows the re-
sults, and the following conclusions can be drawn: 1) Accuracy:
The proposed MMTN is higher than all baselines on TWITTER
and PHEME datasets. 2) F1 of fake news: The MMTN is higher
than all baselines on TWITTER datasets. 3) F1 of real news: On
WEIBO and PHEME datasets, the MMTN is higher than all base-
lines. On the whole, the proposed MMTN outperforms HMCAN
and other baselines. This shows that capturing the intra-modal
relationship and inter-modal relationship of multi-modal data
and masking the irrelevant context between modalities can as-
sist in fake news detection.

G. Impact of Selecting Confident Samples

In the curriculum learning, we compared different selection
strategies in the case of r = 1%, and the results are depicted
in Fig. 4. Here, ‘B,’ ‘P,’ and ‘N’ respectively mean that both
positive posts and negative posts are selected, only positive posts
are selected and only negative posts are selected. It can be found
from Fig. 4 that ‘B’ shows a better performance than ‘P’ and
‘N’ on the three datasets, which indicates that the strategy of

Fig. 4. Impact of selecting both confident positive samples and negative sam-
ples (r = 1%).

selecting both positive samples and negative samples is better
than the other two.

VI. CONCLUSION

This article presents a curriculum-based multi-modal masked
transformer network for positive unlabeled fake news detection.
The majority of existing approaches are tough to make the best
of utilizing the intra-modality relationship and inter-modality
relationship of multi-modal data. Simultaneously, they ignore
the noise or irrelevant context between modalities. Additionally,
existing PU learning approaches mainly ignore the learning ca-
pability of the model itself, which may have given dependable
supervision. To address the aforementioned issues, CMMTN
is presented to model the inter-modality and intra-modality re-
lationships of multi-modal data and mask the noise or irrele-
vant context between modalities. Our strategy is based on three
technical breakthroughs: (1) We apply BERT and ResNet to
obtain better features for texts and images, separately. (2) A
multi-modal masked transformer network is used to better fuse
the multi-modal feature information, which is capable of cap-
turing the intra-modality and inter-modality relationship and
masking the noise or irrelevant context between modalities. (3)
We introduce a curriculum-based PU learning method to deal
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with positive and unlabeled data. Experiments and comparisons
show the superiority of our model CMMTN for detecting fake
news. In the future, we will try to use additional knowledge or
user comments to discover explainable information for detect-
ing fake news. Besides, a more efficient method of extracting
visual content information also will be explored, which might
provide helpful complementary information.
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A B S T R A C T

Fake news is frequently disseminated through social media, which significantly impacts public perception and
individual decision-making. Accurate identification of fake news on social media is usually time-consuming,
laborious, and difficult. Although the leveraging of machine learning technologies can facilitate automated
authenticity checks, the time-sensitive and voluminous nature of the data brings considerable challenge for
fake news detection. To address this issue, this paper proposes a quantum multimodal fusion-based model for
fake news detection (QMFND). QMFND integrates the extracted images and textual features, and passes them
through a proposed quantum convolutional neural network (QCNN) to obtain discriminative results. By testing
QMFND on two social media datasets, Gossip and Politifact, it is proved that its detection performance is equal
to or even surpasses that of classical models. The effects of various parameters are further investigated. The
QCNN not only has good expressibility and entangling capability but also has good robustness against quantum
noise. The code is available at
. Introduction

With the prevalence of social media, individuals prefer to access
ews from social media networks rather than from traditional news
utlets. However, the rise of social media has also been a double-
dged sword, offering easily accessible and convenient short news at
he risk of propagating fake news. Fake news can deceive the public po-
entially through fabricated text, images, audio, video, or mismatched
eadlines and graphics intended to attract attention. Consequently, it
an drastically distort the truth and influence individuals’ decisions,
eading to illegal profits and the manipulation of public events [1].
or example, during the Covid-19 epidemic, online fake news spread
ead to incorrect treatments and false vaccine effects. This could lead
he public to make wrong medical decisions and harm their health.
ue to the fast-spreading nature of social media and people’s need for

nstant news, it becomes essential to quickly detect the authenticity of
he news. In these circumstances, rapid and accurate detection of fake
ews has become a critical issue that urgently needs to be addressed in
ocial media.
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E-mail addresses: 002359@nuist.edu.cn (Z. Qu), 20211221061@nuist.edu.cn (Y. Meng), ghulam@ksu.edu.sa (G. Muhammad), prayag.tiwari@ieee.org

P. Tiwari).
1 Zhiguo Qu and Prayag Tiwari contribute equally and share co-first authorship.

Due to billions of users, the number of news released by them on
social media exhibits massive and explosive growth, which causes fake
news detection on social media to become more and more challenging.
News on current social networks is often presented in a multimodal
manner, with text and image combinations being the most common
form of multimodal information. Compared to unimodal data, multi-
modal data requires information fusion techniques to process the data,
which is more complicated. Information fusion techniques encompass
data fusion [2], feature fusion [3], decision fusion [4], and more [5].
They involve integrating and processing data, knowledge, and fea-
tures from multiple data sources. They can help to provide a more
comprehensive, accurate, and reliable representation of information.
For instance, in medical diagnosis and treatment, combining different
medical images (such as MRI and CT scans of a patient) can result in a
more comprehensive and accurate diagnosis.

In view of this, researchers have explored the application of ma-
chine learning (ML) techniques, including graph neural networks
(GNN) [6], natural language processing (NLP) [7,8], and generative
adversarial networks [9], to detect fake news automatically. However,
vailable online 30 November 2023
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these methods still suffers to process ambigous features and fail to
quantify level of uncertainity. Many studies have shown that quantum
machine learning (QML) based on quantum computing principles [10]
can be used to perform ML tasks [11–13] such as pattern match-
ing [11], binary classification [12], support vector machines [13],
and others. Quantum convolutional neural network (QCNN), as one
of the emerging research branches of QML, has been widely used in
multiple application scenarios, such as smart healthcare [14] intelligent
transportation [15], etc.

