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A B S T R A C T

During ship emergencies, a reliable and efficient evacuation system is able to guide passengers to the
appropriate muster stations as quickly as possible. The majority of the existing indoor evacuation systems
provide emergency guidance for people trapped in general buildings. However, those systems fail to consider
the unique challenges of ship passenger evacuation, such as the effect of ship motion on pedestrian motion and
the feedback of pedestrian motion on ship inclination state. Consequently, evacuation guidance provided by
these schemes may not always be optimal or may even make the evacuation worse due to the differences in the
critical factors influencing emergency guiding between land-based buildings and passenger ships. This paper
presents a systematic literature overview of recent advances in building evacuation, followed by a description of
the challenges unique to evacuating passengers on vessels. Furthermore, the existing ship evacuation research
is reviewed from three aspects, i.e., passenger behavior study, ship evacuation optimization, and evaluation
of evacuation on passenger ships. A discussion of land-based evacuation schemes and prospects for ship
evacuation is also presented.

1. Introduction

Over the past few years, passenger ships have become one of the
most popular means of marine transportation and tourism (Fowler and
Sorgaard, 2000; Yang et al., 2020). According to the data from Cruise
Lines International Association (CLIA), the worldwide ocean cruise pas-
senger capacity had a compound annual growth rate of 6.6% from 1990
to 2021 (Chiou et al., 2021). Fig. 1 shows the worldwide passengers
carried from 1990 to 2021. Although modern cruise ships have made
continuous progress in their structural designs, operating practices,
marine technologies, and regulations in the past 20 years, passenger
ship accidents still occurred with catastrophic consequences, e.g., the
Costa Concordia disaster in 2012, which leads to 32 passengers/crew
dead and more than 4000 injured (Mileski et al., 2014; Liu et al., 2022).
According to Lloyds Register accident statistics, there were close to a
hundred thousand deaths and injuries of vessels worldwide from 2000
to 2020, of which more than 5% were associated with inappropriate
evacuation (Wang et al., 2022; Statistics, 2020). Therefore, an efficient
evacuation scheme should be a favorable measure to reduce the losses
of human lives in such catastrophes.

The existing evacuation works focus on designing land-based evac-
uation schemes (Li et al., 2019). As shown in Fig. 2, there are four

∗ Corresponding author.
E-mail addresses: kzliu@whut.edu.cn (K. Liu), 278827@whut.edu.cn (Y. Ma), chenmz@whut.edu.cn (M. Chen), kehao.wang@whut.edu.cn (K. Wang),

kzheng@whut.edu.cn (K. Zheng).

kinds of guidance systems for evacuation in buildings on the land:
(1) Signage-based evacuation scheme, (2) Leader-based evacuation
scheme, (3) Mobile equipment (ME)-based evacuation scheme, and
(4) Wireless Sensor Network (WSN)-based evacuation scheme. Earlier
studies focused on the design of evacuation signage, including fixed and
variable signage. The former is predetermined and does not respond
to environmental dynamics, while the latter can adapt to changing
hazard status or pedestrian flow to guide occupants (Chu et al., 2017).
People may panic in emergency situation, especially when they are
unfamiliar with the environment, leading to a poor understanding
of evacuation signs, potentially resulting in a stampede and subse-
quent casualties. The deployment of evacuation leaders is an effective
method to improve evacuation safety and efficiency. There are two
types of leaders: human and robotic leaders. A mobile robot plays
a role similar to that of a human leader in guided crowd evacua-
tion. Moreover, mobile robots could be more advantageous in certain
emergency cases where human leaders cannot be assigned to guide
people out. Rapid development in intelligent wearable devices and
mobile communication technologies has made ME-based evacuation
possible. ME-based schemes typically assume the location information
of people is available, which may not always be available in many

https://doi.org/10.1016/j.oceaneng.2022.112403
Received 11 May 2022; Received in revised form 18 August 2022; Accepted 22 August 2022



Ocean Engineering 263 (2022) 112403

2

K. Liu et al.

realistic situations (Fujihara and Yanagizawa, 2015; Mulloni et al.,
2011; Gelenbe and Bi, 2014; Ikeda and Inoue, 2016; Iizuka and Iizuka,
2015; Wada and Takahashi, 2013; Fujihara and Miwa, 2012; Inoue
et al., 2008; Chu and Wu, 2011; Chen et al., 2015; Chittaro and
Nadalutti, 2008). The follow-up studies enable users to bootstrap their
indoor evacuation services by themselves, avoiding the dependency on
a pre-deployed localization system (Zheng et al., 2017; Shu et al., 2015;
Yin et al., 2016; Dong et al., 2019; Teng et al., 2019; Li et al., 2020; Pan
and Li, 2019). The ME-based systems neglect environmental dynamics,
which may navigate users to hazardous areas. WSNs, capable of auto-
matically monitoring environmental dynamics, should be incorporated
into evacuation systems (Wang et al., 2014a). The WSN-assisted scheme
can be divided into two categories: sensor-centric scheme, which is to
find a direction for every single sensor, and user-centric scheme, which
aims to provide customized guidance for each evacuee (Wu, 2017).

The above systems can effectively mitigate potential harm to build-
ing occupants in case of emergency. However, evacuating people on
passenger vessels is still very challenging due to the unique char-
acteristics of ship evacuation. For example, the impact of dynamic
ship motion on pedestrian movement and the feedback of pedestrian
movement on ship motion. Compared with the relatively mature land-
based evacuation, the research on ship evacuation only started lately.
There are mainly three kinds of research focusing on ship evacu-
ation in terms of study intentions: (1) Investigating and analyzing
the likely behavior of ship passengers in emergency situations; (2)
Optimizing evacuation strategy for trapped passengers; (3) Evaluating
ship evacuation performance. The first kind of research examines the
characteristics of passengers (e.g., passengers’ likely behavior when
hearing an evacuation alarm) by conducting experiments, question-
naire surveys, or model-based simulations (Chen et al., 2016a; Wang
et al., 2020; Valanto, 2006; Sun et al., 2018a). With respect to pas-
senger evacuation optimization, most researchers focus on planning
escaping routes (Ng et al., 2021), optimizing the staircase layout (Wang
et al., 2022), and scheduling the time for issuing evacuation orders (Xie
et al., 2020c). Ship passenger evacuation can be evaluated in two
ways: advanced analyses and simplified analyses (Ni et al., 2017; Kang
et al., 2019; Vilen et al., 2020; Galea et al., 2015; Wang et al., 2022;
Cho et al., 2016; Sarshar et al., 2013; Xie et al., 2020b; Kana and
Droste, 2019; Hifi, 2017; Vanem and Skjong, 2006). The simplified
analysis considers a large passenger group as a whole. In contrast, every
passenger is regarded as an individual with his/her characteristics in
the advanced analysis.

This paper provides an analysis of ship passenger evacuation. The
main contributions of our work are summarized as follows:

• A thorough analysis and comparison in recent advances in land-
based indoor evacuation systems based on signage, leader, ME,
and WSN, is presented.

• The specificities of passenger vessels, which result in the inappli-
cability of these land-based systems on ship passenger evacuation,
are analyzed.

• The research about the evacuation on passenger vessels is re-
viewed from three perspectives, i.e., the likely behavior of passen-
gers in emergency situations, the optimization of ship evacuation,
and the evaluation of evacuation on passenger ships.

• Some comments on the land-based evacuation and the future
research directions for the area of ship passenger evacuation are
discussed.

This paper is organized as follows. Section 2 reviews the work
pertaining to land-based evacuation with signage, leader, ME, and
WSN. In Section 3, the unique characteristics and the recent research
efforts about ship passenger evacuation are discussed, respectively.
Finally, Section 4 presents our comments on the land-based evacuation
schemes and the prospects for evacuating passengers on ships. The
organization of our paper is illustrated in Fig. 3.

Fig. 1. Worldwide passengers carried from 1990 to 2021.

Fig. 2. Different types of crowd evacuation schemes.

Fig. 3. Organization of this paper.

2. Land-based indoor evacuation scheme

A number of evacuation schemes for general buildings have been
proposed, which can be classified into four groups, according to their
guidance pattern: signage-based evacuation scheme, leader-based evac-
uation scheme, ME-based evacuation scheme, and WSN-based evacua-
tion scheme (see Fig. 2). This section describes these different types of
land-based indoor evacuation schemes.

2.1. Signage-based evacuation scheme

Signage systems are widely applied to large buildings such as urban
rail transit stations, office buildings, and supermarkets. As a sort of
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Table 1
Crowd evacuation with static signage.

Related work Year Optimization objective Technique Algorithm/Model Scenario

Chen et al. (2009) 2009 Sign location MCLP Lagrangian relaxation algorithm Single-floor supermarket
Chu and Yeh (2012) 2012 Sign location and number MCLP with side constrains Visibility graph A transportation terminal
Motamedi et al. (2017) 2017 Sign location Simulation Grid-based model SenriChuo station, A 440 m2 rectangle area
Zhou et al. (2020) 2020 Sign location Simulation SF model Beijing Subway Station
Yuan et al. (2018) 2018 Mixed layout of WS and GS Simulation SF model A smoky hall

way-finding facility, the signage system does not only provide guidance
to occupants who are unfamiliar with the layout of the building in
normal situations, it also can offer safety information for evacuees in
case of emergencies. Many studies have shown that the arrangement
of signage is a feasible way to improve the efficiency of an emergency
evacuation in most situations (Tang et al., 2009; Liu et al., 2011; Ronchi
et al., 2012; Wang et al., 2014b; Cosma et al., 2016). Based on the
response to contemporary evacuation situations, the existing signage-
based evacuation system can be divided into fixed signage-based and
variable signage-based guidance. The former is predetermined and
cannot vary with the status of hazards and congestion, while the latter
can respond to dynamic emergency conditions. This section presents
a thorough review of the above-mentioned signage-based evacuation
scheme.

2.1.1. Fixed signage-based evacuation scheme
The majority of existing signage-based evacuation schemes utilize

static signs to provide stabilized guidance to evacuees unfamiliar with
the building environment. Table 1 summarizes the previous work on
crowd evacuation with static signs. Chen et al. formulated the loca-
tion optimization for evacuation signs as a maximal-coverage location
problem (MCLP) (Chen et al., 2009). Results showed that the pro-
posed guidance arrangement scheme improved evacuation efficiency.
However, it is not effective to simply optimize signage placement
based on sign locations and visibility while ignoring the associated
evacuation routes. Chu et al. found the position of signs that maxi-
mized coverage and constituted connected shortest paths by solving a
maximum-coverage problem with side constraints (Chu and Yeh, 2012).

In addition, many researchers used simulations to reach efficient
signage placement. Motamedi et al. utilized a Building Information
Model (BIM) and a grid-based game engine to simulate the movement
of pedestrians. Then the efficiency of the signage system design was
investigated and optimized (Motamedi et al., 2017). Based on an im-
proved social force model (SF), Yuan et al. proposed a mixed layout
scheme of wall signs (WS) and ground signs (GS) with high evacuation
efficiency in fire smoke (Yuan et al., 2018). Zhou et al. incorporated
a perception probability model that quantified the probability pedes-
trians could notice and comprehend signs into a modified SF model to
investigate crowd evacuation dynamics under the effects of different
signage distribution schemes (Zhou et al., 2020).

2.1.2. Variable signage-based evacuation scheme
Since fixed signage cannot respond to the contemporary population

density, it would more likely result in heavy congestion. Moreover,
static guidance could also lead to pedestrians’ frequent oscillations
when hazards are on the evacuation routes predetermined by the
fixed signs. Variable evacuation signage systems where signs change
according to hazard status and pedestrian flow have attracted many
researchers’ attention in recent years (Tables 2 and 3). A series of
studies have proved the effectiveness of the dynamic signage system.
Hui et al. conducted experimental trials to test the comprehensibility
and effectiveness of variable signs (Hui et al., 2014; Galea et al.,
2017b,a). Considering the high cost of field experiments, Olyazadeh et
al. exploited virtual environments (VEs) and questionnaires to investi-
gate and evaluate dynamic signage for emergency evacuation (Olander
et al., 2017; Galea et al., 2017a; Olyazadeh, 2013; Langner and Kray,
2014; Lin et al., 2017).

Some works take into account the effect of evolving emergencies
and depend on the periodic recalculation of guidance information
provided by signs to keep occupants safe (Veichtlbauer and Pfeiffen-
berger, 2011; Wang et al., 2008; Sharma et al., 2018; Luh et al., 2012;
Cho et al., 2015a). Complying with the variable guidance, pedestrians
can avoid hazardous areas and go out of the building with highest
probability. However, frequent change in sign indications may cause
possible confusion and reduce the credibility of guidance information
disseminated by the signs. Wang et al. proposed that guidance should
only be updated when emergency status varied significantly, as deter-
mined by emergency responders’ subjective judgments (Wang et al.,
2009). Desmet et al. scheduled the dynamic pointing directions of
signage according to a capacity-reservation routing algorithm. Future
capacity reservations can effectively forecast congestion and then assist
subsequent path assignment (Desmet and Gelenbe, 2014). Chu et al.
proposed a bi-level optimization approach to determine variable pedes-
trian evacuation guidance in buildings with convex polygonal interior
spaces (Chu et al., 2017). The lower-level model utilized a modified
floor field cellular automata model (FFCA) to predict congestion and
passed the prediction to the upper-level model which used a decreased
order of time (DOT) algorithm to calculate variable guidance.

2.2. Leader-based evacuation scheme

Many studies have proved that the staffing of trained evacuation
leaders with complete knowledge of the layout of a building can guide
evacuees to expected exits and significantly reduce the casualties (Spar-
talis et al., 2014; Yang et al., 2014; Wang et al., 2015b; Ma et al., 2017;
Li et al., 2016; Yang et al., 2015; Vihas et al., 2012; Zhou et al., 2019b).

2.2.1. Human leader-based evacuation scheme
A trained human leader can issue guidance information and spread

positive emotion. Over the past decades, several follow-the-leader
evacuation models (e.g., SF model (Fig. 4a), vector field model (VF)
(Fig. 4b), multi-grid model (Fig. 4c), and cellular automata model (CA)
(Fig. 4d)) have been proposed, which can be used in leader effect
understanding and leader distribution optimization (Tables 4 and 5).

Utilizing an extended dynamic communication field model (DCF),
Wang 𝑒𝑡 𝑎𝑙. found the centripetal effect of evacuation assistants (Wang
et al., 2015b). Yang et al. proposed a modified SF model to simulate
guided crowd evacuation dynamics. Some phenomena, for example,
pedestrians following the leader can escape with a faster velocity
than those walking independently, were observed in the simulation
results (Yang et al., 2014). Based on a CA-based model, Spartalis 𝑒𝑡
𝑎𝑙. discovered that a trained leader could not only trigger herding
formations of crowds but activate alternative routes, which decreased
congestion levels in specific passages and exits (Spartalis et al., 2014;
Vihas et al., 2012). However, the effects of the staffing of guides are not
always positive. Ma et al. found the dual effect of guides on pedestrian
evacuation under limited visibility via an extended SF model (Ma
et al., 2017). On the one hand, a few guides could already facilitate
pedestrian evacuation when the neighbor density within the visual
field was moderate. On the other hand, when the neighbors within the
visual field were too many or too few, the effect of guides was usually
negative.

Evacuation performance strongly correlates with the distribution
and action of guiders. Yuan et al. proved the impact of the number
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Table 2
Evaluating crowd evacuation with variable signage.

Related work Year Evaluation goal Technique Technique description Scenario Participant

Hui et al. (2014) 2014 Comprehensibility and
Detectability

Survey, Experiment An international web based
survey, Field experiment

Queen Anne building 68

Olyazadeh (2013) 2013 Response time to dynamic signs,
Effectiveness of exit signs,
Realism of VR experiment

Experiment,
Questionnaire

Immersive video
environment

Three back projected
wall (140 degree)

10

Lin et al. (2017) 2017 Effectiveness in evacuating
through emergencies

Simulation Agent-based model Underground parking lot 110

Langner and Kray (2014) 2014 Impact on Mass Evacuation Simulation SF model SC Preußen 06 e. V. 12,500
Olander et al. (2017) 2017 Impact on effectiveness of

dissuasive exit signage
Questionnaire Theory of affordances An egress door within a

virtually simulated office
46

Galea et al. (2017a) 2017 Effectiveness of ADSS, Most
effective signage type

Experiment, Survey An international web based
survey, Field experiment

A rail station 200

Galea et al. (2017b) 2017 Effectiveness of improved ADSS Experiment Field experiment Sant Cugat station 139

Table 3
Optimizing crowd evacuation with variable signage.

Related work Optimization goal Method Method description Validation

Cho et al. (2015b) Shortening safe egress Dijkstra algorithm Reverse and simplify start and end
nodes of Dijkstra algorithm by
adding a virtual node

Simulation

Luh et al. (2012) and
Wang et al. (2008, 2009)

Mitigating blocking Divide-and-conquer Dynamic programming method for
each group subproblem, Lagrangian
relaxation framework for
Inter-group coordination

Numerical example,
Simulation

Chu et al. (2017) Reducing evacuation time Bi-level optimization FFCA for lower-level problem, DOT
algorithm for upper-level problem

Numerical example

Sharma et al. (2018) Supporting real-time reactive
signage, Extensible,
Energy-efficient, Scalable

DSS-SL SDN forwarding devices, LED-based
visible light communication scheme

–

Desmet and Gelenbe
(2014)

Reducing evacuation time Capacity-reservation
algorithm

CPN, CCRP Simulation

Table 4
The effect of human leader on crowd evacuation.