In summary, the main contributions can be presented, as follows.

• A quantum multimodal fusion-based fake news detection (QM
FND) model is proposed for social media networks. The model
integrates quantum encoding, and quantum convolutional neural
networks (QCNNs) to process high-dimensional data processing.

• To achieve lower complexity and better accuracy, multimodal
features are encoded into a VQC (variational quantum circuit)
through amplitude encoding.

• QCNN is proposed for efficient training of quantum multimodal
data. The QCNN circuit not only has excellent expressibility and
entangling capability, but also good robustness against quantum
noise.

• QMFND achieved detection accuracies of up to 87.9% and 84.6%
on the Gossip and Politifact datasets, respectively. Additionally,
QMFND can alleviate the barren plateau phenomenon.

The remaining part of this paper is organized as follows. Section 2
reviews the related work on fake news detection and quantum neural
networks (QNNs). Section 3 presents the proposed QMFND model
which comprises data pre-processing, data encoding and QCNN train-
ing. Section 4 provides the experimental results and analysis, datasets,
runtime environment, baselines, and performance comparison. Finally,
the conclusions are given in Section 5.

2. Related work

2.1. Traditional fake news detection models

Traditional fake news detection primarily includes based on arti-
cle information, social context, and their combinations with external
knowledge.

The detection based on article information includes text-based,
image-based, and multimodal analysis. In 2019, Ma et al. [16] im-
proved classification performance by using adversarial training to gen-
erate more data. Singhal et al. [17,18] combined visual and textual in-
formation using the visual geometry group 19 (VGG-19), bidirectional
encoder representations from transformers (BERT), and the generalized
autoregressive pretraining method of XLNet. In 2022, Segura [19] used
unimodal and multimodal approaches for a more detailed classification
of fake news. In the same year, Jayakody and Mohammad [20] pro-
posed a system for fake news detection, employing federated learning
and blockchain methods to address resource allocation and privacy con-
cerns. In 2023, Luvembe et al. [21] proposed a method that achieved
high accuracy, using dual sentiment features.

In fake news detection based on social context, user trustworthiness
and news dissemination are commonly used criteria. For instance, in
2020, Nguyen et al. [22] proposed a novel graphical social context
representation and learning framework called FANG to detect fake
news. FANG captures social context well and is robust despite limited
training data. In 2022, based on Transformer, Raza et al. [23] proposed
an effective labeling technique in a fake news detection framework to
address the lack of labeled data in training models.

GNNs and attention mechanisms are also used to detect fake news
by integrating external information. In 2021, Li et al. [24] constructed
a star-shaped knowledge graph for factual evidence and news content,
2

using GNNs to identify fake news. In the same year, Hu et al. [25] pre-
sented a novel end-to-end GNN model called CompareNet to compare
news with a knowledge base of entities for fake news detection.

Deep learning models, particularly CNNs, GNNs, recurrent neural
networks (RNNs), and Transformers, have been widely used for fake
news detection. These models can automatically learn text and image
data patterns and help identify fake news. Moreover, the emergence
of pre-trained language models (such as BERT, GPT, etc.) has changed
the field of natural language processing, providing new opportunities
for fake news detection.

Despite the increasing diversity and sophistication of fake news
detection methods, multimodal fake news detection is still the focus of
research. Fake news exists not only in text but also in the dissemination
of images, videos, and audio, simultaneously. Therefore, the need
for multimodal fake news detection, which involves the simultaneous
analysis of various types of media content, is growing. In addition,
the enormous computational power of quantum computing has not yet
been fully investigated in fake news detection.

2.2. Quantum neural networks

QNNs leverage the properties of quantum computing to enhance
the performance of neural networks in some tasks. For example, in
2021, Narottama et al. [26] proposed a reinforcement learning-inspired
quantum neural network (RL-QNN) to enhance resource allocation ef-
ficiency in wireless communication. In 2023, to capture the complexity
and uncertainty of sarcasm and sentiment elements in human language,
Tiwari et al. [27] proposed a quantum fuzzy neural network (QFNN)
with a multi-task learning capability for multimodal sarcasm and sen-
timent detection. The algorithm combines the fuzzy system and QNN
to enhance the expressiveness of sentiment and sarcastic features and
exhibits superior performance compared to various existing algorithms.

Quantum circuits are used as convolutional kernels in QCNNs with
promising feature extraction capability that may match or even surpass
classical convolutional kernels [28]. As shown in Fig. 1, the quantum
circuit of the convolutional kernel consists of many unitary operators.
Similar to the classical convolution kernel, the quantum convolution
kernel passes through the entire image according to the size of a given
receptive field and step size. However, the quantum convolution kernel
first encodes the input into a quantum state consisting of a number
of qubits. Gate operations are then performed in a VQC containing
entangled modules with trainable weights. Finally, measurement is
performed on these qubits to obtain output. Also, the pooling layer
of the QCNN reduces the circuit dimensionality, so as to lower the
number of qubits while preserving as much information as possible
from previously learned values.

At present, QCNNs are widely used in various application fields such
as image classification [29,30], traffic prediction [15], speech recog-
nition [31] and medical diagnosis [14,32,33]. In 2020, Li et al. [29]
proposed a quantum deep convolutional neural network (QDCNN)
model for image recognition based on a parameterized quantum circuit.
Network complexity analysis indicates that the proposed model offers
exponential acceleration compared to classical models. In 2021, Yang
et al. [31] addressed privacy preservation issues in speech recognition
by using a decentralized feature extraction approach that employs a
QCNN. In 2022, Qu et al. [15] proposed a novel algorithm using
a quantum graph convolutional network to simultaneously capture
the temporal and spatial features of traffic data for traffic conges-
tion prediction. In 2022, Ovalle-Magallanes et al. [14] used quantum
computing in coronary artery X-ray angiography to construct a hy-
brid neural network. This network employs a mixed-transfer learning
approach, in which a quantum network enhances the performance of
a pre-trained classical network. In 2023, Qu et al. [32] introduced a
QNN-based multimodal fusion (QNMF) system for intelligent medical
diagnosis. QNMF can process multimodal medical data transmitted by

Internet of Things (IoT) devices, fuse data from different modalities,
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Fig. 1. The quantum circuit of QCNN convolution kernel. (𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 are the parameters. 𝑅
(

𝑥𝑖
)

(1 ≤ 𝑖 ≤ 4) are the rotation gates. 𝐻 is the Hadamard gate, and 𝐻 =
1
√

2
(|0⟩⟨0| + |0⟩⟨1| + |1⟩⟨0| − |1⟩⟨1|)).
Fig. 2. The flowchart of QMFND.
and enhance the performance of intelligent diagnosis. In 2023, Chen
et al. [30] proposed two scale-inspired local feature extraction methods
based on QCNN for binary image classification.