Related work Year Model Scenario Exit number Exit size

Spartalis et al. (2014) 2014 CA model 20 m × 30 m retirement house Three 0.8 m, 1.2 m
Yang et al. (2014) 2014 SF model 50 m × 50 m room One 1 m
Li et al. (2016) 2016 Trace Model Indoor classroom Two –
Vihas et al. (2012) 2012 CA model A two-dimensional space with 17 sectors, a cubic space with 4 sectors – –
Wang et al. (2015b) 2015 Extended DCF model 26 m × 26 m room One 0.8 m
Ma et al. (2017) 2017 SF model 15 m × 15 m room One 4 m
Zhou et al. (2019b) 2019 SF model Beijing’s urban rail transit station Three 3.4 m

of guiders on evacuation by using a CA-based model (Yuan and Tan,
2009). Hou et al. discovered that for evacuation under a single-exit sce-
nario, only one or two leaders could exert a remarkable impact, while
more leaders are expected for configurations with multi-exits (Hou
et al., 2014). Wang et al. optimized the position of leaders while
minimizing their number and observed that except for the distribution
of leaders, other factors such as the number of evacuees guided by a
leader, the visibility range of environments, and the leaders’ speeds
significantly affect evacuation efficiency (Wang et al., 2012; Zhang
et al., 2021; Wang et al., 2015c, 2016). In addition, Cao et al. did not
only derive the appropriate distribution of leaders but also optimized
their guidance strategy (Cao et al., 2016; Zhou et al., 2019a; Yang et al.,
2013).

2.2.2. Robotic leader-based evacuation scheme
Human leaders may arrive at the emergency site too late to assist

crowd evacuation. In addition, they cannot be sent to guide evac-
uees out in some accidents like nuclear leakage because of security
concerns. In such cases, the usage of robotic leaders could be attrac-
tive. Many simulators have been used to model robots and crowds
to demonstrate the effectiveness of using robots for aiding emergency
evacuations (Sakour and Hu, 2017).

Earlier works focused on indirectly evacuating evacuees utilizing
autonomous robots, not involving human–robot interaction (Shell et al.,
2005; Ferranti and Trigoni, 2008). Shell et al. described a multi-robot-
based navigational aid deployment strategy with which a network
of directional audio aids can be deployed automatically following an
emergency with the assistance of a team of robots (Shell et al., 2005).
Ferranti et al. devised two robot-assisted evacuation route discovery
(ERD) mechanisms, namely Agent-to-Tag-ERD and Tag-to-Tag-ERD,
with which robots can search for the shortest evacuation routes as soon
as possible in parallel with their exploration of an unknown hazardous
area (Ferranti and Trigoni, 2008).

Recently, the improvement in the trust in human–robot interaction
makes it possible to guide occupants directly using emergency evac-
uation robots. Kim et al. designed a portable fire evacuation guide
robot that can be thrown into fire scenes to explore the informa-
tion about environmental conditions and trapped occupants, which
would be transmitted to firefighters to determine a guide strategy that
could be broadcast through the microphone and speaker system on the
robot (Kim et al., 2009). Robinette et al. devised robots incorporating
a model of human panic behavior to navigate evacuees safely to ap-
propriate exits (Robinette and Howard, 2011). The above-mentioned
robot-assisted evacuation systems require control and decision support
from human operators. With the advance in integration techniques
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Fig. 4. Diagram of classical follow-the-leader evacuation model (Yuan and Tan, 2009; Okada and Ando, 2011; Cao et al., 2016; Yang et al., 2014).

Table 5
The influencing factors of human leader-based evacuation.

Related work Year Model Influencing factor Scenario Exit number Exit size

Okada and Ando (2011) 2011 VF model Location, number A room Two –
Ma et al. (2016) 2016 SF model Location, number, visibility,

distribution range of evacuees
20 m × 20 m room One 1 m–20 m

Yuan and Tan (2009) 2009 CA model Visibility, number 20 m × 20 m room One 2 m
Wang et al. (2012) 2012 CA model, CF model Location, number 26 m × 26 m room One 0.4 m
Hou et al. (2014) 2014 SF model Location, number, velocity,

visibility
20 m × 20 m room One, two, four 2 m

Cao et al. (2016) 2016 Multi-grid model Guidance strategy, guider type,
number and distribution

20 m × 10 m room Two 1 m

Wang et al. (2015c) 2015 CA model, CF model Walking speed, information
transmission radius

26 m × 26 m room One 0.8 m

Yang et al. (2015) 2015 SF model Location, number 50 m × 50 m room One 1 m
Wang et al. (2016) 2016 Multi-Information CF

model
Sensing radius 0.4 m × 10 m T-shaped channel, 2

m × 24 m T-shaped channel
Two 2 m

Yang et al. (2013) 2013 Multi-agent model Guiding route 80 × 80 area Three Radius 15, 10, 5
Zhou et al. (2019a) 2019 Hybrid bi-level model Location, number, route Beijing’s urban rail transit station Three 3.4 m
Zhang et al. (2021) 2021 E-AECM Location Spring city square of Jinan – –

and computing power, robots can evacuate occupants independently.
Jiang 𝑒𝑡 𝑎𝑙. presented an adaptive dynamic programming approach
(ADP) to control the motion of a robot for a desirable collective veloc-
ity (Jiang et al., 2017). Boukas et al. trained the intelligent emergency
evacuation robots to attract evacuees heading towards saturated exits
and redirect them to less blocked ones to ensure a faster and safer
evacuation (Boukas et al., 2015; Tang et al., 2016; Wan et al., 2020;
Zhang and Guo, 2015; Garrell et al., 2009).

2.3. ME-based evacuation scheme

Typical ME for assisting crowd evacuation includes smartphones
and Augmented Reality (AR) headsets. This kind of equipment can
present more useful and intuitive evacuation information than that
provided by traditional techniques based on audio alarms and paper
maps. In addition, with the fast development of AR and Virtual Re-
ality (VR) technology, AR/VR-based wearable hardware such as the



Ocean Engineering 263 (2022) 112403

6

K. Liu et al.

Table 6
Crowd evacuation with ME.

Source Location-
based

Localization
technique

Track-
based

Tracking
technique

Floor
plan-based

Central
server-based

Optimization
objective

Capacity
aware

Clustering
aware

Iizuka and Iizuka
(2015) and Wada and
Takahashi (2013)

! GPS # ! # Evacuation time # #

Fujihara and Miwa
(2012)

! GPS # ! # Evacuation time ! #

Ikeda and Inoue
(2016)

! GPS # ! ! Evacuation time # #

Gelenbe and Bi
(2014)

! Built-in camera # ! ! Survival rate # !

Diao and Shih (2018)
and Zhang et al.
(2020c)

! Built-in camera # ! ! Evacuation time # #

Stigall and Sharma
(2017)

! Built-in camera # ! ! Evacuation distance # #

Ahn and Han (2011) ! Built-in sensors # ! ! Evacuation time # #

Chen and Chung
(2017) and Chen and
Liu (2021)

! iBeacon # ! ! Evacuation time ! !

Fujihara and
Yanagizawa (2015)

! iBeacon # ! # True positive
detection rate of
guidance

# #

Mulloni et al. (2011) ! Info points # ! # Evacuation distance # #

Fujihara and Miwa
(2012)

! Wi-Fi # ! # Evacuation time ! #

Chen et al. (2015) ! RFID, iBeacon,
RSSI-based

# ! ! Evacuation time ! #

Chu (2010) ! NFC, RFID # ! ! Evacuation time # #

Nadalutti and
Chittaro (2008) and
Chittaro and
Nadalutti (2008)

! RFID # ! # Navigation error,
stops

# #

Chu and Wu (2011) ! RFID # ! ! Distance, congestion,
temperature

! #

Inoue et al. (2008) ! Radio beacon # ! ! Evacuation distance # #

Zheng et al. (2017) # ! Image, IMU,
WiFi

# # Spatial error, energy
saving, path distance

# #

Shu et al. (2015) # ! IMU # # Spatial error, energy
saving

# #

Zhang et al. (2020b)
and Yin et al. (2016)

# ! WiFi, IMU # # Spatial error,
deviation detection
time

# #

Dong et al. (2019) # ! Visual SLAM # # Navigation success
rate

# #

Li et al. (2020) # ! WiFi, IMU # # Space error # #

Dong et al. (2020) # ! Visual SLAM # ! Navigation success
rate, space error

# #

Pan and Li (2019) # ! IMU, iBeacon # ! Navigation distance,
navigation deviation,
notification delay

# #

Teng et al. (2019) # ! Point clouds,
IMU

# ! Tracking error,
navigation success
rate

# #

wireless head-mounted display (HMD) has been introduced to study
human evacuation behavior and train occupants. Using HMD-based
VR experiments, Feng et al. investigated the response of evacuees to
different types of information (e.g., crowd flow and exit signs) (Feng
et al., 2021; Lin et al., 2020). Lin et al. examined the effect of repeated
exposures to indoor environments on people’s indoor wayfinding per-
formance (Lin et al., 2019). In addition, Lovreglio et al. trained oc-
cupants to cope with emergencies in an earthquake or fire by using
VR-based simulators (Lovreglio et al., 2018; Xu et al., 2014).

Based on the dependency on the pre-knowledge of user locations,
the ME-based evacuation schemes are classified into two categories:
location-based and location-free evacuation schemes using ME
(Table 6). This section presents the review of the two schemes.

2.3.1. Location-based evacuation scheme using ME
Most of the existing ME-based evacuation schemes rely on the

availability of location information on each user. Ikeda et al. exploited

the built-in Global Positioning System (GPS) function to provide the po-
sition of smartphones (Ikeda and Inoue, 2016; Iizuka and Iizuka, 2015;
Wada and Takahashi, 2013; Fujihara and Miwa, 2012). But it is chal-
lenging to receive satellite signals within a modern building. Therefore
other location awareness systems become necessary for location-based
indoor evacuation using ME. Chen et al. proposed that the location
of each person can be periodically detected by his/her smartphone
through signal strength-based localization or infrastructure-based po-
sitioning (e.g., radio-frequency ID (RFID) and iBeacon) (Chu, 2010;
Nadalutti and Chittaro, 2008; Chittaro and Nadalutti, 2008; Chen et al.,
2015; Chu and Wu, 2011; Shin et al., 2011). Gelenbe et al. identified
evacuees’ positions by the camera or sensors built in smartphones or
AR headsets (Gelenbe and Bi, 2014; Zhang et al., 2020c; Ahn and Han,
2011; Stigall and Sharma, 2017). In addition, Mulloni 𝑒𝑡 𝑎𝑙 exploited
activity-based instructions to guide users from one info point to the
next (Mulloni et al., 2011). In this system, only sparse 3D localization
at selected info points in a building is necessary.
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Fig. 5. The typical sensor-centric and user-centric evacuation scheme using WSN (Wang et al., 2017). In (b), sensor 𝑠1 can provide different guiding directions for the User A and
User B even though both of them are located nearby 𝑠1.

2.3.2. Location-free evacuation scheme using ME
The location information may not always be available in many

realistic situations where emergency guidance is needed. Zheng et
al. designed Peer-to-Peer (P2P) navigation systems on mobile phones,
which enabled efficient navigation without resorting to pre-deployed
location service and the availability of indoor maps (Zheng et al.,
2017; Shu et al., 2015; Dong et al., 2019; Zhang et al., 2020b; Yin
et al., 2016). In this kind of system, guiders recorded their traces
in a variety of forms (e.g., pathway images, geomagnetic fields, or
WiFi signals) and transmitted them to followers so that they could get
prompt path instructions through their phones. However, P2P mode
suffers from path deficiency in large complex indoor scenarios, which
significantly hampers its application. Teng 𝑒𝑡 𝑎𝑙. merged the paths of
different guiders into a global map by introducing a crowdsourcing
scheme (Teng et al., 2019; Li et al., 2020; Pan and Li, 2019; Dong et al.,
2020).

2.4. WSN-based evacuation scheme

WSN is a natural choice for supporting emergency evacuation, given
the ubiquitous sensing and communication capability. Previous re-
searches verified the effectiveness of WSN-assisted guiding mechanisms
using simulations and real test-bed implementation approaches (Ahmed
et al., 2015; Yin, 2015; Lung et al., 2016; Stigen, 2019). Fig. 5 shows
the typical WSN-assisted emergency evacuation system. A number of
sensor nodes are deployed in a building to monitor the time-varying
environmental conditions, calculate guiding paths and send them to
nearby evacuees equipped with radio modules. Existing WSN-assisted
evacuation schemes can be divided into two classifications: the sensor-
centric guiding scheme (Fig. 5(a)) and the user-centric guiding scheme
(Fig. 5(b)). This section reviews the two types of evacuation schemes.

2.4.1. Sensor-centric evacuation scheme
In sensor-centric scheme, all people associated with the same sensor

are provided with the same direction. Table 7 summarizes previous
work on evacuation with WSNs. Some research assumed the availability
of global knowledge about path topology and used global exhaustive
search algorithms to determine optimal guiding routes. Buragohain
et al. carried out a Breadth-First-Search (BFS) to calculate an opti-
mal path. In addition, in order to reduce communication expenses,
an adaptive skeleton graph was constructed in a distributed fash-
ion (Buragohain et al., 2016). Filippoupolitis et al. used the Dijkstra
algorithm to calculate the path with the minimum effective length (Fil-
ippoupolitis and Gelenbe, 2009). Wang et al. proposed a novel metric

of path planning named Expected Number of Oscillations (ENO) to
quantify the dynamics of emergency. Based on ENO information, the
path minimizing the probability of oscillation was found using a global
exhaustive search algorithm (Wang et al., 2014a). Chen et al. provided
the fastest routes for people to reach exits based on the evacuation
time estimated by an analytical model that took into account corridor
capacity and length, exit capacity, and concurrent movement and dis-
tribution of people (Chen et al., 2012b). Shen et al. employed the Dinic
Algorithm to provide evacuees with navigation service, which reduced
congestion and increased the evacuated ratio in a short time (Shen
et al., 2011).

Instead of global search, Tseng et al. executed path planning based
on local search algorithms (Tseng et al., 2006; Zhou et al., 2012; Chen
et al., 2012a; Wang et al., 2017, 2013, 2015a; Li et al., 2003; Chen
et al., 2011, 2008; Pan et al., 2006; Chen et al., 2016b; Park and
Corson, 1997; Pooja et al., 2019). Wang et al. computed an artificial
potential field for the corresponding state to generate optimal guiding
direction (Wang et al., 2017; Li et al., 2003; Chen et al., 2008, 2011;
Pooja et al., 2019). Chen et al. assigned sensor nodes temporally
ordered sequence numbers to construct a directed navigation graph in
a localized manner (Tseng et al., 2006; Chen et al., 2012a; Zhou et al.,
2012; Chen et al., 2016b; Park and Corson, 1997; Pan et al., 2006).
Wang et al. sought for a global or local topological structure as a public
infrastructure to provide navigation information for internal queries,
through which unnecessary overhead of individually path planning is
avoided (Wang et al., 2015a, 2013).

2.4.2. User-centric evacuation scheme
The user-centric guiding system provides navigation directions for

each individual user rather than for each sensor. As shown in Fig. 5(b),
the sensor 𝑠1 can provide different guiding directions for User A and
User B even though both of them are nearby 𝑠1. The user-centric
evacuation scheme relaxes the constraint on the number of guiding
directions provided by a single sensor, which opens up more oppor-
tunities to optimize overall evacuation time. Wu et al. proposed a
localized user-centric guiding protocol where the overall evacuation
time is minimized with the consideration of the effect of hazards and
the limited capacity of a certain sensor at a certain time slot (Wu,
2017).

3. Ship passenger evacuation

The consequences of an accident could be destructive for passenger
ships, especially for luxury cruises. For example, thirty-two people were



Ocean Engineering 263 (2022) 112403

8

K. Liu et al.

Table 7
Crowd evacuation with WSNs.

Related work Location-based/Location-free Global/Local search Method Congestion-aware Path metric

Buragohain et al. (2016) Location-based Global BFS # Path length
Shen et al. (2011) Location-based Global Dinic algorithm ! Evacuation time
Wang et al. (2014a) Location-free Global OPEN # ENO
Chen et al. (2012b) Location-based Global TORA ! Evacuation time
Pan et al. (2006), Tseng
et al. (2006), Chen et al.
(2012a) and Park and
Corson (1997)

Location-based Local TORA # Path length

Zhou et al. (2012) and Chen
et al. (2016b)

Location-based Local TORA ! Evacuation time

Filippoupolitis and Gelenbe
(2009)

Location-based Global Dijkstra algorithm # Effective length

Li et al. (2003) Location-free Local Artificial potential field # Distance to dangers
Chen et al. (2008) Location-based Local Artificial potential field ! Evacuation time
Chen et al. (2011) Location-free Local Artificial potential field ! Evacuation time
Wang et al. (2017) and
Pooja et al. (2019)

Location-free Local Artificial potential field ! Distance to dangers

Wang et al. (2015a) Location-free Local Level set method ! Congestion level, Path length
Wang et al. (2013) Location-free Local Road map # Distance to dangers

killed when the Costa Concordia capsized in 2012. In case of such
a catastrophe, an appropriate evacuation strategy should be applied
to reduce casualties. The land-based indoor evacuation approaches
mentioned in Section 2 cannot be used directly to guide evacuees on
passenger ships due to the specificities of ships’ internal structure and
passengers’ behavior during evacuation. Compared with the mature
land-based indoor evacuation, the research on evacuation on passenger
ships is relatively limited and mainly focuses on three aspects from the
view of intentions: (1) Investigation of the likely evacuation behavior
of passengers; (2) Optimization of passenger evacuation for decreasing
casualties; (3) Evaluation of evacuation on passenger ships. This section
first presents the latest guideline on evacuation analysis for passenger
ships, issued by International Maritime Organization (IMO), and then
analyze the unique characteristics of ship passenger evacuation. Finally,
a survey of existing research efforts on the evacuation of passenger
ships is given.

3.1. Evaluation of the IMO guideline on ship evacuation

The international regulation ‘‘Safe Return to Port’’ specifies the
design criteria that guarantee the return of the ship to the port when a
casualty occurs. In such a case, passengers should move to the so-called
Safe Areas. If the given threshold of damage is exceeded, it is necessary
to abandon the ship and evacuate passengers to survival crafts. In both
cases, the evacuation analysis must be performed. The latest guidelines
concerning evacuation analysis for passenger ships are dictated by
IMO in MSC.1/Circ.1533 (IMO, 2007). The guidelines allow evacuation
analysis by either the simplified or the advanced method. The simpli-
fied analysis is based on a macroscopic model, treating passengers as
the fluid that runs through corridors and stairs as if they are tubes. In
this sort of analysis, the geometry of doorways, stairs and corridors,
and the initial density of passengers are considered to calculate the
total evacuation duration and identify the possible bottlenecks (Nasso
et al., 2019). The advanced method simulates individual passengers,
taking into account the particular features of passengers, such as the
walking speed and the reaction time to an emergency. In this method,
IMO-certified software (e.g., EVI and AENEAS), based on VR, is used to
calculate the travel duration, including the response duration.

The regulations on safe return to port and evacuation analysis are
of primary importance in the early stage of design for passenger ships
to upgrade the intrinsic ship safety in event of casualties. In addition,
these regulations provide standard scenarios and indexes for the evalu-
ation of ship evacuation systems. The performance of a proposed ship
evacuation scheme should be evaluated in day and night scenarios, in
which the initial distribution of passengers on board is different. The

evacuation performance of a scheme should be measured in terms of
the traversal time required for passengers to arrive at the Safe Areas
when it is assumed that the accident does not exceed a fixed threshold.
Otherwise, it should be measured by the duration until the launch of
survival crafts.

3.2. Specificity of ship passenger evacuation

Based on the analysis of maritime accident investigation reports and
case studies, as well as the data collection on a real passenger ship, this
section describes the specificities of the evacuation environment and
crowd behaviors during the emergency evacuation on passenger ships.

3.2.1. The influence of ship motion on passenger movement
The movement pattern of passengers on board is significantly dif-

ferent from that on the static ground because of the effect of ship
inclination and motion. Many simulations and experiments have been
performed to quantify the influence of ship inclination or motion on
pedestrian speed. Fig. 6 presents the speed reduction data due to
ship inclination from various international research projects (i.e., Fleet
Technology Limited (FTL) and Fire Safety Engineering Group (FSEG)
in the University of Greenwich, Research Institute of Marine Engi-
neering of Japan (RIME) and National Maritime Research Institute of
Japan (NIMR), Korea Research Institute of Ship and Ocean Engineering
(KRISO), the Netherlands Organization for Applied Scientific Research
(TNO), Australian Maritime Engineering Cooperative Research Centre
(AME CRC), TraffGo HT GmbH using evacuation software AENEAS,
and the Skate Key Laboratory of Fire Science in the University of
Science and Technology of China (SKLFS)). In addition, Valanto et al.,
by means of evacuation software AENEAS, presented speed reduction
factors in laterally and longitudinally tilted staircases as the function
of ship inclination angle (see Eqs. (2)–(4)) (Valanto, 2006). 𝜙 denoted
the slope angle; 𝑟trans indicated the reduction factor in laterally tilted
staircases; 𝑟longu and 𝑟longd were reduction factors when walking up and
down longitudinally tilted staircases, respectively. Sun et al. exploited
a ship corridor simulator to investigate the effect of heeling and trim on
individual walking speed and group walking speed, respectively (Sun
et al., 2018a,b). Chen et al. investigated the coupled-forced pedestrian
movement features as a result of ship swaying using an agent-based
pedestrian model (Chen et al., 2016a). Wang et al. carried out a series
of walking experiments on a real ship to quantitatively evaluate the
effect of different rolling angles on individual walking speed both on
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Fig. 6. Speed reduction data under different situations from various international research projects.

flat terrains and staircases (Wang et al., 2021a).

𝑟trans =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−0.005𝜙 + 1 0◦ ≤ 𝜙 < 20◦

−0.085𝜙 + 2.6 20◦ ≤ 𝜙 < 30◦

0.05 30◦ ≤ 𝜙 ≤ 40◦

0 40◦ < 𝜙

(1)

𝑟longu =
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⎪
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0 𝜙 < −45◦

0.038𝜙 + 1.76 −45◦ ≤ 𝜙 < −20◦

1 −20◦ ≤ 𝜙 < 0◦

−0.015𝜙 + 1 0◦ ≤ 𝜙 ≤ 20◦

−0.065𝜙 + 2 20◦ ≤ 𝜙 < 30◦

0.05𝜙 + 2.1 30◦ ≤ 𝜙 ≤ 45◦

0 45◦ < 𝜙

(2)

𝑟longd =
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⎪
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⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 𝜙 < −45◦

0.05 −45◦ ≤ 𝜙 < −30◦

0.065𝜙 + 2 −30◦ ≤ 𝜙 < −20◦

0.015𝜙 + 1 −20◦ ≤ 𝜙 < 0◦

1 0◦ ≤ 𝜙 < 15◦

−0.032𝜙 + 1.48 15◦ ≤ 𝜙 ≤ 45◦

0 45◦ < 𝜙

(3)

3.2.2. The feedback of crowd movement on ship motion
Crowd movement, in turn, can affect the motion of a ship. On

September 26, 2002, MV Le Joola capsized off the coast of The Gambia
with 1863 deaths (Rothe et al., 2006). The ship was submerged in just
five minutes. According to the analysis of the relative maritime accident
investigation reports, it is found that lopsided crowd movement is one
of the main reasons for such fast sinking, which dramatically decreased
the allowable evacuation time. There were about five hundred passen-
gers on the upper deck before the disaster occurred, which ascended
the ship’s center of gravity and thus reduced ship stability. It was,
therefore, more vulnerable to severe weather and sea states. Moreover,
passengers on the upper deck swarmed to the port side to avoid storms
from the starboard side, which undeniably accelerated the capsizing of
MV Le Joola. The sinking of Phoenix PC Diving also revealed that it was
critical for an evacuation scheme to take into account the feedback of
crowd movement on ship motion. When danger arose, passengers on
Phoenix PC Diving stampeded to the starboard side, which sped up the
ship’s overturning. Within only three minutes, it sank in the ocean near
Phuket, Thailand, causing 47 deaths (Chen, 2021).

3.2.3. The influence of fire doors on path network connectivity
Fire doors with different fire resistance ratings are installed to

reduce the spread of fire and smoke between separate components of
a passenger ship to enable safe egress from a vessel (Perez Villalonga,
2005). Certain fire doors on vessels are hidden in normal situations and
can be closed in the event of a fire, which is different from the fire doors
in general buildings. Once the fire door is closed, it can only be opened
from one side of the door. That is to say, certain corridors on vessels
are unidirectionally passable due to the existence of fire doors, which
makes the evacuation scenario on a passenger ship distinguishing. In
addition, it takes a certain amount of time to open the fire doors, so the
calculation of the traversal time on the related passageways is different
from common ones.

3.2.4. Limited and predictable ship survival time
A passenger ship is required to have sufficient hydrostatic stability

to survive certain damage cases. However, the required stability cannot
guarantee the survival of the ship in all cases, especially if the accident
takes place in unfavorable weather conditions or sea states. In such
cases, the survival time until capsizing for the ship is limited. In order
to survive, passengers must flee from the damaged ship within the
limited ship survival time. The value of ship survival time depends
on the loading condition of a vessel, the type, location, and extent
of damage, and the probable weather condition and sea state in an
operation area. Valanto 𝑒𝑡 𝑎𝑙. determined a method to estimate the
survival time (Valanto, 2006). Firstly, when the significant wave height
is great than or equal to 4.5 m, the survival time can be obtained with
the help of the numerical simulation of ship motion. Fig. 7 shows some
typical examples of simulated ship roll motion until capsizing, where
angle 30◦ is considered as the capsizing criterion. The estimation of the
survival time for the significant wave height lower than 4.5 m using
numerical simulation is very ineffective in terms of computation time.
In such cases, the survival time can be extrapolated with the following
formula:

𝑇c = 𝑇s × e𝐴+
𝐵
ℎ2 (4)

where 𝑇c represents the survival time of a vessel. 𝑇s and h indicate the
significant wave period and height, respectively. The constants 𝐴 and
𝐵 can be calculated by numerical simulation for higher wave height
with the same wave period.

3.2.5. Limited capacity of muster station
A passenger ship has multiple muster stations that are the equivalent

of evacuees’ destinations (Bucci et al., 2016). Different from the land
building evacuation, the muster stations on passenger ships give a
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Fig. 7. Typical examples of simulated ship roll motion until capsizing.

limitation for routing selection due to the limited number of lifeboats
and rafts in the stations (Qiao et al., 2014). When the embarkation
and muster stations are not coincident, the capacity of each muster
station is also limited due to the space limitation, which is determined
in the ship design stage. Without considering the limited capacity of
muster stations, passengers are likely to be guided to the stations that
have no space to accommodate more evacuees, which would lead to
a reassignment to another station, and thus inevitably prolongs the pe-
riod required to navigate passengers to safety. Considering the resultant
longer evacuation time, it is increasingly likely that passengers will
eventually miss the limited ship survival time and consequently lose
their lives when abandoning the ship becomes necessary.

3.2.6. Dependency on life-saving equipment for real survival
In case the damaged ship must be abandoned, passengers will be

required to arrive at boarding stations and embark on lifeboats or
rafts or jump into the water (Yoshida et al., 2001). In such cases,
passengers need to equip themselves with life-saving equipment such as
life vests and lifebuoys, which increases passengers’ feelings of safety
and their chance of survival. The minimum number of different life-
saving equipment is defined in Safety of Life at Sea (SOLAS) regulations
based on the size and passenger capacity of the ship (Ahola et al.,
2014). Specifically, there are two life jackets in each passenger room,
and at other specific locations (e.g., outside decks), a certain number
of lifebuoys or jackets are distributed. If a passenger is not in the
room when an emergency happens, it would be vital to consider the
distribution of life-saving equipment in the path planning. For example,
should they return to their cabins to collect life jackets, or should they
head for other locations where pertinent appliances are placed?

3.2.7. Narrow and complex ship indoor space
The internal structure of a passenger ship is very complex, especially

for state-of-the-art passenger ships with theaters, shops, swimming
pools, and gyms (Stefanidis et al., 2019). Moreover, the width of
corridors in cruises ranges from 1 m to 3 m, only allowing one or
two passengers to pass simultaneously. However, with the increase in
passenger capacity, there may be thousands of passengers on a cruise
ship, which gives rise to congestion points. Without considering the
heavy congestion and even blocking and trampling due to capacity
constraints of pathways, it is likely to aggravate the extent of injuries
and casualties.

3.3. Studies of ship passenger evacuation

There are three kinds of research focusing on ship passenger evac-
uation from the view of intentions, i.e., evacuation behavior study,
passenger evacuation optimization, and evaluation of evacuation on
passenger ships. Previous research on ship passenger evacuation is
summarized in Table 8.

3.3.1. Passenger behaviors during evacuation
It is critical to study passengers’ behaviors during a ship evacuation

process. Valanto et al. investigated the moving characteristics of pas-
sengers considering the effect of ship inclination and motion (Valanto,
2006; Sun et al., 2018a; Chen et al., 2016a; Sun et al., 2018b; Wang
et al., 2021a). Sun et al. investigated the effect of heeling and trim on
individual walking speed using a ship corridor simulator (Sun et al.,
2018a). Results showed that compared with trim angles, heeling angles
had less impact on individual walking speed. Lu et al. explored the
movement pattern of single file passengers under ship trim and heeling
conditions (Sun et al., 2018b). Results indicated that as with individual
walking speed, group speed was more vulnerable to heeling angles com-
pared with trim angles. Moreover, the larger the inclination angle, the
more the velocity between adjacent experimental subjects correlated.
Chen 𝑒𝑡 𝑎𝑙. established an agent-based evacuation model taking into
account the forced pedestrian movement pattern (Chen et al., 2016a).
Simulations of single pedestrian movement indicated that pedestrian
movement was significantly affected by the angle between pedestrian
movement direction and ship swaying direction. Based on the primary
data from a series of walking experiments on a real ship, Wang et al.
analyzed the individual walking speed under different rolling condi-
tions in two scenarios, i.e., flat terrains and staircases (Wang et al.,
2021a). Other behaviors including cooperation with others, perception
of wayfinding tools, proactive response to evacuation alarms, com-
pliance with the crew, observation on others’ actions, obedience to
evacuation instructions, patient queuing, and return to the cabin when
their families are left behind, were also investigated (Kwee-Meier et al.,
2017; Wang et al., 2021b; Zhang et al., 2020a). In addition, Wang et al.
addressed the demographic differences among these behaviors (Wang
et al., 2020).

Some research focused on the factors affecting passengers’ evacu-
ation behaviors (Li et al., 2021). With the help of hypothesis testing,
Zhang et al. analyzed the relationship between personnel characteris-
tics (e.g., blood type and personality type) and evacuation behaviors
(e.g., the first response to a fire alarm and the possibility of return
for properties) (Zhang et al., 2020a). Ahola 𝑒𝑡 𝑎𝑙. conducted user
studies in an authentic environment to assess the themes pertaining to
passenger perception of safety (Ahola et al., 2014; Ahola and Mugge,
2017). Based on ship accident investigation reports, Nevalainen et al.
found that both external stimuli, including alarm sound, abnormal
noise, and the darkness caused by a blackout, and inner emotion could
affect how passengers process and interpret environmental cues under
emergencies (Nevalainen et al., 2015).

3.3.2. Passenger evacuation optimization
Regarding passenger evacuation optimization, the plan of escaping

routes, the optimization of staircase layout, and the schedule of the
time for issuing evacuation orders have attracted the attention of many
researchers. Casareale et al. demonstrated the effectiveness of wayfind-
ing systems in improving evacuation on cruise ships (Casareale et al.,
2017). Ni 𝑒𝑡 𝑎𝑙. applied a goal-driven decision-making model to create
a concrete escape plan (Ni et al., 2017). Ng et al. iteratively utilized a
modification of the scheduling algorithm introduced by Leung and Ng
to find a schedule for different groups at risk, which minimized the time
of evacuating all people with the least total cost (Ng et al., 2021). Based
on a SF model, Wang et al. optimized the staircase layout on a Ro-Ro
vessel to reduce evacuation time (Wang et al., 2022). Xie proposed a
surrogate-based optimization method to determine the time for issuing
evacuation orders so that the assembly time could be minimized (Xie
et al., 2020c).
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Table 8
Ship passenger evacuation.