The advantages of using QCNNs can be summarized as follows:
(1) QCNNs can leverage entanglement, superposition, and interfer-
ence to process complex tasks. (2) For datasets with specific complex
features, QNNs have a classification advantage over classical neural
networks [34]. (3) Furthermore, models trained using quantum circuits
can exhibit higher performance and superior generalization capabilities
because of quantum entanglement [35].

3. The proposed QMFND model

The QMFND model is divided into two main phases. The first phase
is the data pre-processing, which separates raw classical data into
text and image, and then performs feature fusion. The second phase
involves data encoding and QCNN training. The data are fed into the
quantum circuit, and the measurement results are used to generate
the model prediction results. Then, the output is used to compute the
loss function in a classical computer environment, followed by the
parameter optimization. The flowchart of QMFND is shown as Fig. 2
and the details are presented as the follow.
3

3.1. Data pre-processing

3.1.1. Text pre-processing
For news, usually, not all the textual content is strictly relevant to

the expressed topic. For example, a news piece may be about the birth
of a celebrity’s daughter but the text may contain substantial passages
describing the celebrity’s history.

Quantum natural language processing (QNLP) [36] aims to design
and implement NLP models that run on quantum hardware. The release
of the Lambeq toolkit by Cambridge Quantum in 2019 marked the first
high-level Python library for QNLP. However, our attempts of utilizing
Lambeq library revealed that it could only process brief expressions and
was time-consuming. QNLP’s capability to identify news segments is
limited, and the circuit cost is excessively high. Therefore, the classical
NLP technique is used to extract text features. The text-davinci-003
model, introduced by OpenAI, is an advanced language model trained
to understand and generate human-like text and has been widely
recognized for its text-processing capability. Therefore, we uses the
API of the OpenAI model to extract the textual content summaries.
By calling the API, a non-local model can accurately summarize a
relatively lengthy news article by condensing it into a few sentences or
phrases. This enhances the training efficiency of the model. Then, news
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Fig. 3. The structure diagram of VGG-19.

Fig. 4. The flowchart of multimodal feature fusion.

summaries are embedded using a pre-trained XLNet model from the
Hugging Face Transformers library to obtain a matrix of eigenvalues.
Finally, fully connected layer is used.

3.1.2. Image pre-processing
For news, image information usually plays a vital role in conveying

its theme. A pre-trained VGG-19 model is used to extract the image
features. VGG-19 is a deep CNN architecture initially proposed by a
research team at the University of Oxford in 2014 [37]. As depicted
in Fig. 3, VGG-19’s architecture comprises 16 convolutional layers and
three fully connected layers. The number of convolutional layers in the
five VGG blocks is (2, 2, 4, 4, 4), along with three fully connected
layers, resulting in 19 parameter layers. VGG-19 is used in the image
pre-processing phase because it is typically pre-trained using large-
scale image datasets. Thus, its weights already contain a vast amount
of image knowledge. This makes VGG-19 highly versatile for various
computer vision tasks. Additionally, the VGG-19 network is suitable for
extracting rich feature representations. These factors make VGG-19 one
of the most popular deep CNN models currently in use.

Considering the limitations of quantum resources, the dimension of
image feature vectors is compressed and flattened to 100.

3.1.3. Feature fusion
Information fusion techniques are adept at managing multimodal

data. Based on different fusion times, information fusion can be catego-
rized into early, mid, and late fusion. An early feature fusion technique
is used, where multiple layers of features are fused at the input layer.
Compared with mid fusion and late fusion, early fusion can better
utilize complementary information among various modalities, and the
extracted features can be effectively used for training the QCNN.
4

Fig. 5. The quantum circuit that encodes a four-dimensional vector on two qubits.

Let 𝑥𝑖 represents the 𝑖𝑡ℎ data source, and 𝑓 (𝑥𝑖) denotes the extracted
features from image or text modalities. QMFND concatenates the ex-
tracted text and image features, denoted as 𝐹

(

𝑓
(

𝑥1
)

, 𝑓
(

𝑥2
)

,… , 𝑓
(

𝑥𝑛
))

. Through two fully connected layers with the sizes of 200 and
8, the compressed fused multimodal features, denoted as 𝐹

(

𝑓
(

𝑥′1
)

, 𝑓
(

𝑥′2
)

,… , 𝑓
(

𝑥′8
))

, were obtained. A flowchart of multimodal feature fu-
sion is illustrated in Fig. 4. The extracted fused multimodal information
will be used at the next encoding step.