Research intentions Research content Technique Implemented in

Passenger evacuation
behavior

Moving characteristic Simulation with agent-based models,
Full-scale experiment on ships, Experiment
with simulators

Valanto (2006), Sun et al. (2018a), Chen
et al. (2016a), Sun et al. (2018b) and Wang
et al. (2021a)

Perception of wayfinding
tools

Experiment in simulated conditions,
Questionnaire survey

Wang et al. (2020), Kwee-Meier et al. (2017)
and Wang et al. (2021b)

External and internal factors
affecting passengers’
behaviors

Experiment in simulated conditions, Passenger
ship accident investigation reports, Full-scale
experiments on ships, Questionnaire survey

Ahola et al. (2014), Nevalainen et al. (2015),
Ahola and Mugge (2017) and Zhang et al.
(2020a)

Passenger evacuation
optimization

Effectiveness of wayfinding
solutions

Simulation with SF model Casareale et al. (2017)

Staircase layout optimization Simulation with SF model Wang et al. (2022)

Optimization of issuance of
passenger evacuation orders

Genetic algorithm Xie et al. (2020c)

Optimization of evacuation
path

BFS, Leung–Ng fast approximation scheduling
algorithm

Ni et al. (2017) and Ng et al. (2021)

Passenger evacuation
evaluation

Reliability of evacuation Bayesian network parameter learning method,
Risk-based methodology, K2 structure
learning algorithm

Wang et al. (2021c) and Vanem and Skjong
(2006)

Evacuation process
estimation

Simulation with SF model, Modeling with
Batch NHPP, Simulation with grid-based
model, Dynamic Bayesian network, Markov
decision process, Polynomial chaos expansion

Kang et al. (2019), Ni et al. (2017), Hifi
(2017), Vilen et al. (2020), Galea et al.
(2015), Sarshar et al. (2013), Kana and
Droste (2019) and Xie et al. (2020a,b)

3.3.3. Evaluation of evacuation on passenger ships
The evacuation process can be analyzed in two ways: advanced

analyses and simplified analyses. The advanced analysis treats each pas-
senger as an individual with his/her characteristic and behavior. Ni 𝑒𝑡
𝑎𝑙. proposed an extended SF model that considered the resistance force
from obstacles in cabins to govern the movement of passengers (Ni
et al., 2017). Kang et al. incorporated the psychological tendency of
pedestrians to slip downhill into the SF model to simulate evacuation
behaviors on inclined shipwrecks (Kang et al., 2019). Vilen et al.
evaluated two advanced evacuation analysis software packages, i.e., Evi
and Pathfinder, in terms of numerical results and user experience (Vilen
et al., 2020). Galea et al. did an experimental validation of the evac-
uation model maritimeEXODUS using two data sets generated from
semi-unannounced assembly trials on a RO-PAX ferry and a cruise
ship (Galea et al., 2015). Results showed that the model was capable
of predicting the assembly process for the two vessels to a specified
level of accuracy. In addition, Hifi et al. described a set of scenarios for
performing advanced evacuation analysis and recommended a survey
of population composition and ship familiarity before the evacuation
analysis to improve analysis accuracy (Wang et al., 2022; Hifi, 2017).
However, the advanced analysis is very time-consuming, and thus when
a fast assessment of evacuation time is needed, it is not a suitable
option. Cho 𝑒𝑡 𝑎𝑙. developed a simplified analysis solution that took
a macroscopic view of the evacuation process, treating passengers as
homogeneous particles in a fluid (Cho et al., 2016). Sarshar et al.
developed a dynamic Bayesian network model that considered the
most vital factors influencing congestion (e.g., panic, age, sex, and the
presence of rescue personnel) to predict the probability of congestion
during the entire process of an evacuation (Sarshar et al., 2013). Xie
et al. established a surrogate model using a coupling technique of
nested sampling and polynomial chaos expansion method to estimate
passenger travel time uncertainty with acceptable accuracy (Xie et al.,
2020b,a). Kana 𝑒𝑡 𝑎𝑙. presented a ship-centric Markov decision process
model for evaluating the evacuation during the preliminary design
phase of a passenger ship (Kana and Droste, 2019). The simplified
analysis ignored the different elements of an evacuation process and
thus could not mirror passengers’ movement. Hifi et al. developed a
parametric model that could produce a fast estimate of evacuation time
while capturing the factors influencing the evacuation to satisfactory
accuracy (Hifi, 2017).

The quantitative evaluation of evacuation on ships is also essential.
Wang et al. investigated the main factors leading to evacuation failure
and established a model using the K2 structure learning algorithm
and the Bayesian network parameter learning method to quantify the
probability of a successful evacuation (Wang et al., 2021c). Vanem et
al. developed a risk-based approach to evaluate the evacuation perfor-
mance associated with a specific passenger ship using the proposed set
of evacuation scenarios (Vanem and Skjong, 2006).

4. Discussion and future directions

This section evaluates the above land-based evacuation schemes and
delineates our insights into the future research perspectives for ship
passenger evacuation.

4.1. Comment on land-based evacuation

Significant research works on building evacuation have been car-
ried out. Based on different types of guidance patterns, a classifica-
tion of land-based evacuation schemes is proposed, including signage-
based evacuation, leader-based evacuation, ME-based evacuation, and
WSN-based evacuation.

In Section 2.1, the review of land-based indoor evacuation with
fixed and variable signage is provided. The latter can respond to
contemporary environmental conditions and present up-to-date guiding
information. However, pedestrians may not find signs in smoky condi-
tions. Even under clear conditions, they are likely to neglect the signs at
specific locations or cannot fully understand the content of signs during
emergencies due to their anxiety and panic. In such emergencies,
evacuation leaders with complete knowledge of the layout of a building
can provide guiding instructions for occupants and significantly reduce
casualties. Compared with human leaders, robotic leaders can be sent
to guide evacuees out in several special accidents like nuclear leakage.
An emergency evacuation system is requested to provide a time-critical
guiding service. But for the leader-based evacuation system, it will take
a significant amount of time to arrange leaders to appropriate locations.
Therefore, evacuating through the equipped device (e.g., smartphone)
regularly used in everyday life for all pedestrians is very attractive.
However, the downsides to the three kinds of evacuation schemes are as
follows: (1) Without real-time indoor environment monitoring, evacua-
tion routes provided by these schemes are not necessarily passable due
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to the encroachment of hazards; (2) Passengers observing the same sign
or leader or near the same beacon will escape along the same direction,
which inevitably causes heavy congestions, trampling and possible
injuries and casualties. The WSN-based evacuation scheme is capa-
ble of exploring dynamic environmental conditions by means of the
collaborative detection of sensor nodes. But sensor-centric WSN-based
evacuation scheme is only effective on the first downside mentioned
above, while powerless to solve the second problem. Therefore, a user-
centric WSN-based evacuation scheme will be a good choice for a
modern building.

4.2. Prospects for ship passenger evacuation

Compared with the land-based evacuation, there are some specific
features for passenger ship evacuation due to the uniqueness of ship
structure, passenger behaviors onboard, and evacuation requirements
at sea. Therefore, personalized evacuation approaches for ship passen-
gers are indispensable. However, in contrast to the relatively mature
land-based evacuation schemes, the research on ship evacuation is
still in its infancy and focuses on investigating the likely behaviors of
passengers. Design or optimization of evacuation routes targeting ship
passengers is also critical but scarce. Drawing from the four types of
land-based evacuation schemes mentioned in Section 2, the prospects
for the evacuation system of modern cruise ships are discussed in this
section.

A WSN with functionally-separated sensors like tilt sensors, hy-
draulic pressure sensors, temperature sensors, and smoke sensors is
deployed on a modern cruise ship. When an emergency takes place, the
sensors will initiate a danger alarm and transmit the current locations
and levels of hazards to a path planning server. In addition, the current
position of each passenger is detected using the received strength of
wireless signals on his/her smartphone, and the sensor ID with the
strongest signal strength is used to determine the passenger’s position
in the blueprint database of sensor deployment. That is to say, the
proposed scheme does not require accurate location information on
each passenger. The smartphone periodically sends the determined
position to the path planning server. According to the obtained in-
formation, the server will compute a dedicated escape route for each
individual and broadcast it to his/her smartphone. The reason for
selecting smartphones as guides during emergencies is that nowadays
almost everyone has a smartphone and familiarity with their own
smartphones can increase passengers’ feelings of safety. Fig. 8 shows
the system architecture of our proposed emergency guiding scheme
for ship passengers. Red rectangles represent sensor nodes deployed
at muster stations, doors, and crossing points among corridors and/or
doors on a passenger ship in advance. The Wi-Fi access point is used
for maintaining the communication between the smartphones and the
path planning server. The following is a list of properties of evacuation
routes provided to passengers:

• The path is apart from hazardous regions and through which a
passenger can arrive at a specific exit before the ship capsizes
under all circumstances.

• The total evacuation time of passengers should be reduced as
much as possible. To realize this goal, an evacuation system has
to consider not just the relative distance from the passenger to
the muster station, but the movement speed on the route, the
capacity of the route, and the up-to-date distribution as well as
the spatial–temporal mobility of all passengers.

• The evacuation routes should be provided to passengers in a
real-time manner.

• Escaping along the provided route, each passenger would have
obtained a piece of saving-life equipment when arriving at the
muster station.

• Following the offered direction would not speed up the ship
leaning to one side.

• Passengers would not be guided to a muster station that cannot
accommodate more evacuees.

• Except for guaranteeing passengers’ safety, the evacuation system
should also maintain the integrity of a passenger ship as much as
possible.

The proposed architecture is attractive but challenging, due to
the restricted battery power of low-cost sensor nodes and the ad-hoc
routing protocol of a WSN in a large and complicated ship indoor
space. Specifically, as the information regarding the environment is for-
warded over multiple hops towards a gateway, some sensors get more
congested than others, depending on their location. Therefore, they
deplete their batteries quickly, shortening the overall network lifetime.
In addition, considering the dynamics of the hazardous environment,
the routing protocol in WSN functions poorly in the evacuation appli-
cation. Because in order to ensure passengers’ safety, frequent flooding
is required to update the escaping paths in the rapidly changing en-
vironment, which may trigger many simultaneous bursts of broadcast
packets throughout the network and thus cause a large number of
packet collisions. The calculation of all routes is performed in the path
planning server. So in case it malfunctions during the emergency, our
evacuation system will break down. Moreover, while the potential of
our proposed architecture to improve access to real-time monitoring
and even intuitive and reliable navigation instruction can be provided
to evacuees, concerns about personal data privacy remain. User data
may be inadequately disclosed or transmitted to commercial entities
by smartphone applications (apps) for ship passenger evacuation.

With the emergence of Low Power Wide Area Network (LPWAN)
technologies, one type of WSN, which is designed for long-range In-
ternet of Things (IoT) services, the above challenges from WSNs will
hopefully bear solved. LPWAN IoT devices consume low transmission
power but have a communication distance of several kilometers, so they
can directly transmit the information pertaining to the environment to
the path planning server and thus avoid the network breakdown caused
by packet collisions. In addition, benefiting from the development of
edge computing, in the future the distributed approach can be used
to provide paths for passengers so as to reduce and even release the
dependency on the path planning server. Moreover, given the negative
impacts of inadequate privacy disclosures, data protection becomes
particularly important. On the one hand, the anonymization technology
can be adopted for the utilization of the results of analysis of the
exchanged data, which includes passengers’ sensitive personalized con-
texts (e.g., information about passengers’ physical and psychological
status) (Shinzaki et al., 2016). On the other hand, government regu-
lation and up-to-date technical scrutiny are also essential for avoiding
privacy leakages (Huckvale et al., 2019).

In addition, with the development of Extended Reality (XR) tech-
nology, VR-based or AR-based experiments can be introduced as an
alternative method of post-emergency investigation and hypothetical
survey to study passenger behavior during ship emergencies. XR-based
experiments can arouse passengers’ behavioral responses to virtual
emergencies and thus provide the opportunity to collect evacuation
behavior data with relatively high ecological validity. Taking into
account passengers’ behaviors, the designed evacuation system will be
more effective at ensuring the safety and reliability of evacuation in
reality. Moreover, it is possible to develop VR-based Serious Games
(SGs) to train passengers to utilize the proposed evacuation scheme
to escape, which is an effective approach to acquiring and retaining
evacuation knowledge. It is also possible to substitute smartphones
in the proposed architecture with AR devices that can provide more
intuitive guidance for passengers.

5. Conclusion

This paper provides a survey of research efforts on crowd evacuation
both in general buildings and on passenger ships. A comprehensive
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Fig. 8. System architecture of the emergency guiding scheme for ship passengers. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

analysis and synthesis of different kinds of guidance patterns for evac-
uation in land-based buildings, including signage-based, leader-based,
ME-based, and WSN-based evacuation schemes, is presented. Those
schemes are not used directly for ship passenger evacuation due to the
unique challenges of guiding passengers on vessels. Section 3 analyzes
the specificities of both evacuation environment and crowd behavior
during the emergency evacuation on passenger ships. In addition, the
existing work on evacuation for passenger ships are reviewed. Com-
ments on land-based evacuation schemes and future research directions
on ship passenger evacuation are also discussed. In the future, more
intelligent and personalized guidance systems will be designed and
implemented to improve the safety and efficiency of ship passenger
evacuation.
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A B S T R A C T   

The prevalence of maritime transportation and operations is increasing, leading to a gradual increase in 
drowning accidents at sea. In the context of maritime search and rescue (SAR), it is essential to develop effective 
search plans to improve the survival probability of persons-in-water (PIWs). However, conventional SAR search 
plans typically use predetermined patterns to ensure complete coverage of the search area, disregarding the 
varying probabilities associated with the PIW distribution. To address this issue, this study has proposed a 
maritime SAR vessel coverage path planning framework (SARCPPF) suitable for multiple PIWs. This framework 
comprises three modules, namely, drift trajectory prediction, the establishment of a multilevel search area 
environment model, and coverage search. First, sea area-scale drift trajectory prediction models were employed 
using the random particle simulation method to forecast drift trajectories. A hierarchical probability environ-
ment map model was established to guide the SAR of multiple SAR units. Subsequently, we integrated deep 
reinforcement learning with a reward function that encompasses multiple variables to guide the navigation 
behavior of ship agents. We developed a coverage path planning algorithm aimed at maximizing the success rates 
within a limited timeframe. The experimental results have demonstrated that our model enables vessel agents to 
prioritize high-probability regions while avoiding repeated coverage.   

1. Introduction 

With continuous development of the global economy, maritime 
transportation has emerged as the primary mode for transporting in-
ternational goods. With increasing human exploration and production 
activities at sea, offshore operations have become increasingly common. 
The marine environment is complex and dynamic, with natural disasters 
such as strong winds, high waves, storms, lightning strikes, and tsunamis 
potentially occurring. These events can increase the number of maritime 
accidents (Yang et al., 2020; Zhang et al., 2017; Zhou et al., 2020a, 
2020b; Zhou, 2022). Maritime accidents often result in drowning and 
casualties. Therefore, the timely development of effective search plans 
and improvements in the efficiency of maritime search and rescue have 
become a key research focus (Koopman, 1956a, 1956b, 1957; Peng 
et al., 2022; Rani et al., 2022; Sendner, 2022). This is critical for 
enhancing the likelihood of survival among PIWs. 

Maritime SAR comprises two essential components, that is, search 
and rescue, with search serving as a prerequisite for rescue (Carneiro, 
1988; Haga and Svanberg, 2022; IAMSAR, 2016; International Maritime 
Organization, 1979). In maritime SAR, the scarcity of search resources 
and adverse meteorological conditions are the two primary factors that 
impede the SAR process (Zhou, 2022). This forces search planners to 
minimize the search area and maximize the chances of locating the 
search object (Tapkin and Temur, 2022). Search optimization is neces-
sary to achieve maximum success rates while considering the correlation 
between time and resource constraints. Given the vulnerability of PIWs 
in maritime environments, rescuers must locate them immediately. 
Therefore, searching for PIWs includes three main tasks: (1) accurately 
and quickly predicting the drift trajectory of PIWs (Brushett et al., 2017; 
Chen et al., 2017, 2022; Wu et al., 2023); (2) determining the optimal 
search area to ensure full coverage of the possible distribution range; 
and (3) planning the search path for the SAR units and maximizing the 
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cumulative probability of success (POS) of the entire search process 
(Brown, 1980; Kratzke et al., 2010; Lin and Goodrich, 2014; Mou et al., 
2021; Washburn, 1983). 

When the rescue units arrive at their initial position in maritime SAR, 
the PIWs continue to drift owing to the combined influence of surface 
currents, sea waves, and wind. The complexity of the maritime envi-
ronment, along with numerous uncertain factors influencing the drifting 
process, amplifies the challenge of locating PIWs. It also increases the 
complexity of search path planning, thereby rendering the search more 
intricate. The prediction of drift trajectories involves the consideration 
and quantification of factors that affect the drift process, including the 
submersion scene, maritime conditions, and prediction modeling. In 
marine accidents involving PIWs, the drift characteristics vary depend-
ing on the posture, including whether the PIWs are upright, seated, or 
face down, or the load conditions (Wu et al., 2023). First proposed by 
Allen and Plourde (1999) to quantify the drift of objects, the Leeway 
model has been widely used to help plan national searches such as the 
French MOTHY (Daniel et al., 2003), Canadian CANSARP (Canadian 
Coast Guard College CANSARP Development Group Web site, 2009), 
and U.S. Coast SAROPS (Kratzke et al., 2010). Sea-based drift tests are 
widely recognized as the most commonly used and highly dependable 
approach for determining leeway coefficients (Breivik et al., 2012; 
Kasyk et al., 2021; Meng et al., 2021; Sutherland et al., 2020; Tu et al., 
2021; Wu et al., 2023; Zhu et al., 2019). 

Path-planning methods can be classified into two categories, that is, 
traditional and intelligent algorithmic. Traditional path planning algo-
rithms include the dijkstra algorithm (Dijkstra, 1959; Wang et al., 2011), 
the A* algorithm and its improved versions (Chabini and Lan, 2002; Hart 
et al., 1972; Nash and Koenig, 2013), the D* algorithm and its improved 
versions (Koenig and Likhachev, 2005; Marija and Ivan, 2011; Stentz, 
1994), the artificial potential field method (Zhang et al., 2012), the 
probabilistic path graph method (Kavraki et al., 1996), and the rapid 
exploration of random trees method (RRT) (Lavalle, 1998). Intelligent 
path planning algorithms include genetic algorithms (Prins, 2004), ant 
colony algorithms (Luo et al., 2020) and particle swarm algorithms 
(Masehian and Sedighizadeh, 2010). The reinforcement learning (RL) 
method (Wiering and Van, 2012) is an important approach in machine 
learning. In contrast with other intelligent algorithms for machine 
learning, RL focuses on the acquisition of system mapping from the 
environment to the behavior. It does not rely on labeled interactions as 
seen in supervised learning; instead, it learns from its own experiences. 
The objective of RL is not to discover hidden structures but rather to 
maximize rewards. The most used reinforcement learning methods 
include Q learning, SARSA learning, TD learning, and adaptive dynamic 
programming algorithms. Recently, significant advancements have been 
made in combining path planning with reinforcement learning (Busoniu 
et al., 2008; Xi et al., 2022; Xie et al., 2021). 

Full-coverage path planning (CPP) is a specialized technique in ro-
botics for generating a continuous path that passes through all accessible 
points within a given area with a minimum repetition rate and 
maximum coverage rate. This can be achieved using either random or 
environment-based models (Galceran and Carreras, 2013). To ensure 
comprehensive coverage, most existing CPP methods divide the target 
area and the surrounding space into cells using exact or approximate cell 
division techniques. CPPs have a wide range of applications in autono-
mous underwater vehicles (AUVs), including seabed mapping, mine 
detection, and oil spill cleanup (Englot and Hover, 2013; Shen et al., 
2019; Song et al., 2013). CPP have also been extensively used in other 
fields, including photogrammetry for unmanned aerial vehicles (UAVs), 
agriculture, fire, disaster management, and vacuum-cleaning robots 
(Fevgas et al., 2022; Galceran and Carreras, 2013; Seraj et al., 2022). 
Recently, researchers have begun to consider using reinforcement 
learning in CPP. Theile et al. (2020) used deep reinforcement learning 
algorithms for UAV CPP under different power constraints. Kyaw et al. 
(2020) used a new approach for solving CPP problems in large complex 
environments based on the traveling salesman problem (TSP) and deep 

reinforcement learning. Xi et al. (2022) integrated ocean information for 
a regional ocean simulation system combined with RL to generate AUV 
path-planning solutions. Jonnarth et al. (2023) used an end-to-end RL 
approach based on a continuous state and action space to address online 
CPP problems in unknown environments. 

In the field of maritime SAR path planning, the primary objective is 
to optimize the shortest route from the starting point to the destination 
while avoiding potential obstacles along the path (Cao et al., 2019; Li 
et al., 2021; Liu et al., 2017; Xi et al., 2022; Yang et al., 2020; Zhang 
et al., 2019, 2020). However, accurately determining the location of 
individuals in distress during maritime accidents is challenging because 
of the varying postures of PIW and complex and constantly changing 
marine environments. Therefore, it is crucial to establish a search area 
and plan a path that ensures full coverage of the entire region. This is 
known as maritime full coverage search path planning (Ai et al., 2021). 
Compared with traditional CPP problems, the maritime search and 
rescue coverage path planning (MCPP) problem presents unique chal-
lenges. In addition to achieving complete coverage of the search area 
and avoiding path overlaps and obstacles, priority must be given to 
searching for high-probability areas. 

To achieve this objective, traditional SAR operations used methods 
such as parallel track, crawl line, extended square, and sector searches 
(IAMSAR, 2016; Koopman, 1957). Recently, there has been a surge in 
research aimed at enhancing traditional search methods. Ramirez et al. 
(2011) used a collaborative model of UAVs and unmanned boats for 
maritime rescue coordination, which proved to be highly effective in 
completing rescue missions. Karakaya (2014) used an ant colony system 
optimization algorithm for route planning, aiming to efficiently cover 
the maximum search area with a limited number of UAVs. Xiong et al. 
(2021) introduced a helicopter maritime SAR path-planning method 
based on the minimum outer rectangle and k-means clustering algo-
rithm. Cho et al. (2021) presented a mixed-integer linear programming 
(MILP) model that used a hexagonal grid decomposition approach to 
efficiently generate search paths for multiple heterogeneous UAVs 
within the shortest possible timeframe. Ouelmokhtar et al. (2022) used a 
multi-objective evolutionary algorithm, namely, the non-dominated 
sorting genetic algorithm II (NSGA-II) and Pareto evolutionary strat-
egy (PAES), to solve the dual-objective CPP problem, that is, minimizing 
energy consumption and maximizing coverage, for UAV maritime 
monitoring. However, these methods have not considered the variability 
in the probability distribution of personnel in distress (PIWs) within the 
search area. Given that rescue time is critical for ensuring personnel 
safety, incorporating the PIW probability distribution can substantially 
enhance survival rates. Therefore, it is imperative to devise a path that 
maximizes SAR cumulative success rates (Ai et al., 2021; Bourgault 
et al., 2003; Cho et al., 2021; Frost, 2001; Yao et al., 2019). 

Most current studies have primarily focused on single drowning 
person scenarios in search and rescue (SAR) operations. However, it is 
crucial to consider SAR scenarios involving multiple individuals in 
varying postures, such as the upright and face down positions, particu-
larly during maritime accidents. For large-scale drowning accidents, the 
range of maritime SAR is large and requires the establishment of a 
multidimensional search and rescue area and multi-agent coverage path 
planning. One strategy for promoting collaboration among agents is to 
partition regions into distinct blocks and assign each agent a re-
sponsibility to a specific block (Xiong et al., 2021). The second approach 
is cooperative path planning for multiple agents (Binney et al., 2010; 
Cho et al., 2021; Mou et al., 2021). Throughout the search process, UAVs 
encounter several limitations, including a restricted battery life, 
vulnerability to adverse environmental conditions, limited search 
ranges, and challenges in detecting diminutive targets within water 
bodies (Hou et al., 2020). The Automatic Identification System (AIS) can 
provide information on vessels in proximity to the distress area, facili-
tating the allocation of ship resources for search and rescue operations. 
Therefore, it is imperative to investigate the planning of maritime 
coverage paths for vessel agents. 
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This study integrated deep reinforcement learning techniques into the 
planning process of SAR coverage paths. First, sea-area-scale drift tra-
jectory prediction models were used to predict the trajectories of persons 
in various sea areas. A random particle simulation algorithm was used to 
simulate the drift paths for different postures. Subsequently, a hierar-
chical probability map was established. By integrating deep reinforce-
ment learning into the design of the covering path-planning algorithm, an 
improved success rate within a limited timeframe was achieved. 

The main innovations of this study can be summarized as follows:  

(1) A maritime search and rescue vessel path planning framework 
(SARCPPF) was proposed, which includes the prediction of the 
drift trajectory at the sea area scale, establishment of a hierar-
chical environment map of the search area for persons in water 
with multiple attitudes, and planning of the covering path.  

(2) Developed a coverage path planning system with a multi- 
objective reward function based on deep reinforcement 
learning for maritime SAR. State and dynamically adjusted 
action-selection strategies applicable to specific maritime SAR 
scenarios were designed.  

(3) For specific scenarios of maritime search and rescue, deep 
learning was introduced into search path planning, which ach-
ieves the goal of maximizing the cumulative success rate of search 
and rescue and provides a demonstration case for search path 
planning in high-dimensional state and action spaces. 

The remainder of this study is organized as follows: In Section 2, the 
maritime optimal search theory, variables in search planning, and 
SARCPPF for this study are presented. Section 3 describes the sea-area- 
scale drift-trajectory prediction models and the drift prediction method. 
Section 4 introduces the modeling of the SAR environment. Section 5 
introduces the SAR path planning algorithm combined with reinforce-
ment learning. Section 6 presents a drift experiment of actual PIWs as a 
case study to perform a comparative analysis of the experimental results. 
Finally, Section 7 presents conclusions and prospects. 

2. Maritime optimal search theory and maritime SARCPPF 

Maritime optimal search theory serves as the foundation for deter-
mining search areas, dispatching SAR units, and assigning search tasks. 
Soza Company Ltd. (1996) and Frost (1997, 2001) distilled this theory 
into three critical components, that is, probability of containment 

(POC), probability of detection (POD), and probability of successful 
search (POS). 

Maritime SAR aims to develop search plans and improve POS within 
the shortest possible time with limited search resources. POS relies 
mainly on POC and POD (Xiong et al., 2020): 

POS=POC × POD (1) 

Therefore, maritime SAR aided decision-making involves two key 
issues: (1) optimal maritime SAR area determination, namely, full 
consideration and quantification of all influencing factors, such as 
distress waters, distress targets, and marine environmental conditions, 
in the drift process to predict the target trajectories and their final 
location probability distribution, and to determine the optimal search 
and rescue region, and (2) optimal planning of the maritime SAR, that is, 
based on SAR area determination, an optimal allocation scheme of SAR 
resources in time and space should be sought to improve the POS. The 
concept of maritime SAR for PIWs is illustrated in Fig. 1. 

2.1. POC 

Referring to the likelihood of an object being present within a search 
area, POC is a critical factor in search planning. Search planners need to 
allocate resources effectively to maximize their discovery potential. POC 
is expressed as a percentage and increases with larger search areas. 
When all particles can be contained within the region, POC reaches 
100%. In actual maritime SAR missions, SAR units are often restricted in 
number, which requires SAR units to prioritize areas with high POC. 
Therefore, the search area is often subdivided into equally sized A × B 
square grids, with the size of the grid cells depending on the capability of 
the SAR detection equipment. The possibility of a SAR target being 
present in each subgrid was quantified by calculating the POC of each 
grid cell. 

The specific equation for the calculation can be described as follows: 

POC=mi/M (2)  

where mi is the number of particles falling in cell i, and M is the number 
of particles contained in the overall distribution area. 

2.2. POD 

POD represents the probability of detection, indicating the likelihood 
that a search unit can detect a SAR target, and it is a crucial metric for 

Fig. 1. Maritime SAR concept for PIWs.  
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evaluating the effectiveness of an SAR detector in the search area 
(Abi-Zeid and Frost, 2005). Calculating the POD involves two important 
concepts, that is, sweep width and coverage rate. Sweep width refers to 
the effective distance within which the detector can locate the search 
object in a given search area. In this study, it serves as an indicator of the 
vessel’s search capability. 

Accurately determining the sweep width of the equipment requires 
statistical analysis of extensive experimental and practical samples, 
because different SAR targets in various search environments exhibit 
distinct horizontal range curves for each piece of equipment. Typically, a 
lateral curve can be plotted by analyzing large amounts of experimental 
data to assess the performance of a given device (Ai et al., 2019; 
Washburn and Kress, 2009; Wu and Zhou, 2015). Given that the actual 
sweep width can be affected by the performance of the SAR equipment, 
such as sensor performance, the characteristics of the search target, that 
is, physical characteristics such as size and color, and the maritime 
environment, such as wind, sea conditions, visibility, and sunlight 
reflection, it needs to be adjusted according to the actual situation. 

IAMSAR (2016) provides the sweep width of the universal SAR 
equipment for generic search targets and the correction coefficient 
under different environmental conditions (Table 1). The sweep widths of 
the vessels are listed in Table 2. This table was compiled in the 1980s by 
the United States Coast Guard, which has conducted a large number of 
maritime SAR experiments according to the actual SAR environment. 
They measured the sweep widths of different search facilities under 
various conditions for different search targets (Anderson et al., 2006; 
Engel and Weisinger, 1988). 

Coverage (C) is a measure of the degree to which a SAR unit’s search 
area is covered during an operation (Burciu, 2010; Frost, 1997). This can 

be expressed as the effective coverage divided by the total search area. It 
is generally assumed that a vessel chooses to search using the 
parallel-line method, which requires fewer turns and is applicable to 
complex search scenarios (Fig. 2). The equation is as follows: 

C =
W × S

A
=

W
R

(3)  

where W is the sweep width, S is the effective path length, A is the size of 
the search area, and R is the route spacing. 

There is a close functional relationship between POD and coverage. 
Three models have been identified to describe this relationship, that is, 
fixed distance detection, inverse cube, and the random detection model 
(Abi-Zeid et al., 2011). Among them, the random detection model has 
been used to estimate the POD in a complex maritime SAR environment. 
Therefore, we used a random detection model in our study as follows: 

POD= 1− e− C (4)  

2.3. Maritime SARCPPF 

This paper presents a coverage path planning algorithm for search 
and rescue (SAR) vessels in maritime drowning accidents based on 
optimal SAR theory. The proposed SARCPPF consists of three modules, 
that is, drift trajectory prediction, SAR environment modeling, and 
coverage search. To predict the drift trajectories of PIWs with different 
postures in different sea areas, sea-area-scale drift trajectory prediction 
models (Wu et al., 2023) were used along with a random particle 
simulation method. All the predicted positions of the PIWs were then 
fused to generate a new prediction area. The search path planning region 
was determined based on the minimum bounding rectangle, and a hi-
erarchical probability environment map was established to realize the 
SAR of multiple SAR units. A covering path planning algorithm 
combining deep reinforcement learning was proposed to enable rescue 

Table 1 
Weather correction coefficients for generic search targets.   

Objects 

Winds (km/h) or currents 
(m) 

PIW, life raft, or ship <10 m (33 ft) Other 
objects 

0–28 km/h or 0–1 m 1.0 1.0 
28–46 km/h or 1–1.5 m 0.5 0.9 
>46 km/h or > 1.5 m 0.25 0.9  

Table 2 
Sweep width tables of vessels.   

Meteorological visibility (km) 

Objects 6 9 19 28 37 
PIW 0.7 0.9 1.1 1.3 1.3  

Fig. 2. Parallel line search for maritime search and rescue.  

Fig. 3. Framework for drift prediction.  
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units to achieve fast arrival and high cumulative POS coverage, thereby 
increasing the SAR success rate in a limited time. 

3. Predicting maritime drift trajectories 

Drift theory investigates the impact of meteorological and oceano-
graphic factors on object motion in marine environments and forms the 
basis for the mathematical methods used to determine search areas and 
routes in maritime SAR (Frost and Stone, 2001). In this study, 
sea-area-scale drift prediction models (Wu et al., 2023) were used to 
predict the trajectories of individuals with different postures in the 
Chinese sea areas, as illustrated in Fig. 3. 

3.1. Drift prediction models for persons in the water 

The Leeway model (Allen and Plourde, 1999; Allen, 2005; Allen 
et al., 2010; Breivik and Allen, 2008) was developed to analyze the 
impact of sea wind at a reference height of 10 m on the drift of various 
unpowered floating objects using Lagrangian particle simulation and 
probabilistic statistical analysis. Leeway is defined as “the motion of an 
object caused by wind and waves relative to currents (from depths 
ranging from 0.3 m to 1.0 m)” (Allen and Plourde, 1999; Breivik et al., 
2013). 

Marine environmental data can be used to compute the drift velocity 
vector of particles in water as follows: 

dx
dt

= v(x, t) (5)  

where dx is the change in the horizontal position of the floating object 
over time and v(x, t) is the two-dimensional horizontal velocity. 

v(x, t)=VF− current(x, t) + Vleeway(x, t) + VF− wave(x, t) (6) 

Among them, VF− curren(x, t) represents the velocity caused by the 
current, that is, the sea surface velocity. Vleeway(x, t) represents the wind- 
induced drift velocity. VF− wave(x, t) is the wave-induced drift speed. 
Generally, the effect of wave forces is believed to be negligible for most 
targets in distress at less than 30 m in length (Breivik et al., 2011). 
Therefore, wave-induced drift velocity was excluded from this study. 

The wind-induced drift speed can be decomposed into two compo-
nents, that is, downwind speed (DWL) and crosswind speed (CWL), 
which are linearly correlated with wind speeds 10 m above sea level 

(Fig. 4), as demonstrated by Formula (7) in Allen (2005). The proba-
bility of +CWL and -CWL can be obtained from experimental statistics, 
where the CWL speed is deemed positive if it is to the right of the DWL. 
The direction of the crosswind speed changes from +CWL to -CWL or 
from -CWL to + CWL when the wind velocity falls within a specified 
range, which is referred to as jibing frequency (Allen and Plourde, 
1999). 

Lw = cwVwind + bw + εw

L1
w+

= c1
w+

Vwind + b1
w+

+ ε1
w+

L1
w−

= c1
w−

Vwind + b1
w−

+ ε1
w−

(7) 

Among them, Lw、 L1
w+

、 L1
w−

represent the leeway components, cw、 
c1

w+
、 c1

w−
are the linear regression slopes, bw、 b1

w+
、 b1

w−
are intercepts, 

εw、 ε1
w+

、 ε1
w−

are the error terms. This equation is an unconstrained 
model, whereas the constrained method generates a linear fit with zero 
offset, as follows: 

Lw = cwVwind + bw

L1
w+

= c1
w+

Vwind + b1
w+

L1
w−

= c1
w−

Vwind + b1
w−

(8) 

The leeway rate of each object at sea is highly specific and contingent 
on its exposure to wind, mass, and structures above and below the 
waterline. Simulating a person’s drift is an intricate process owing to the 
numerous uncertainties involved. Maritime meteorological conditions 
are often complex and are characterized by small-scale turbulence, 
vortices, stratification, and shear in near-surface currents. These issues 
are intricate, not easily discernible, and frequently pose challenges for 
resolution. 

Therefore, in this study, we used the sea-area scale prediction models 
developed by Wu et al. (2023), which divided the Chinese coastline into 
distinct regions. We conducted drift tests that involved releasing mani-
kins integrated with GPS devices and ship tracking to observe maritime 
environmental elements. Based on field experiment data, they modeled 
the drift trajectory at the sea area scale and generated predictive models 
for PIWs exhibiting different postures. 

3.2. Drift trajectory prediction 

In areas with complex marine environments, the accuracy of the 
Last-Known-Position (LKP) can be compromised, leading to significant 
deviations in the drift trajectory prediction. Therefore, alternative 
methods should be explored to improve the reliability of location in-
formation used as a starting point. To address this issue, we used the 
Monte Carlo simulation method to simulate the LKP error (Shchekinova 
and Kumkar, 2015). According to Breivik and Allen (2008), uncertainty 
modeling of the leeway parameters was performed. In the case of DWL: 

Lw =(cw + εw/20)×Vwind +
(

bw +
εw

2

)
(9)  

where, εw = Syx × Z; Syx is the standard deviation; Z is a random number 
which is normally distributed N (0, 1). 