3.2. Data encoding and QCNN training

3.2.1. Data encoding
The processed classical data cannot be used directly for training

the quantum circuit. Consequently, classical input data must be en-
coded into a quantum state for further processing in VQC. Given the
constraints of quantum resources, circuit simplification costs must be
considered in experiments. Reducing the number of qubits is one of
the widely accepted approaches. First, amplitude encoding is used to
encode classical data into quantum states. It is an effective method for
reducing the number of qubits. Specifically, 𝑥 =

(

𝑥1, 𝑥2...𝑥𝑁
)

represents
a normalized vector. Then, the vector can be represented by using the
amplitude encoding as follows:

|𝑥⟩ =
𝑁
∑

𝑖
𝑥𝑖|𝑖⟩, 𝑖 = 1, 2,… , 𝑁. (1)

For example, a 4-dimensional classical vector 𝑥 = (𝛼, 𝛽, 𝛾, 𝜂) needs
to be encoded into the VQC and the initial quantum state is |00⟩12.
Applying the rotation gate 𝑅1

(

𝜃1
)

on the first qubit, we get

|0⟩1 →
(√

|𝛼|2 + |𝛽|2
)

|0⟩ +
(√

|𝛾|2 + |𝜂|2
)

|1⟩. (2)

Then, the second qubit is also rotated through a rotation gate
𝑅2

(

𝜃2
)

:

|0⟩2 →
𝛼|0⟩ + 𝛽|1⟩
√

|𝛼|2 + |𝛽|2
. (3)

It can be obtained that:

|00⟩12 →
(√

|𝛼|2 + |𝛽|2
)

|0⟩
𝛼|0⟩ + 𝛽|1⟩
√

|𝛼|2 + |𝛽|2

+
(√

|𝛾|2 + |𝜂|2
)

|1⟩
𝛼|0⟩ + 𝛽|1⟩
√

|𝛼|2 + |𝛽|2
. (4)

Let us assume that there exists a unitary gate 𝑈 satisfying with:

𝑈

⎛

⎜

⎜

⎜

⎝

𝛼|0⟩ + 𝛽|1⟩
√

|𝛼|2 + |𝛽|2

⎞

⎟

⎟

⎟

⎠

=
𝛾|0⟩ + 𝜂|1⟩
√

|𝛾|2 + |𝜂|2
. (5)

Subsequently, the circuit passes through one more controlled 𝑈 -gate
with the control bit as the first bit. The circuit for amplitude encoding
is illustrated in Fig. 5.

After amplitude encoding, it can be obtained that 𝑥 is encoded into
a quantum circuit of the form:
(√

|𝛼|2 + |𝛽|2
)

|0⟩
𝛼|0⟩ + 𝛽|1⟩
√

2 2
+
(√

|𝛾|2 + |𝜂|2
)

|1⟩
𝛾|0⟩ + 𝜂|1⟩
√

2 2

|𝛼| + |𝛽| |𝛾| + |𝜂|
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Fig. 6. The QCNN circuit in QMFND (conv represents the convolutional layer and pool represents the pooling layer).
Fig. 7. The quantum circuit of the convolutional layer (𝜃 [𝑖] is the 𝑖𝑡ℎ parameter of 𝜃).
= 𝛼|00⟩ + 𝛽|01⟩ + 𝛾|10⟩ + 𝜂|11⟩. (6)

It can be seen that only ⌈log2 𝑛⌉ qubits are required to represent an
𝑛-dimensional vector. In QMFND, eight qubits are used for feature
representation.

3.2.2. Quantum circuit of the QCNN
The next step is to construct the QCNN circuit. In this paper, a

QCNN is proposed for efficient training of quantum data. The QCNN
circuit constructed in this paper is divided into three layers, as shown
in Fig. 6. The first layer performs quantum convolution and pooling
operations on the first four and last four qubits, respectively. The sec-
ond layer performs convolution and pooling operations on the third and
fourth, and fifth and sixth qubits, respectively. The third layer performs
convolution and pooling operations on the fourth and fifth qubits. The
quantum measurements are performed on the fifth qubit to obtain the
measurement results. The circuits of convolutional and pooling layers
are shown in Figs. 7 and 8, respectively. 𝑅𝑦(𝜃) and 𝑅𝑧(𝜃) are the ro-

tation gates: 𝑅𝑦 (𝜃) =

(

cos 𝜃2 − sin 𝜃
2

− sin 𝜃
2 cos 𝜃2

)

, 𝑅𝑧(𝜃) =
(

𝑒−𝑖𝜃∕2 0
0 𝑒𝑖𝜃∕2

)

.

By running quantum convolution and pooling operations in the three
layers, the network can extract discriminative features from the input
qubits that help detect fake news. The QCNN makes full use of en-
tanglement operations and rotation gates to make the circuits have
5

good expressibility and entangling capability. This helps to represent
the correlation between fused features more efficiently so that QMFND
can obtain better detection performance.

QCNN discards certain qubits in the circuit, and the discarded
qubits are no longer involved in operations and measurements. This
successfully compresses the dimensionality of the data and reduces the
cost of subsequent circuits.

3.2.3. Measurement and optimization
Multiple measurements are required to improve the performance.

The predicted results are the expectation of qubits obtained through
several measurements. Cross entropy loss function is used to assess
model loss. In addition, we implemented constrained optimization
by linear approximation (COBYLA), which is gradient-free. COBYLA
ensures efficient optimization of the model parameters, to enhance the
optimal performance and reliability. A flowchart of the measurement
and optimization is shown as Fig. 9, and the specific steps are presented
as below.

Let assume classical inputs are
{

𝑥𝑖, 𝑦𝑖
}

. 𝑥𝑖 is the 𝑖𝑡ℎ classical data
and 𝑦𝑖 is the 𝑖𝑡ℎ label. The real news is labeled as 1 and the fake news is
labeled as 0. Set the initial states of the quantum circuit as |0⟩⊗𝑛 where
𝑛 is the number of qubits. After the encoding layer, |𝜓⟩𝑖 is obtained.

|𝜓⟩ = 𝑈 |𝑥 ⟩, (7)
𝑖 𝑒 𝑖
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Fig. 8. The quantum circuit of the pooling layer.
Fig. 9. The flowchart of measurement and optimization.
where 𝑈𝑒 denotes the unitary operator of the encoding layer (without
parameters). The unitary operator of the QCNN circuit is set as 𝑈𝑎(𝜃):

𝑈𝑎(𝜃) =
∏

𝑘
𝑈𝑘

(

𝜃𝑘
)

. (8)

where 𝜃 is the parameter to be optimized, 𝜃𝑘 is the 𝑘𝑡ℎ 𝜃, and 𝑈𝑘 is the
unitary operators associated with 𝜃𝑘. After the QCNN layer, the state
becomes

|

|

𝜓 ′⟩
𝑖 = 𝑈𝑎(𝜃)|𝜓⟩𝑖, (9)

which is measured by using the measurement operator 𝑀 . 𝐸𝑖(𝜃) is the
expectation of the predicted values.