The maritime environmental data obtained may not accurately 
reflect real marine conditions owing to inherent limitations in mea-
surement errors and other contributing factors. Therefore, a random 
walk model was used to effectively capture the uncertainty in marine 
environment data during the drift trajectory prediction process. 
Considering DWL as an example, the equation can be expressed as fol-
lows: 

u′
m = (K)

1/2dw(t)
K = σ2

wT
u′

m ≡
(
u′

m, v′
m

)
(10)  

Fig. 4. Relationships between the leeway, leeway angle, and the DWL and CWL 
components of the leeway (Breivik and Allen, 2008). 
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Lw =(cw + εw/20)× (‖Vwind| + u′
m|)+

(
bw +

εw

2

)
(11)  

where K is the diffusion coefficient, dw(t) is a general random variable 
satisfying a normal distribution with mean 0 and a second moment of 
2dt, σ2

w is the variance of wind or current speed, and T is the integral time 
scale, usually T = dt/2. 

The drift speed of the PIWs at any given time can be calculated based 
on the wind and flow data using Eq. (6). The drift trajectory can be 
determined by integrating the drift speed as follows: 

loci(t) − loci(0)=
∫t

0

[
Vdrift(t′)dt′

]
=

∫t

0

[
VLeeway(t′)+VF− current(t′)

]
dt′ (12)  

where loci(t) is the location of the PIW at a given time t, loci(0) are LKPs. 
In this study, distress sea areas and different leeway coefficients of 

different search objects were introduced because drifting objects of 
different types and distress sea areas have different leeway coefficients. 
Search planners need to determine the types of distress targets when 
making search plans. However, in an actual operation, it is difficult to 
determine the type of distress object because the accident information 
obtained is not always sufficiently comprehensive. This requires the search 
planner to make strategic judgment based on existing accident informa-
tion. This study has introduced multi-object leeway coefficients for various 
possible distress objects to further plan the search prediction areas. 

The corresponding sea-scale drift trajectory prediction model was 
selected for the upright and facedown drowning personnel, and the drift 
trajectory prediction was performed accordingly. In maritime SAR, the 
target search range and the output probability distribution of the drift 
prediction model have proven to be of considerable importance in 
guiding search path planning. For each simulation, particle tracking was 
conducted using the Monte Carlo method to generate 1000 particles. 

4. Maritime SAR environment modeling 

The complexity and variability of the marine environment, coupled 
with the diverse postures of PIWs, have heightened the challenges in 
search-path planning. There is an urgent need for robust environmental 
modeling to facilitate future path planning based on the multi-posture 
PIW drift prediction results. Based on the simulation results, a new 
drift prediction area was generated by integrating all the PIW particles 
in different positions to simulate the drifting conditions of large-scale 
PIWs during maritime accidents. This area was then used to determine 
the search zone and generate a model for the maritime SAR environ-
ment. A path-planning algorithm was developed to enable searching 
among multiple vessels. The modeling process is illustrated in Fig. 5. 

4.1. Establishment of the minimum bounding rectangle (MBR) 

The Graham scanning algorithm (Graham, 1972; Kong et al., 1990) 
was used to generate the minimum convex hull. This algorithm consists 
of the following six steps.  

(1) Find the bottom-left point from the point set that must be on the 
convex hull.  

(2) Rank the remaining points according to the polar angle and 
compare the distance to the pole when the polar angles are the 
same, with the one closer to the pole taking precedence.  

(3) Stack S was used to store the points on the convex hull, and the 
two smallest points sorted by pole angle and pole were pushed 
into the stack.  

(4) Scan each point to check whether the line segment formed by the 
first two elements on the top of the stack and this point “turns” to 
the right (cross product ≤ 0). 

Fig. 5. Maritime search and rescue path planning environment modeling.  

Fig. 6. Hierarchical probability map modeling.  
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(5) If “yes,” pop up the top element of S and return to step (4) until 
“no,” then push this point onto S and proceed to step (5) for the 
other points.  

(6) Vertex sequence of the convex hull is an element of the final 
stack. 

The direct use of convex polygons as search areas is not conducive to 
search-path planning. Therefore, an MBR containing convex polygons 
should be generated to facilitate search-path planning (Cheng et al., 
2008; Xiong et al., 2021). The procedure was as follows:  

(1) Two points should be considered as the edge of the rectangle, 
using this edge as the base coordinate of the xy-axis.  

(2) All the points are rotated around this base coordinate to find the 
minimum and maximum x-coordinates and the maximum y-co-
ordinates of all points based on this edge; then, the area value of 
the range and the boundary data are obtained.  

(3) Process (2) was repeated for each edge, and the MBR parameters 
with the minimum area were the output. 

4.2. Hierarchical probability map modeling 

In a scenario where multiple people fall into the water, the final 
search area may be relatively large, and multiple search and rescue 
forces are required to search simultaneously. Therefore, it is necessary to 
divide the search and rescue areas and conduct search and rescue path 
planning for each sub-area. In previous studies, the search area was 
primarily divided through a continuous expansion centered on the grid 
cell with the highest POC, potentially leading to locally optimal solu-
tions. To address this issue, this study has proposed a new MBR and 
hierarchical path-planning algorithm based on the assumption of suffi-
cient SAR units. The search area was determined based on the minimum 
bounding rectangle (MBR) by considering the integrated position dis-
tribution of the simulated particles at different PIW times. A hierarchical 
probability map was established, and each search and rescue unit pro-
ceeded directly to the highest probability area within its corresponding 
block for simultaneous search and rescue operations. 

As shown in Fig. 6, the overall area was initially divided into large 
blocks of equal size, and the probability distribution of the particles in 
each block was calculated. A SAR unit was deployed for each block 
simultaneously. Subsequently, each block was divided into equal-sized 
A × B regular grids (Agbissoh Otote et al., 2019), with the grid cell 
size dependent on the sweeping width of the search ships (Galceran and 
Carreras, 2013). The POC was then calculated and colors were assigned 
to different grid cells according to their respective POC values, thereby 
generating a probability distribution map (Agbissoh Otote et al., 2019; 
Ai et al., 2019; Lee and Morrison, 2015; Xiong et al., 2020). In this study, 
we assumed that the environmental state was stable at a given time. 
Once the search area was defined, it remained unchanged with the 
development of the SAR process. 

5. Maritime SAR coverage path planning based on deep 
reinforcement learning 

In this study, we have proposed an autonomous coverage path- 
planning algorithm for multiship search and rescue (SAR) units based 
on deep reinforcement learning. Prior research (Wu et al., 2023) 
demonstrated the superior trajectory prediction accuracy and search 
area of the sea-area-scale drift trajectory prediction model. Therefore, in 
our study, each SAR unit navigates directly to the highest probability 
grid of its corresponding block using an environmental map established 
from the drift simulation results at a given time. Search path planning is 
the process of selecting navigation actions according to the current SAR 
environment information. 

5.1. Overall maritime SAR path planning process 

When planning maritime SAR routes, the next stage of the SAR unit 
depends only on the previous state and action, which can be expressed as 
a Markov Decision Process (MDP) (Sutton and Barto, 1998; Mnih et al., 
2013). An MDP process is an interaction process between the environ-
ment and the agent, which includes three signals, namely, state (S), 
action (A), and reward (R). It provides direct feedback on the results 
generated by interactions with the environment (E). The agent receives 
the states at each discrete time step and selects the corresponding ac-
tions to transform them into new states. This transformation process 
then generates an evaluation value reward. The new state is acquired by 
the agent, and the cycle is repeated, as shown in Fig. 7. 

5.2. Algorithm structure 

5.2.1. The Markov decision process of maritime SAR path planning 
The expression for maritime SAR path planning includes a vessel 

agent and two sets (state set S and action set A). By selecting and 
executing an action from the action set A, the agent completes a state 
transition. During reinforcement learning (RL), the vessel’s goal is to 
maximize the cumulative reward. This process mainly contains quintu-
ples (s、a、p、r、γ). The symbols and their corresponding explanations 
are listed in Table 3. 

Fig. 7. Markov decision process diagram.  

Table 3 
The symbols and the corresponding explanations of the maritime SAR path 
planning model.  

List of symbols Explanations 

S The state space of the environment. 
A The action space of the SAR unit. 
P The state transition model. 
R The reward value function. 
γ The discount factor. 
st The state at time t. 
Sdone The state when the agent passes the whole area. 
at The action taken at time t. 
rt The reward value at time t. 
Rt The cumulative reward value. 
RPOC The reward value of POC. 
Rsearch The reward value if the next state St+1∕∈ H. 
Rdone The reward value that the agent passes the whole area. 
POCi The POC value at step i. 
stepi The number of steps experienced at step i. 
T The maximum number of steps that the agent can take. 
Π The strategy of the agent. 
Π(a|s) The action selection strategy. 
H The set of grid units searched by the agents. 
U The set of grid units has not been searched by the agents. 
F The set of grid units whose POC value is 0. 
ε The probability that a random action selection is conducted. 
A∗ The action with the highest Q value at the current state. 
Achoose The set of available actions under the current state. 
VΠ(s) The state value function. 
QΠ(s,a) The action value function.  
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S is the state space of the environment, that is, the limited state that 
the SAR unit can achieve (Minsky, 1967). A is the action space of the 
SAR unit, which consists of all possible actions that the vessel agent can 
choose through strategy selection in each environmental state. In this 
study, the action space of the vessel agent is discretized, meaning that, 
from one grid to another, there are only four actions to reduce the 
negative impact of irregular searches on the security of searches (IAM-
SAR, 2016). P is the state transition model; that is, the probability that in 
the current state s of the environment, where an agent causes this s to 
transfer to another state s′. R is the reward value function fed back to the 
agent by the environment in the form of encouragement or punishment. 
The strategy of agent Π is to map S to A. If state st ∈ S, the agent takes 
action at ∈ A, and moves to the next state st+1 according to P, meanwhile 
receives a reward value rt ∈ R. The discount factor γ is used to calculate 
the cumulative value of returns over time. We have provided a detailed 
description of reward and action selection policies.  

• Reward function 

A suitable reward function is required to specify the training objec-
tive. The advantages and disadvantages of a vessel agent in the learning 
process can be determined using the reward function. This enables it to 
achieve its goal in the shortest time. In maritime SAR coverage path 
planning, a ship agent is required to search the overall SAR area under 
the conditions of prioritizing search areas with high probability and 
ensuring that no duplicate paths are taken. 

Sets H and U are introduced to mark the position information of the 
grid units that the agent has searched for and has not searched for. At 
model initialization, set H = {s0} and U = {s1,s2,s3,⋯,sn}. Grid units in 
the hierarchical environment map with a POC value of 0 were not 
searched and were denoted as set F to reduce the search time. Set F is 
then added to set H and it is removed simultaneously from set U. 

After the ship’s agent selects an action according to the action se-
lection strategy, it arrives at state st+1 and determines whether st+1 is 
already in set H. If st+1∕∈ H, positive rewards Rsearch is feedback, and the 
state st+1 is then added to set H while being removed from set U. This can 
guide the agents to cover all the SAR areas. The reward function design 
should consider the priority search of high-probability grids, namely, 
the POC reward, which is calculated using the following equation: 

RPOC =
1

stepi
POCi×1000i∈ (0, T) (13)  

where T is the maximum number of steps that the vessel agent can take 
in each iteration; POCi is the POC value of the SAR grid in the next state 
that the agent reaches; and stepi is the number of steps experienced by 
the ship agent in the current state. As the number of steps increases, RPOC 
decreases, thereby guiding the ship agent to search the high-probability 
region first. 

Rdone is given once the ship agent passes through the entire search 
area, and they enter the termination state Sdone. The reward function was 
set as follows: 

R =

⎧
⎨

⎩

Rsearch + RPOC st+1! = Sdone&&st+1∕∈ H
Rdone st+1 = Sdone

0 else
(14)    

• Action selection policy 

In reinforcement learning, the two crucial concepts of exploitation 
and exploration need to be balanced. Exploitation involves selecting the 
optimal action for the vessel agent by maximizing the value of all known 
state-action pairs. However, if the vessel agent chooses randomly from 
its set of actions, it is referred to as exploration. While exploitation helps 
maximize the expected rewards in real time, it may lead to local optima. 
By contrast, exploration helps maximize total returns in the long run. 

In this study, we have proposed an action selection strategy that 
balances exploitation and exploration to achieve a global optimal solu-
tion. In the early stages of reinforcement learning, the vessel agent 
prioritizes exploration with a high probability. As the number of 
learning episodes increases, the probability of exploration gradually 
decreases, whereas the probability of exploitation increases. In this 
study, a ε-greedy strategy was used (Tokic, 2010). A random action 
selection is conducted with the probability of ε to explore the new 
environment. Meanwhile, action a with the highest Q value is selected 
with the probability of 1 − ε. The equation used is as follows: 

A∗⟵arg maxaQ(s, a) (15)  

Π(a|s)⟵

⎧
⎪⎨

⎪⎩

1 − ε + ε
|A(s)|

if a = A∗

ε
|A(s)|

ifa ∕=A∗

(16)  

where |A(s)| denotes the number of actions performed in the current 
state. 

During learning, a random number rand, rand ∈ (0, 1) is generated. If 
rand < ε, the action is selected at random, and if rand > ε, the action 
with the highest Q value in the current state is selected. To ensure model 
stability and obtain the global optimal solution, the value of ε is 
dynamically adjusted in the iterative calculation as follows: 

ε = 1 − episode / L (17)  

where episode is the current episode number and L is the maximum 
learning episode. 

Boundary assessment, repeated search assessment, and termination 
conditions were added to the action selection process to prevent the 
model from looping endlessly. Each time a new state st is reached, the set 
of available actions Achoose under the current state is initialized as [True,
True,True,True], and the action at is selected using an ε-greedy approach. 
Upon reaching the next state st+1, if the current state st is located at the 
boundary of the search area and the state st+1 is beyond the SAR area, or 
if st+1∈ H, the action is reselected and the corresponding action in Achoose 
is marked as False. If Achoose = [False,False,False,False], the termination 
condition is reached and the current episode ends. 

The objective of reinforcement learning is to optimize the long-term 
cumulative reward for vessel navigation, rather than focusing on short- 
term rewards. With the introduction of γ∈ [0, 1), the feedback value can 
be described as follows: 

Rt = rt+1 + γrt+2 + γ2rt+3 + … =
∑∞

k=0
γkrt+k+1 (18) 

The state value function VΠ(s) is the evaluation of the quality of the 
current state. Each state’s value depends not only on its current state, 
but also on its subsequent states. The value of the VΠ(s) of the current s is 
obtained by calculating the expectation of the accumulated reward Rt of 
the state: 

VΠ(s)=EΠ[Rt|st = s] (19) 

The action value function of the state-action couple (s,a), denoted as 
QΠ(s,a), evaluates the long-term payoff to the agent through the use of 
strategy Π: 

QΠ(s, a)=EΠ[Rt|st = s, at = a] (20) 

The optimal decision sequence of the MDP is solved using the 
Bellman equation, which is the transformation relation of the value 
function: 

VΠ(s)=
∑

a
Π(s, a)

∑

s′
Pa

ss′
[
Ra

ss′ + γVΠ(s′)
]

(21)  
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QΠ(s, a)=
∑

s′
Pa

ss′

[

Ra
ss′ + γ

∑

a′

QΠ(s′, a′)

]

(22)  

where, Pa
ss′ = P(st+1 = s′|st = s, at = a), Ra

ss′ = E[rt+1|st = s,at = a, st+1 =

s′]. 
Monte Carlo learning and time difference learning (TD) are used to 

approximate the solution of the Bellman equation, while continuously 
optimizing of the value function to improve Π. Watkins first proposed 
the Q-learning algorithm (Watkins, 1989; Watkins and Dayan, 1992), 
combining the Bellman equation, MDP, and other theories with TD 
learning. TD Learning combines a Monte Carlo sampling method with a 
dynamic programming method, estimating the current value function 
from the value function of the subsequent state. The value function was 
computed as follows: 

VΠ(s)← VΠ(s) + ∂(Rt+1 + γVΠ(s′) − VΠ(s)) (23)  

where Rt+1 + γVΠ(s′) is the TD target, δt = Rt+1 + γVΠ(s′) − VΠ(s) is the 
TD bias, ∂ is the learning rate. 

5.2.2. Maritime coverage path planning model based on deep reinforcement 
learning 

RL has an edge in decision-making, and the deep learning approach 
combines low-level features to form more abstract high-level features or 
categories, approximating a nonlinear function, and excels in perception 
(Hinton et al., 2006). Combined with the characteristics of deep 
learning, the use of deep neural networks as function approximators can 
substantially improve RL performance of reinforcement learning. DRL 
integrates RL and deep learning to complement each other and provides 
a more effective solution to the perception and decision problems of the 
system. The Q-learning algorithm builds a Q-table to iterate over the 
values of all existing state-action pairs in the storage environment and 
then reads these values through queries. DQN uses a general function 

approximator (artificial neural network) to replace the stored Q value. 
The main idea is to replace the traditional Q table with a deep neural 
network trained from stored experience samples, build a “memory” of 
selected experiences, and train the Q network on a subset of states rather 
than on all states that the agent sees. Given that there is no network, 
Q-learning is too dependent on the state and may lead to insufficient 
learning (Cao et al., 2019; Fang et al., 2021; Zhu and Zhang, 2021; Meng 
et al., 2021). 

Most current studies consider a single person falling into water as an 
example to determine the search area and plan the search path. This 
study has considered the integrated search and rescue area of people 
falling into water using different gestures. In this context, the state space 
is two-dimensional and the action space is discrete. In future studies, 
large-scale drowning accidents caused by ship collisions, as well as the 
collaborative search and rescue of drones and ships involving a three- 
dimensional state space and continuous action space, will be further 
considered. In the study of high-dimensional problems, the amount of 
computation required for the traditional RL algorithm increases sharply 
with an increase in the number of inputs, and it is difficult to determine 
an effective strategy. When the environment expands, it may cause a 
memory burden and lead to a failure in obtaining the optimal solution. A 
DQN uses neural networks to estimate values and overcomes the 
shortcomings of Q learning. 

Mnih et al. (2015) published their work on DQN in Nature using a 
convolutional neural network (Lecun et al., 1998) to express the action 
value function and train it based on rewards. The Q-network approxi-
mation of the Q-value calculation is expressed as 

Q(s, a; θ) ≈ QΠ(s, a) (24) 

The DQN used in this study consists of two fully connected layers. 
Feature extraction and nonlinear combinations are performed to obtain 
the Q-value evaluated by the network for each action. The main char-
acteristics of a DQN are as follows (Zhu and Zhang, 2021): 

Fig. 8. The path planning model based on DQN.  
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Table 4 
Pseudo-code of the DQN training. 
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(1) Target network 

To mitigate the instability that arises during Q-function updates, a 
target network is introduced to obtain the Q value before updating the Q 
function. The new Q function is then used to update the target network; 
that is, every n steps, the parameter θi of the current Q network will be 
copied to the target Q network Q(s′,a′; θ−i ).  

(2) Experience pool U (D) 

The experience pool constructs a replay buffer, also known as a 
replay memory, to store and manage samples (st , at , rt , st+1). The expe-
rience replay mechanism was used, and minibatch (B) samples were 
randomly selected for training the Q-network. 

The current Q-network parameters are updated using the gradient 
descent method, and their loss function is expressed as: 

L(θi)=
1
2

(

r + γmax
a′

Q
(
s′, a′; θ−

i

)
− Q(s, a; θi)

)2

(25) 

The derivative ∇θL of the parameter θ in the loss function is calcu-
lated as follows: 

∇θL=

[

r+ γmax
a′

Q
(
s′, a′; θ−

i

)
− Q(s, a; θi)

]

∇θQ(s, a; θi) (26) 

The proposed DQN-based search path planning model obtains the 
optimal search path through interactive learning between agents and a 
maritime SAR environment model. The vessel agent arrives at the 
highest POC grid unit of each block and begins searching. The path 
planning model is illustrated in Fig. 8. Table 4 lists these algorithms. 

Maritime SAR coverage path planning based on deep RL algorithms 
is divided into two phases, that is, training and testing. In the training 
phase, the time complexity of the DQN is O(ns ∗ nd) when forward 
propagation is performed. Here, ns is the number of states and nd denotes 
the state feature dimension. When backward propagation is performed, 
the time complexity of the DQN is also O(ns ∗ nd). Therefore, the time 
complexity is O(ns ∗ nd). When training epoch rounds, the forward 
propagation time complexity is O(epoch ∗ ns ∗ nd). In the testing phase, 
the time complexity of DQN is also O(ns ∗ nd). 

6. Results and discussion 

6.1. Maritime SAR experimental settings 

To verify the validity of the proposed SARCPPF, a real offshore 
drift experiment was used as a case study for the calculations and 
analysis. On April 16–17, 2021, sea-drift experiments with manikins 
in different postures (upright and facedown) were conducted in the 
Pingtan waters of the Taiwan Strait. The experimental overview is 
presented in Table 5. 

Fig. 9. Drift trajectory prediction results.  

Table 5 
The experimental overview of maritime SAR simulation.  

No. Posture Start 
position 

Start 
time 
(UTC+8) 

End time 
(UTC+8) 

Wind 
speed 
(m/s) 

Current 
speed (m/ 
s) 

1 upright 119.885◦E 2021/ 
04/17 

2021/ 
04/17 

2.7–7.1 0.17–0.63 

25.455◦N 09:45 16:00 
2 facedown 119.885◦E 2021/ 

04/17 
2021/ 
04/17 

2.7–7.1 0.17–0.63 

25.455◦N 09:45 16:00 

We used Taiwan Strait drift prediction models for PIW with upright and face- 
down postures, namely TS_ I and TS_ II. In this section, unconstrained models 
are used to predict drift trajectories. 
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6.2. Results of drift trajectory prediction 

We took the release point of the manikins as the initial point and used 
the hydrometeorological data measured on April 17, 2021, the possible 
6 h drift trajectories of PIWs in vertical and facedown postures were 

calculated, as shown in Fig. 9. A 6 h drift trajectory and particle distri-
bution map of PIWs was generated with the fusion of multiple postures. 
This was used to simulate the possible position distribution of survivors 
when SAR vessels arrive at the scene of multiple drownings in a mari-
time accident. In this study, it was assumed that the data of the possible 
position distribution were constant at the 6 h drift time. 

The ranges of the wind and flow velocities measured (10 min 
average) during the experiment were counted, and a detailed statistical 

Fig. 11. The marine environment data and their changes with time used in the modeling process ((a) velocity changes, (b) direction changes).  

Fig. 12. The MBR of the area for SAR path planning.  Fig. 13. The initial block division results.  

Fig. 10. The marine environment data used in the modeling process ((a) downwind speed and direction, (b) current speed and direction).  
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analysis of the sea state was conducted. The wind speed range was 
2.7–7.1 m/s, and the downwind direction varied in the southwest di-
rection, and the variation range was less than 90◦ with relatively little 
fluctuation. The wind speed was divided according to wind conditions, 
and a rose diagram of the wind direction was drawn. The flow speed 
range was 0.17–0.63 m/s, and the flow direction varied from southwest 
to northeast with counterclockwise deflection over time. Based on the 
flow conditions, the flow speeds were divided, and a flow rose diagram 
was drawn. As shown in Figs. 10 and 11, the marine environment data 
and changes used in the modeling process are depicted. 

6.3. Results of maritime SAR environment modeling 

6.3.1. Results of the establishment of MBR 
The MBR of the area for SAR path planning according to the final 

particle distribution of the multi-posture PIWs is shown in Fig. 12. 
Assuming that four nearby vessels can be engaged in simultaneous 
search and rescue after rotation, the initial block-division results are as 
shown in Fig. 13. 

6.3.2. Results of the hierarchical probability map 
A one-level hierarchical environment map was generated. According 

to visibility reanalysis data from the European Center for Medium-Range 
Weather Forecasts (ECMWF), visibility in Pingtan was 18.5 km on April 
17, 2021. Based on the sweep width table (Table 2), the sweeping width 
of the vessel agent was set to 1 km. From the measured marine envi-
ronment data (Table 5 and Fig. 10), the value of the weather correction 
coefficient was 1. Therefore, the corrected sweep width of the vessel is 
the same as the unadjusted sweep width. 

Fig. 15. The sub-grid hierarchical environment map.  

Fig. 14. The one-level hierarchical environment map.  

Table 6 
The parameters of the algorithm proposed in this study.  

Parameter Value Description 

L 5000 maximum learning episode 
T 200 maximum step size 
γ 0.5 discount factor 
LR 0.1 learning rate 
n 50 target network update frequency 
ε 0.9 initial action selection strategy 
B 32 batch size 
M 1000 memory length 
Layers 10 the number of neurons in each hidden layer 
N_STATES 2 the input neurons 
N_ACTIONS 4 the output neurons 
Optimizer Adam optimizer  
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Based on the corrected sweep width, each initial block was parti-
tioned into grid units to generate a hierarchical environmental map. The 
grid cell size and track spacing were determined using the corrected 
sweep-width. The simulated scene was situated in an open sea without 
natural or artificial obstacles. The hierarchical probability environment 
map and the initial position of the SAR vessels are shown in Figs. 14 and 
15. 

6.4. SAR coverage path planning results  

• Experimental settings 

Simulation Environment: All the simulation experiments in our study 
were conducted on a desktop computer with an Intel (R) Core (TM) i7- 
1260P 2.10 GHz CPU, 16 GB of RAM, and Windows 11 operating system, 
using the Python programming language. 

Fig. 16. The average results of our object for different parameter settings.  

Fig. 17. The path planning results obtained by the model proposed in this study.  

J. Wu et al.                                                                                                                                                                                                                                      



Ocean Engineering 291 (2024) 116403

15

Fig. 18. Search starting points and routes of the traditional parallel line scanning algorithm (PA).  

Fig. 19. Search starting points and routes of the traditional parallel line scanning algorithm starting from the highest heat grid (SPA) (the red line represents the 
overlapping path). 
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Fig. 20. Search starting points and routes of the BA* algorithm (the red line represents the overlapping path).  

Fig. 21. Search start points and routes of the Q-learning algorithm.  
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Algorithm Comparison: The proposed algorithm was compared with 
a search method commonly used in maritime SAR and a more advanced 
path-planning algorithm. Including the traditional parallel line scanning 
algorithm (PA) (IAMSAR, 2016), the parallel line scanning algorithm 

starts from the highest heat grid (SPA), the BA* algorithm (Viet et al., 
2013), and the Q-learning method (Ai et al., 2021). The BA* algorithm 
was used to solve an online complete coverage task for an autonomous 
cleaning robot in an unknown workspace based on boustrophedon 
motion and an A* search algorithm. The robot performed a boustro-
phedon motion to cover the unvisited area until it reached the critical 
point. The robot then detected the backtracking point based on its 
accumulated knowledge, determined the best backtracking point as the 
starting point for the next boustrophedon motion, and continued to 
cover the next unvisited region, thereby achieving complete coverage. 
We added a search strategy for prioritizing high-probability areas to the 
BA* algorithm and Q-learning method to ensure fairness. 

Algorithm parameter settings: The parameters of the proposed al-
gorithm are listed in Table 6. Among them, the Taguchi experimental 
design methodology was used to determine the four control parameters, 
that is, learning rate LR, discount factor γ, target network update fre-
quency n, and the initial action selection strategy ε, in our maritime 
coverage path planning model. The levels of the four parameters are as 
follows: 

LR={0.005, 0.001, 0.1, 0.15}

γ ={0.45, 0.5, 0.6, 0.8}

n={20, 50, 80, 100}

ε={0.8, 0.85, 0.9, 0.95}

At these parameter levels, orthogonal matrix L16(44) was used for the 

Table 7 
The repetition rate, coverage ratio, and the number of steps of SAR planning 
results.  

Block Algorithms Repeated coverage (%) Coverage (%) Step 

Block 1 Ours 0 100 18 
Q-learning 0 100 18 
PA 0 100 18 
SPA 0 100 23 
BA* 13.6 100 22 

Block 2 Ours 0 100 18 
Q-learning 0 100 20 
PA 0 100 23 
SPA 8 100 25 
BA* 0 100 20 

Block 3 Ours 0 100 23 
Q-learning 0 100 23 
PA 0 100 23 
SPA 8 100 25 
BA* 14.8 100 27 

Block 4 Ours 0 100 20 
Q-learning 0 100 20 
PA 0 100 23 
SPA 8 100 25 
BA* 4 100 25  

Fig. 22. Comparison of the cumulative changes in the POS between different methods for four hierarchical probability environments.  
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calibration experiment. To ensure equity, the algorithm was run 20 
times independently for each parameter setting. The average results for 
our object for different parameter settings are shown in Fig. 16. The 
optimal control parameter settings were determined to be: LR= 0.1, γ =
0.5, n= 50, ε= 0.9. 

Therefore, the control parameters used in this study were set as 
follows. The learning rate is 0.1, the γ coefficient is 0.5, the target 
network update frequency is 50 steps, the initial action selection strat-
egy is 0.9, and the maximum learning episode is 5000.  

• Results and analysis 

The proposed method was tested in four hierarchical environments 
(Fig. 15), and the path-planning results are shown in Figs. 17–21. These 
algorithms can achieve full coverage of the search and rescue areas by 
setting search rules. However, the search path planning results of the 
SPA and BA* algorithms contained overlapping paths, whereas both the 
Q-learning algorithm and our model have the ability to achieve no 
duplicate path coverage. However, in some environments (grey grids in 
Fig. 21d), the Q-learning algorithm passes through the region where the 
grid unit POC value is zero in the hierarchical probabilistic environment 
map, which may lead to an increase in search time. 

To quantitatively assess the above methods, the repetition rate, 
coverage ratio, and number of path planning steps were computed, as 
shown in Table 7. The results have shown that the navigation route 
generated by our model performs more effectively than the other algo-
rithms in terms of repetition and the number of steps. According to the 
calculation methods of POC and POD described in Section 2, they were 
evaluated from the perspective of the cumulative POS. As shown in 
Fig. 22, in the four sub environments, our model reached the maximum 
cumulative POS with the fewest steps, and the cumulative POS growth 
rate of our model was faster, indicating that the vessel agent in our 
model can prioritize covering high-probability regions. 

The cumulative POS of the parallel line scanning algorithm and BA* 
algorithm increased rapidly at some point. However, the proposed al-
gorithm still achieved the maximum cumulative POS with a relatively 
small number of steps, indicating that the proposed algorithm can still 
find higher-quality solutions after reaching a certain degree of search, 
demonstrating its superior exploitation ability. Although the BA* algo-
rithm can achieve full coverage and rapid growth of cumulative POS in 
the short term, it performed poorly in balancing the two goals of non- 
duplicate paths and prioritizing the search for high probability zones. 
In some cases, it produced more duplicated searches in pursuit of high 
probability zone coverage (block 3), making it difficult to meet SAR 

requirements in complex scenarios with large search areas. Although the 
Q-learning algorithm also showed strong performance in reaching the 
maximum cumulative POS with fewer steps, in some environments the 
cumulative POS growth rate was slower than that of our algorithm, and 
our algorithm showed better performance in preferentially covering 
high-probability regions. 

Based on the hierarchical probability environment map, the cumu-
lative POS for the overall SAR area (POSC) of each path-planning 
method was calculated based on the assumption that ships in the four 
subgrid hierarchical environments perform simultaneous searches at the 
same time and search speed. POSC can be calculated as follows: 

POCmn =POCTmn ∗ POCm (27)  

POSC =
∑N

k=0
POSk (28)  

POSk =
∑M

m=1
POSTm (29)  

where POCmn is the POC of each grid cell in the overall environment 
map, m is the block number, n is the grid cell number, POCTmn is the POC 
of grid cell n in the subgrid hierarchical environment, POCm is the POC 
of block m in the one-level hierarchical environment map, k is the 
number of search steps of the current ship, N is the maximum number of 
search steps of each subgrid hierarchical environment map, POSk is the 
POS of the entire SAR region in the current step, POSTm is the POS of 
each subgrid hierarchical environment in the current step. 

The POSC of the different path-planning methods are shown in 
Fig. 23. For the entire search and rescue area, both the Q-learning al-
gorithm and our algorithm achieved the maximum POSC with the 
shortest number of steps and showed better search performance and 
convergence ability. The Q-learning algorithm also showed a high level 
of performance in the initial stage of the search (Stage 1). In the middle 
stage of the search (Stage 2), the cumulative POS growth was slow, 
indicating that our algorithm is superior to the Q-learning algorithm in 
exploration and can be used more effectively in conducting priority 
search in high-probability regions. Although the traditional PA algo-
rithm can also achieve the fastest speed to complete the coverage search 
of the entire SAR area, it performs poorly in terms of the growth rate of 
POSC. The SPA algorithm achieves the improvement of search capability 
based on PA, and the BA* algorithm performed better in terms of 
prioritizing the search of high probability areas but performed poorly in 
terms of the time to complete the full-coverage search. 

Fig. 23. Comparison of the cumulative changes in the POSC between different methods for the whole search area.  
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7. Conclusions 

This study has integrated reinforcement learning into maritime SAR 
coverage path planning and establishes a maritime SARCPPF suitable for 
PIWs scenarios. This system comprises three modules, namely, drift 
trajectory prediction, hierarchical environment map modeling, and 
coverage search. Sea-area-scale drift prediction models of PIWs in the 
Chinese sea area were used based on the variations in PIWs across 
different sea areas and postures. A minimum bounding rectangle was 
used to establish a hierarchical probability environment map, facili-
tating the search for multiple SAR units. A coverage path planning al-
gorithm that leverages deep reinforcement learning was devised. 
Comparative experiments have demonstrated that the proposed algo-
rithm significantly enhances POS within a constrained timeframe. 

However, this study has certain limitations, including that it was 
assumed that the search environment remained constant during path 
planning. In future studies, the algorithm should dynamically update the 
search environment based on the SAR task performance and drifting 
conditions to improve the search accuracy. This study was conducted 
based on the assumption that the number of SAR units was sufficient. In 
the future, a detailed analysis will be conducted on the number, loca-
tion, search and rescue capabilities, as well as other characteristics of 
SAR forces, to optimize the division of search and rescue areas. In 
addition, coordinated searches using multiple SAR forces will also be 
studied. 
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Abstract: Timely and secure evacuation of residents during flood disasters or other emergency
events is an important issue in urban community flood risk management, especially in vulnerable
communities. An agent-based modeling framework was proposed in order to indicate how the
community properties (e.g., community density and percentage of vulnerable residents), residents’
psychological attributes (e.g., flood risk tolerance threshold) and mutual aid mechanism affect the
flood evacuation process. Results indicated that: (1) The community density negatively affected the
flood evacuation efficiency. The greater the density of the community, the longer the evacuation
time. (2) There was a negative correlation between the flood risk tolerance threshold of residents and
evacuation efficiency. (3) The proportion of vulnerable resident agents had opposite effects on the
evacuation efficiency of different types of communities, which was to negatively affect low-density
communities and positively affect high-density communities. (4) Mutual aid mechanism can reduce
evacuation time in low-density communities, and the effect was more pronounced with a higher
proportion of vulnerable resident agents in the community. These findings can help managers to
develop better emergency evacuation management for urban communities.