𝑀 = 𝐼⊗𝑛−1 ⊗𝑍,𝐸𝑖(𝜃) =
⟨

𝜓 ′
|𝑀|𝜓 ′⟩

𝑖. (10)

Then, using cross entropy as the loss function, the equation is given as
follows:

𝐿𝑜𝑠𝑠(𝜃) = − 1 ∑

𝑦𝑖 ln𝐸𝑖(𝜃) +
(

1 − 𝑦𝑖
)

ln
(

1 − 𝐸𝑖(𝜃)
)

. (11)
6

𝑁 𝑖
Here, 𝑁 is the number of samples in a batch. For the parameter 𝑘 to

be optimized, the gradient of 𝜃𝑘 is

𝜕𝐿𝑜𝑠𝑠(𝜃)
𝜕𝜃𝑘

= − 1
𝑁

∑

𝑖

𝑦𝑖
𝐸𝑖(𝜃)

𝜕𝐸𝑖(𝜃)
𝜕𝜃𝑘

−
1 − 𝑦𝑖

1 − 𝐸𝑖(𝜃)
𝜕𝐸𝑖(𝜃)
𝜕𝜃𝑘

(12)

It is not difficult to determine whether only the partial derivative of

𝐸𝑖 with respect to 𝜃𝑘 is required. Here, 𝐸𝑖 is denoted by 𝐸. Taking the

partial derivative of 𝐸 with respect to 𝜃𝑘, we can obtain

𝜕𝐸(𝜃)
𝜕𝜃𝑘

= 𝜕⟨𝜓 ′
|𝑀|𝜓 ′

⟩

𝜕𝜃𝑘
=

𝜕
⟨

𝜓||
|

𝑈†
𝑎𝑀𝑈𝑎

|

|

|

𝜓
⟩

𝜕𝜃𝑘

=
⟨

𝜓
|

|

|

|

𝑈†
𝑎𝑀

𝜕𝑈𝑎
𝜕𝜃𝑘

|

|

|

|

𝜓
⟩

+𝐻.𝑐.
. (13)

Here, 𝐻.𝑐 is the complex conjugate of
⟨

𝜓
|

|

|

|

𝑈†
𝑎𝑀

𝜕𝑈𝑎
𝜕𝜃𝑘

|

|

|

|

𝜓
⟩

. As the quan-
tum gates in the circuit used in this paper are all Pauli rotation gates,
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Table 1
Dataset descriptions.

Gossip Politifact

Description Genuine news data and
some instances
of false or misleading
gossip.

Legitimate and fabricated
news data.

Training Set 10 010 381
Real: Fake 2036:7974 135:246
Test Set 1000 100

Table 2
The hyperparameter setting in experiments.

Qubits in QCNN Learning rate Batch size Epoch Measurement

8 0.001 32 100 Z Gate

according to the conclusions drawn by Schuld et al. [38], there is
⟨

𝜓
|

|

|

|

𝑈†
𝑎𝑀

𝜕𝑈𝑎
𝜕𝜃𝑘

|

|

|

|

𝜓
⟩

+𝐻.𝑐.

= 1
2

(⟨

𝜓
|

|

|

|

𝑈†
𝑎

(

𝜃𝑘 +
𝜋
2

)

𝑀𝑈𝑎
(

𝜃𝑘 +
𝜋
2

)

|

|

|

|

𝜓
⟩

−
⟨

𝜓
|

|

|

|

𝑈†
𝑎

(

𝜃𝑘 −
𝜋
2

)

𝑀𝑈𝑎
(

𝜃𝑘 −
𝜋
2

)

|

|

|

|

𝜓
⟩)

. (14)

he method for computing the gradient is called the parameter-shift
ule. In this way, the partial derivative of each parameter is obtained
nd fed into the corresponding optimizer for optimization.

. Experimental results

.1. Datasets

This study uses multimodal fake news datasets, namely, Gossip [39]
nd Politifact [39,40], both collected from the social media platform
Twitter). Each dataset incorporates both text and image. Initially,
n each multimodal news, we select its first image (cover image) to
articipate in the subsequent training. This is because the first image
f news usually can represent all the images in this news and carries its
ost important information. The data in datasets are labeled as real or

ake news and divided into training and testing sets, with the validation
et extracted directly from the training set. For clarity, a description of
wo datasets is provided in Table 1.

.2. Experimental setting

The experimental environment is established on an x86 platform.
ata embedding is conducted on a graphics processing unit (NVIDIA
TX3080 10G), and the QCNN training is performed on a central
rocessing unit (Intel Core 12400F).

The hyperparameters used in the experiments are listed in Table 2.
ue to the limitation of quantum resources, and considering the effects
f the representation capability and the barren plateau phenomenon
n the model performance, we use 8 qubits for QCNN representation.
lso, the learning rate is set to 0.001, batch size to 32, and epoch

o 100. To measure the probability of a quantum state result being
, the 𝑍 measurement operator is employed on the quantum circuit
easurements.

When extracting text summaries, the maximum length of each
entence in the news is limited to 30 tokens. A quantum circuit is
onstructed and trained by using the Pennylane library, with the initial
tate of the quantum circuit set to |0⟩. Quantum circuit is trained in the
nvironment with simulated quantum noise.
7

Table 3
The performance comparison of QMFND with other fake news detection models.

Dataset Model Accuracy Recall Precision TNR F1

Gossip

BERT 0.871 0.914 0.924 0.897 0.919
XLNet 0.884 0.943 0.917 0.897 0.929
MCAN 0.869 0.806 0.890 0.877 0.846
MCAN-A 0.851 0.859 0.877 0.859 0.824
SpotFake 0.789 0.723 0.815 0.788 0.766
SpotFake+ 0.839 0.799 0.853 0.842 0.825
CNN 0.806 0.643 0.882 0.812 0.744
QMFND 0.879 0.958 0.899 0.882 0.928

Politifact

BERT 0.843 0.696 0.904 0.864 0.786
XLNet 0.847 0.704 0.905 0.867 0.792
MCAN 0.846 0.829 0.851 0.847 0.84
MCAN-A 0.809 0.758 0.827 0.81 0.792
SpotFake 0.779 0.693 0.815 0.775 0.749
SpotFake+ 0.789 0.753 0.803 0.789 0.777
CNN 0.776 0.614 0.857 0.763 0.715
QMFND 0.846 0.853 0.927 0.904 0.888

4.3. Evaluation metrics

Evaluation metrics are adoped as follows: Accuracy, Recall, Pre-
cision, True Negative Rate (TNR), and F1, as expressed in Eq. (15).
Among them, TP (True Positive) indicates that it correctly predicts the
positive class when the sample is actually positive. TN (True Negative)
indicates that it correctly predicts the negative class when the sample
is actually negative. FP (False Positive) indicates that it incorrectly
predicts the positive class when the sample is actually negative. FN
(False Negative) indicates that it incorrectly predicts the negative class
when the sample is actually positive.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑁 + 𝑇𝑃
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

,𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

,

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

,

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, 𝑇𝑁𝑅 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑁

.

(15)

4.4. Baselines

To evaluate the effectiveness of the QMFND model, seven baselines
are considered for comparison. These baselines include:

• XLNet: XLNet model [41] is used to verify the authenticity of
unimodal (text) data.

• BERT: BERT model [42] to verify the authenticity of unimodal
(text) data.

• MCAN: It is a multimodal fake news detection model using a co-
attention network, enabling better fusion of textual and visual
features for fake news detection [43].

• MCAN-A: It is a model similar to MCAN but without the part of
fusing multimodal features. Spatial-domain features, frequency-
domain features, and text features are simply connected.

• SpotFake: Multimodal model for detecting fake news without
considering additional subtasks such as event discrimination [17].

• SpotFake+: It leverages transfer learning to capture semantic and
contextual information from news articles and related images, so
as to improve the accuracy of fake news detection [18].

• CNN: It uses the same pre-processing methods as QMFND (XLNet,
VGG-19, etc.) and uses a classical CNN for classification tasks.

4.5. Performance analysis

The confusion matrices of the QMFND performance on two datasets
are shown in Fig. 10. The comparisons between QMFND and other
baselines are presented in Table 3. As shown in the Table 3, QMFND
achieves a detection accuracy of 87.9% and 84.6% on the Gossip and
Politifact datasets, respectively, which is quite promising. The accuracy
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Fig. 10. The confusion matrices of QMFND on the two datasets.
Fig. 11. The comparison of loss function between QCNN and CNN.

of the QMFND model is 0.5% lower than XLNet on the Gossip dataset
and 0.1% lower than XLNet on the Politifact dataset. However, on
the Politifact dataset, QMFND not only outperforms XLNet in other
performance metrics but also outperforms the other six baseline models
on both datasets.

In addition, with the integration of a QCNN, QMFND outperforms
the structurally equivalent CNN, with a detection accuracy about 7%
higher than that of CNN. Moreover, it performs better than most of
the baselines. It can be concluded that the improvement in detection
performance represents that QCNNs are sharper and more accurate in
representing image features. They can capture subtle details that may
have been missed by traditional CNNs, thus improving the classification
performance.

QCNN is also more efficient. As shown in Fig. 11, the loss function of
QCNN decreases faster. This indicates that QMFND utilizes the training
data more efficiently within a given number of training iterations,
helping to reduce training time and computational cost. Considering
the need for efficient processing in big data era, using QCNN implies
quicker identification of fake news.

4.6. Parameter effects on the model performance

4.6.1. Effect of different data modalities on detection performance
The performances of unimodal and multimodal on QMFND are com-

pared in this section. As shown in Table 4, on both datasets, QMFND’s
detection performance is best for text, followed by multimodal, and
performs worst on images. In addition, the detection accuracies of text
and images in multimodal scenarios are slightly lower than those of
unimodal text-only scenarios by 0.5% and 3.8%, respectively, on two
datasets.

It is easy to know that, textual information plays a key role in
detecting fake news as compared to image information. It can precisely
convey the entire content of the news. On the other hand, images
alone may not be helpful enough to detect fake news. Although images
can present rich information, the key information such as time and
location of the events in news, as well as the participants, is usually
8

Table 4
The effect of modal type on detection performance.

DataSet Modal Accuracy Recall Precision TNR F1

Gossip
Image 0.802 0.929 0.842 0.749 0.883
Text 0.884 0.942 0.917 0.897 0.929
Multimodal 0.879 0.958 0.899 0.882 0.928

Politifact
Image 0.692 0.733 0.821 0.719 0.774
Text 0.884 0.973 0.879 0.882 0.924
Multimodal 0.846 0.853 0.927 0.904 0.888

Table 5
The effect of real and fake data proportion on detection performance. ‘‘R‘‘ represents
real news, and ‘‘F’’ represents fake news.

DataSet Accuracy Recall Precision TNR F1

R: F=1:1 Gossip 0.849 0.649 0.940 0.892 0.768
Politifact 0.840 0.583 0.978 0.932 0.73

R: F=9:1 Gossip 0.879 0.958 0.899 0.882 0.928
Politifact 0.846 0.853 0.927 0.904 0.888

impossible to be accurately obtained by only images. Therefore, using
multimodal data processing methods for detecting fake news becomes
more practical and effective by nature.

4.6.2. Effect of data proportion on detection performance
This section explores the effect of the proportion of data labeled as

‘‘real’’ and ‘‘fake’’ in the training dataset on the detection results.
As shown in Table 5, for the real to fake data proportion of 1:1,

the accuracies on the Gossip and Politifact datasets are 3% and 0.06%
lower compared to those of the 9:1 proportion, respectively. However,
in terms of the recall and F1 score, the performance is significantly
lower when the real-to-fake data proportion is 1:1 versus 9:1. Specif-
ically, for both datasets, recall is lower by 30.9% and 27%, and the
F1 score is lower by 16% and 15.8% for the 1:1 proportion compared
to the 9:1 proportion, respectively. This indicates that although the
model accuracy on data with a 9:1 real-to-fake proportion does not
show an obvious advantage, other performance metrics exhibit clear
advantages. This can be explained by the fact that the model focuses
more on those classes with a higher percentage of samples during the
training process, and learns relatively little about the lower percentage
classes. In practical applications, it is necessary to weigh these evalua-
tion metrics according to the specific tasks and goals to deal with the
proportion imbalance in datasets.

4.6.3. Effect of the number of qubits and barren plateau phenomenon
The number of qubits represented has an effect on detection perfor-

mance and the barren plateau phenomenon. With the limited resources
available, we compared the performance of QMFND using 4, 8, and
16 qubits for representation. As shown in Table 6, the performance is
best when using 8 qubits for representation, followed by 4 qubits, and
finally 16 qubits. On both datasets, the accuracy using 8 qubits is 1%
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Table 6
The effect of the number of qubits on the detection performance.

DataSet Qubits Accuracy Recall Precision TNR F1

Gossip
4 0.869 0.781 0.9 0.882 0.836
16 0.827 0.719 0.869 0.835 0.787
8 0.879 0.958 0.899 0.882 0.928

Politifact
4 0.836 0.753 0.868 0.844 0.806
16 0.797 0.71 0.832 0.797 0.766
8 0.846 0.853 0.927 0.904 0.888

Fig. 12. The loss functions for 4, 8, and 16 qubits quantum circuits.

higher than when using 4 qubits, and with 8 qubits, the recall is higher
by 17.7% and 10% compared to that of 4 and 16 qubits, respectively.
This indicates that using 8 qubits is the most suitable option for our
detection.

The ‘‘barren plateau’’ refers to a phenomenon that the training
of QNN becomes inefficient when the number of qubits in quantum
computing is large. The objective function tends to flatten, resulting in
excessively long training times or training failures [44].

In initial experiments, 16 qubits are used in QCNN. During training,
the gradient of the QCNN descends very slowly. As depicted in Fig. 12,
a 16-qubit circuit underperforms the 8-qubit or 4-qubit circuit in terms
of loss function reduction over the same number of iterations. This is
possibly due to the effect of quantum noise. In a limited simulation
environment, the noise may make the gradient information lost as the
number of qubits increases, making training more difficult. Therefore,
to mitigate the effect of the barren plateau phenomenon, 8 qubits are
used for representation in QMFND.

4.7. The expressibility and entangling capability of QCNN

The structures of VQCs in QCNNs play a crucial role in the perfor-
mance of quantum models. Expressibility and entangling capability can
be used to assess the quality of VQCs [45].

Expressibility refers to the ability of a circuit to generate states
representing the Hilbert space. The quantification of expressibility is
defined as the deviation of the distribution of states generated by the set
of Haar random states from the states obtained by uniformly sampling
the VQC parameters. 𝑃VQC(𝐹 ;𝜽) represents the set of states obtained
by uniformly sampling parameters. 𝑃Haar (𝐹 ) represents the set of states
obtained from a uniform distribution. 𝑃Haar (𝐹 ) = (𝑁 − 1) (1 − 𝐹 )𝑁−2,
where 𝐹 corresponds to fidelity, and 𝑁 is the dimension of the Hilbert
space. 𝐷KL is for calculating the KL divergence between two sets [46].
Then, the expressibility of a VQC can be expressed as

Expr = 𝐷KL
(

𝑃VQC(𝐹 ;𝜽) ∥ 𝑃Haar (𝐹 )
)

. (16)

In VQCs, a higher degree of entanglement in the circuit implies
a better representation of the solution spaces for tasks such as data
classification, as well as better capture of quantum data correlations.
The Meyer–Wallach (MW) measurement is used to quantify the entan-
gling capability of the VQC. For a given VQC, this value is estimated
by sampling the circuit parameters and calculating the sample average
9

Table 7
The expressibility and entangling capability of the designed QCNN circuit.

Conv1 Conv2 Pool1 Pool2 QCNN

Entangling capability 0.498 0.497 0.5 0.25 0.819
Expressibility 2.311 1.472 2.31 1.479 0.00015

of the MW measurements of the output states. Here, 𝜃 represents the
circuit parameters. |𝜃| is the number of test parameters, 𝑛 is the number
of parameters, and 𝜌𝑘 is the partial trace. The MW measurement
formulation is expressed as follows:

𝑄𝑀𝑊 = 2
|𝜃|

∑

𝜃𝑖∈𝜃

(

1 − 1
𝑛

𝑛
∑

𝑘=1
Tr

(

𝜌2𝑘
(

𝜃𝑖
))

)

. (17)

The expressibility and entangling capability of the designed QCNN
circuit are listed in Table 7. The entangling capability of quantum
circuits is from 0 to 1, with the higher value being preferable. On
the contrary, for quantum circuits, lower values of expressibility are
desirable. It is evident that the VQC of QCNN in this paper exhibits
excellent expressibility and entangling capability.

4.8. Robustness analysis against quantum noise

In the noisy intermediate-scale quantum (NISQ) era, the implica-
tions of quantum noise must be considered when developing QML
models. Noise originating from the quantum channels frequently dis-
rupts the quantum entanglement state, which can adversely affect
the performance of QML models. Quantum noise not only under-
mines model precision but can potentially lead to a barren plateau
phenomenon. Quantum noise associated with a single qubit can be
described using the Kraus matrices [47]. The Kraus matrices of bit flip
(BF) are

𝐾0 =
√

1 − 𝑝
[

1 0
0 1

]

, 𝐾1 =
√

𝑝
[

0 1
1 0

]

(18)

The Kraus matrices of phase flip (PF) noise are

𝐾0 =
√

1 − 𝑝
[

1 0
0 1

]

, 𝐾1 =
√

𝑝
[

1 0
0 −1

]

(19)

The Kraus matrices of amplitude damping (AD) noise are

𝐾0 =
[

1 0
0

√

1 − 𝑝

]

, 𝐾1 =
[

0
√

𝑝
0 0

]

(20)

The Kraus matrices of depolarization noise (DN) noise are

𝐾2 =

√

√

√

√𝑝

/

3
[

0 −𝑖
𝑖 1

]

, 𝐾3 =

√

√

√

√𝑝

/

3
[

1 0
0 −1

]

(21)

where 𝑝 denotes the probability of noise occuring on a single qubit.
𝑝 ∈ {0, 1}.

The robustness of quantum algorithms against noise is assessed
using the fidelity metric. Fidelity serves as a measure of the close-
ness between two quantum states, representing the probability of one
quantum state being recognized as another after testing. A high-quality
quantum algorithm possesses high fidelity. Thus, fidelity can be per-
ceived as an indicator of the extent of the effect of quantum noise on
algorithmic outcomes. The lower the effect of noise on the results is,
the higher its fidelity will be. For two mixed states, the formulation for
fidelity is expressed as follows:

𝐹 (𝜌, 𝜎) = 𝑇 𝑟
(
√

√

𝜌𝜎
√

𝜌
)2

. (22)

where 𝜌 and 𝜎 are the density matrices of the two mixed states.
In this study, the fidelities of the QCNN circuit are calculated in

four single noise channels and a noise combination channel of all noise
types with 𝑝 = 0.1 and 𝑝 = 0.01 respectively. ‘‘All’’ represents the noise
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Fig. 13. The fidelities of the QCNN circuit in noise channels with different 𝑝 values.
Table 8
The fidelities of our QCNN circuit in different noise channels with 𝑝 = 0.1
and 𝑝 = 0.01.

Noise type 𝑝 = 0.01 𝑝 = 0.1

BF 96.06 65.6
PF 99.12 99.01
AD 99.99 99.99
DN 98.01 90.37
All 94.2 57.03

combination channel by the superposition of all noise operators (Kraus
matrices) on single qubits. The results are shown in Table 8 and Fig. 13.

It is not difficult to find that the BF noise has a greater impact on
the fidelity of QCNN. In QCNNs, qubits are usually used to represent
the features of the input data. If a qubit flips, the feature information
originally encoded can be lost. In contrast, other noises may affect the
phase or amplitude of the qubits without directly causing the loss of
information. Also, when the noise increases, the effect of the BF noise
will be obvious. This is possible because, in a QCNN, information will
pass through different layers. If a qubit flips, its information in the
subsequent layers will also be affected, which can lead to cumulative
errors throughout the network. Although the QCNN circuit in this study
is somewhat affected by the BF noise when 𝑝 = 0.1, it consistently
upholds high fidelity. Notably, for both PF and AD noises, the fidelities
are nearly 1, suggesting a minimal influence of these noise types
on performance. This attests to the robustness of the QCNN against
quantum noise.

4.9. Complexity analysis

The complexity mainly includes quantum circuit complexity and
time complexity. Quantum circuit complexity can be calculated by the
number of quantum gates used in the QCNN. As depicted in Figs. 7
and 8, eight quantum gates are required in a quantum convolutional
layer, and six quantum gates are required in the quantum pooling layer.
Suppose 𝑁 qubits satisfy 𝑁 = 2𝑎 (𝑎 is an integer greater than or equal
to 1), then, the number of quantum gates required in the 𝑖−th layer is
14𝑁∕2𝑖, where 𝑖 ⩽ 𝑎. And the total number of quantum gates required
by the QMFND model is calculated as:

2 ⋅
(𝑁
2

⋅ 7 + 𝑁
22

⋅ 7 +⋯ + 𝑁
2𝑎−1

⋅ 7
)

+ 14 = 7𝑁
(

2 − 1
2𝑎−2

)

+ 14

= 14 (𝑁 − 1) . (23)

Therefore, the total circuit complexity is 𝑂(𝑁).
A lower time complexity in a CNN or QCNN model typically indi-

cates higher computational efficiency of its network. In other words, for
a given task, the model’s computational cost is relatively low. Compar-
ing the QCNN in QMFND with that in baselines, as shown in Table 9,
the complexity of executing a CNN to generate 𝑛-dimensional classical
data is 𝑂(𝑛). However, for a QCNN using quantum amplitude encoding,
10
Table 9
The comparison of time complexity between QMFND and the baselines.

Model Time complexity

BERT [42] 𝑂(𝑛)

XLNet [41] 𝑂(𝑛)

MCAN/MCAN-A [43] 𝑂(𝑛)

SpotFake [17]/SpotFake+ [18] 𝑂(𝑛)

CNN 𝑂(𝑛)

QMFND 𝑂
(

log2 𝑛
)

only ⌈log2 𝑛⌉ qubits are required to represent an 𝑛-dimensional vector.
Therefore, the time complexity of QCNN models can be minimized as
𝑂
(

log2 𝑛
)

. This emphasizes the benefits of employing qubits for feature
representation. They have the capability to capture a greater number of
features while utilizing fewer resources compared to classical computer
data, which is more efficient.

5. Conclusion

For quicker and more accurate detection of fake news on social
media, the QMFND model is proposed by combining quantum per-
spectives. The experimental results show that QMFND achieves high
accuracies of 87.9% and 84.6% on two datasets. QMFND outperforms
the six baselines and has only a slight disadvantage compared to XLNet.
The designed QCNN circuit has good expressibility, entangling capabil-
ity, and robustness against quantum noise. The complexity of QMFND
is much lower than the classical models by combining amplitude en-
coding to encode multimodal data into quantum states. However, the
performance of QMFND can be compromised by current hardware limi-
tations and substantial BF noise in the running environment of quantum
computers. In future, We can introduce quantum error-correcting codes
like Shor codes to minimize the effect of noise. Also, to improve the
accuracy, we can consider quantum fuzzy neural networks to increase
the network’s ability to adapt to uncertainty. These considerations will
help to improve the performance of fake information detection and
develop more efficient and reliable quantum-based models.
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