Keywords: flood evacuation; vulnerable community; mutual aid mechanism; agent-based
model; simulation

1. Introduction

Flood disasters are a major threat to human society and economic systems, and they can easily
wipe out the wealth accumulated in the past [1]. In recent years, the frequency and scope of flood
disasters have increased significantly as well as the economic losses and human casualties caused by
floods (https://www.cred.be). Actually, casualties and economic losses can be reduced or prevented if
people arrive shelters and transfer the assets before the flood disasters. Therefore, timely and securely
evacuation of residents is of great importance during flood disaster events [2]. Nowadays, with the
acceleration of urbanization in China, people gather together in the form of communities. Therefore,
emergency evacuation of urban communities is becoming more important and serious. Vulnerability
theory has been widely applied in the research of natural disasters. Vulnerability is generally considered
as the possibility that an individual or a group is exposed to and affected by natural disasters [3–5].
Individuals or groups have different vulnerabilities due to their own characteristics, such as exposure,
coping ability, and adaptability. When faced with natural disasters, residents can be divided into
vulnerable residents and non-vulnerable residents according to their ability to resist natural disasters.
The vulnerable residents refer to those individuals or groups with weak ability to resist disasters,
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such as the disabled, the elderly, children, etc. The proportion of vulnerable residents can be used to
show the vulnerability of a community. The higher the proportion of vulnerable residents, the more
vulnerable the community. In highly vulnerable communities (communities with many elderly and
children), due to slow disaster response, insufficient response capacity and resources, the emergency
evacuation of vulnerable communities is more prominent and severe. To mitigate the adverse effects
of flood disasters on urban residents, better evacuation planning based on the results of emergency
evacuation studies is becoming critical in flood risk management. Due to this, the study of community
flood emergency evacuation has attracted more and more attention in recent years.

In general, emergency evacuation is considered as a traditional routing problem and many improved
classical algorithms have been proposed to solve this problem [6,7]. In fact, the emergency evacuation is
a complex problem and is affected by many factors such as psychology [8], demographics [9], human
relations [10], risk warning [11,12], and so on. Therefore, at present, many studies recognize the emergency
evacuation problem from the perspective of complex system and use computer models to simulate the
evacuation process [13,14]. There is no doubt that the purpose of emergency evacuation is to evacuate
people to the safe areas as quickly as possible. Therefore, evacuation time, evacuation distance, evacuation
ratio and other indicators are used to evaluate the efficiency and capability of emergency evacuation,
and these indicators are also the most concerned by decision-makers. As for the simulation models,
in the existing studies, agent-based model (ABM) has been suggested as an appropriate tool to solve
the kind of complex system problems such as emergency evacuation. ABM is a type of computational
model that can provide the most natural description and simulation of complex adaptive systems,
and implement the assumptions of model [15]. Through the simulation of the behaviors and interaction
of autonomous agents in the ABM, the dynamic feedback of subsystem components, their inherent
complexities and their effects on the system can be captured. The applications of ABM range across
virtually all kinds of disaster evacuation problems and well beyond the usual ones for simulation [16].
For example, Zou et al. carried out an agent-based modeling of people from trains and platforms in
a typical subway station. Parametric investigations found out the impacts of some key parameters on
evacuation time and provided some valuable insights for understanding the potential causes of delay of
evacuations [17]. D’Orazio et al. presented an agent-based model to describe phases and rules of motion
for pedestrians and found that evacuation paths choice depending on configuration of environment
and damage distribution after an earthquake [18]. Liang et al. developed a two-level regional disaster
evacuation model by coupling two agent-based models to simulate hurricane evacuation traffic in
New Orleans and confirmed that the proposed model performs well in terms of high model accuracy [19].
Mostafizi et al. proposed an agent-based modeling framework to evaluate vertical evacuation behavior
and shelter locations for a near-field tsunami hazard and revealed that the non-linear correlation between
the aforementioned characteristics of the vertical evacuation shelter on the expected mortality rate [20].
Wijerathne et al. presented an HPC enhanced agent-based model developed with the aim of quantitatively
estimating the strategies for accelerating emergency mass evacuations, like tsunami evacuation. It is
demonstrated that the system has high strong scalability up to 10 million agents was simulated [21].
Liu et al. proposed a shelter assignment and routing strategy for evacuating households at the 2011
Brisbane flood event and the results showed that communities located in the east and west of Brisbane are
scarcely covered by existing shelters [22]. These simulations showed the whole procedure of an emergency
evacuation, found out a number of evacuation problems and provided possible improvements for
emergency response.

Although many studies have been conducted, most studies on emergency evacuation were
restricted to single building [23,24] or large-scale evacuations [22,25], while few studies focused
on community-scale evacuation [6]. In addition, in the existing study of emergency evacuation of
urban communities, there are two important issues rarely considered by researchers. The first one
is that communities in China’s small and medium-sized cities are becoming increasingly vulnerable.
It should be noted that in China, with the rapid economic and urbanization development, young labor
force prefers to work in big cities, resulting in the phenomenon that some communities in small and
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medium-sized cities are dominated by the elderly and children. That means this kind of communities
are at an increasing risk of flooding in terms of lower emergency response ability. Emergency evacuation
in vulnerable communities under flood disaster is becoming a more critical issue. Therefore, it is
important and necessary to pay attention to the emergency evacuation of vulnerable communities in
order to quickly and orderly evacuate vulnerable residents. The second one is the mutual aid behaviors
among residents in the communities during flood emergency evacuation. According to the results
of our several field investigations and questionnaire surveys in Jingdezhen, Jiangxi Province, China,
it was found that during flood emergency evacuation, residents generally had the consciousness and
behaviors of helping each other and going to shelter together [1]. Moreover, the behaviors of helping
each other to evacuate to the shelter together can be motivated, encouraged by the local government.
In this paper, the act of helping each other escape the effects of flood disasters was defined as mutual aid
behaviors. Accordingly, encouraging and motivating residents to produce such behavior was defined
as a mutual aid mechanism, and the proportion of non-vulnerable residents who are willing to help
was used to show the strength of the mutual aid mechanism. Through analyzing and understanding
the role of residents’ mutual aid mechanism in emergency evacuation can help local decision-makers
to perfect reasonable emergency evacuation plans. However, the relationship between mutual aid
behavior and emergency evacuation efficiency has not received much attention in existing studies.

Considering the limitation of the existing studies and motivated by the two important issues
mentioned above, this study presented an agent-based modeling framework to simulate the flood
evacuation in vulnerable communities and this framework incorporated the resident psychological
model and transportation network model. The aims of this study were to find out how the community
properties (e.g., community density and percentage of vulnerable residents), resident’s psychological
attributes (e.g., flood risk tolerance threshold) [26,27] and mutual aid mechanism affect the emergency
evacuation efficiency, summary the characteristics of emergency evacuation in vulnerable communities,
and give corresponding improvement suggestions of better response to emergency evacuation.
Specifically, the simulation results of this study can easily present spatial analysis and statistics results,
such as evacuation time, average evacuation time, number of agents on the road, the congestion of the
road, etc. Through analyzing the evacuation simulation results, this study can help decision-makers
at the community level to better understand the dynamic characteristics of community evacuation
behavior and make effective emergency evacuation plans. It is of great practical significance for
community emergency evacuation and flood risk management. A case study of synthetic community
was conducted to demonstrate the feasibility and applicability of the framework.

2. Methodology

2.1. Framework of Agent-Based Model

This evacuation process simulation mainly involved two components: agents and transportation
network. Thus, the proposed agent-based model took both human components (community residents
and staff, and their decision-making process) and evacuation transportation network into consideration.

The agent-based model framework was structured in three steps: model initiation, model runs,
and model outputs (as shown in Figure 1). In the model initialization step, the agents’ environment
and the agents were created, and the flood risk warning was also issued. When the agent-based
model running, evacuation decision-making, mutual aid decision-making, evacuation route searching,
and other behavior rules were running to finish the simulation process. With regard to the model
output step, some data results at system level were outputted, analyzed and visualized. The focus of
the study was to investigate the impact of various factors on the flood evacuation efficiency (such as
evacuation status, percentage of evacuated agents and evacuation time, etc.). Therefore, in the model
statistical analysis step, some main issues were considered as below:

• The impacts of the community density on the evacuation process
• The impacts of the average flood risk tolerance threshold on the evacuation process
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• The impacts of the percent of the vulnerable resident agents on the evacuation process
• The impacts of the community mutual aid mechanism on the evacuation process
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2.2. Construction of the Agent-Based Model

2.2.1. Flood Risk Warning

In the mainland of China, the city local meteorological authority is responsible for the release of
early flood risk warning signals within its administrative area. The flood risk warning signal is divided
into four levels, which are represented by blue warning, yellow warning, orange warning and red
warning. And the red flood risk warning signal is the highest level. When the red flood risk warning
signal is issued, according to disaster management requirements, the community residents committee
staff are required to inform and assist residents to evacuate, especially the vulnerable individuals.

In this study, let FRWt denote the value of flood risk warning from authority department at
time step t (i.e., FRWt ∈ [0, 1]). The higher the value of FRWt, the greater the flood risk. When the
value of FRWt is set to 1, it means the highest flood risk warning, and all the resident agents and
community residents committee staff agents must evacuate to the shelter eventually. Since the authority
department, in reality, broadcasts the flood risk warning information to all the residents and staff

in its administrative area, all agents will receive the same flood risk warning information at each
time step [26].

2.2.2. Resident Agents and Behavior Rules

An agent is defined by the attributes and behavior rules. Every agent’s response to the environment
or other agents is based on its own attributes and behavior rules. The following sections introduced
how to define the resident agent’s attributes and decision rules.

Resident Agent Attributes

There are various variables of resident that can affect the real evacuation process. It is difficult and
challenging to completely include all of impact factors in one model when the empirical evacuation
data is lacking. Therefore, in this study, only important factors of residents were taken into account [28].
The agents’ attributes were classified as physical attributes that were related to its evacuation process,
and psychological attributes that were related to its response to flood warnings (as shown in Table 1).
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Table 1. List of resident agents’ attributes.

Category Variables Description

Physical i Unique identification number of each agent
ES Evacuation status of agents
GL Geographical location of agents in the community

CGN Community grid number where agents live
Vmax Agent’s max movement speed during the evacuation
CAT Agent’s categories (non-vulnerable resident and vulnerable resident)

Psychological RT Agent’s flood risk tolerance threshold
FRP Agent’s flood risk perception

In this study, the resident agents were divided into two categories: non-vulnerable resident agents
and vulnerable resident agents (as shown in Table 2). The percentage of the vulnerable resident agents
represented the extent of the vulnerability of the community. The moving speed of non-vulnerable
resident was faster than vulnerable resident. Besides, the non-vulnerable resident agent can response
to the flood event by themselves while the vulnerable resident only evacuates when the community
staff inform them or other non-vulnerable resident help them to evacuate.

Table 2. Description of different categories of resident agent.

Category Speed Interaction Rules Representative

Non-vulnerable
resident agent fast

- evacuate by themselves when its
flood risk perception greater than
the its flood risk
tolerance threshold

Young adults

Vulnerable
resident agent slow

- evacuate when community staff
find them and ask them to leave

- evacuate when other
non-vulnerable resident agent
helps them to evacuate

Children, elderly, people
with mobility problems

Resident Agents’ Flood Risk Perception

In this study, the flood risk perception of resident agents (denoted by a continuous variable
FRPi, FRPi ∈ [0, 1]) referred to their feeling of the extent of flood risk in the community where they
stay, which would affect their evacuation decision. In each time step, every resident agent’s flood
risk perception was calculated and updated. If one resident agent’s flood risk perception exceeds its
specified flood risk tolerance threshold, the resident agent would consider taking action to evacuate to
the shelter. However, the flood risk perception can be affected by many factors, such as past flood
experience, neighbors’ behavior and new information received [1,29,30].

In this study, the calculation of flood risk perception was based on factors identified through
the literature review. When the community was hit by a flood event, the resident agent i mainly
obtained flood risk information from the flood risk warning IW

i,t and neighbors’ flood risk perception IN
i,t

(as shown in Equations (1) and (2), respectively). Some studies have also considered the impact of
social media on flood risk perception [26,31]. However, this study argued that in small communities,
the impact of government warning and neighbor behavior is far greater than that of social media.

IW
i,t = FRWt (1)
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IN
i,t =

n∑
j=1

ci, jFRP j,t

n∑
j=1

ci, j

(2)

where FRWt denotes the flood risk waring at time step t, FRP j,t denotes the flood risk perception of
agent j, and if agent j and agent i are in the same community grid, the ci, j takes 1, otherwise ci, j takes
0. In other words, the IN

i,t is the average value of flood risk perception of resident agents in the same
community grid.

Many previous studies using a set of weighting factors to formulate agents’ flood risk perception
driven by multiple information sources. In this study, the approach was adopted and two main
information influence parameters αi and βi were set to represent the influence of flood risk warning
and neighbors’ flood risk perception for agent i, respectively. Thus, for agent i, the new flood risk
information obtained from multiple sources can be represented by Equation (3).

∆Ii,t = αiIW
i,t + βiIN

i,t (3)

When new information on flood risk was obtained, the agent i would update its flood
risk perception. However, because of past experience, information reliability, and information
comprehensibility, different agents had different levels of trust in the new information. In this study,
for agent i, a weight parameter ωi was set to represent the extent of its willing to accept the new
information it obtained at time step t. Therefore, the flood risk perception of agent i at time step t can
be represented by Equation (4).

FRPi,t = FRPi,t−1 +ωi × ∆Ii,t (4)

So far, the process of how agents update their flood risk perception was modeled.

Resident Agents’ Evacuation Decision

At time step t, the agent would make an evacuation decision (denoted by a binary variable
EDi,t, EDi,t ∈ {0, 1}) to evacuate or not when the flood risk warning was issued (as shown in Equation (5)).
In this study, if one agent’s flood risk perception FRPi,t larger than its flood risk tolerance threshold
RTi,t at time step t or the agent already on the way to the shelter in the last time step t− 1, the agent
would decide to evacuate or continue to evacuate to the shelter. In other cases, the agent would stay
at home.

EDi,t =

{
0 i f FRPi,t < RTi,t
1 i f FRPi,t > RTi,t or EDi,t−1 = 1

(5)

Resident Agents’ Mutual Aid Process

For the non-vulnerable resident agents who willing to aid, if the mutual aid mechanism was on
and they had decided to evacuate, they would check whether there were vulnerable resident agents
in their same community grid. If there was at least one vulnerable resident agent did not evacuate,
the non-vulnerable resident agents would move to their nearest vulnerable resident agent’s location
and form one-on-one evacuation team. Then, they would move to the nearest road edge first and go to
the shelter together through taking the shortest route. If there was no vulnerable resident agent in
their community grid, the non-vulnerable resident agents would go to the shelter directly. For the
non-vulnerable resident agents who did not want to afford help, they would go to the shelter directly
regardless of the mutual aid mechanism was on or not. When the resident agents arrived at the shelter,
they would change their evacuation status to ‘arrived shelter successfully’.

So far, the resident agents’ attributes and its behavior rules has been constructed. The simulation
process end when the tick time agreed with the time set or all the resident agents arrived at the shelter.
Figure 2 presented a completed decision-making process flowchart of the resident agents.
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2.2.3. Community Residents Committee Staff Agents and Behavior Rules

The staff agents represented the community residents committee staff in the real world. In each
community grid, there were certain number of staff to responsible for the daily work in China. In the
face of the flood risk, the community residents committee staff should inform and assist the residents
to evacuate if the flood risk alert is red warning. In this study, the staff agents need to response to flood
event and help the vulnerable resident agents to evacuate to the shelter. In this study, the attributes of
the staff agents were the identification number, community grid number and evacuation status.

Figure 3 showed the completed flowchart of the decision-making process of the staff agents during
the flood event. The staff agent firstly checked whether the flood risk warning was red alert, if yes,
the staff agent would find the vulnerable resident agents in its same community grid and move to the
nearest vulnerable resident agent location. Then, the staff and the vulnerable resident agent would go
to the nearest road edge together. If there were no more vulnerable resident agents in its community
grid, the staff agent and the vulnerable resident agent just found would go to the shelter directly.
Otherwise, the staff would ask the vulnerable resident it found last time to go to the shelter alone by
the shortest route, and the staff would go to find the next vulnerable resident in its community grid.
After repeating the searching process several times, there were no more vulnerable resident agents,
the staff agent would move to the shelter at last. All agents who arrived the shelter would update the
evacuation status to “arrived shelter successfully”.
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2.2.4. Road Network and Traffic Rules

The road network plays a key role in emergency evacuation and emergency management. A road
network is a system of interconnecting lines and points (called edges and nodes in network science) that
represent a system of streets or roads for a given area, and it describes a structure which permits either
vehicular movement or flow of people [32]. Generally, the road network system includes road network,
vehicles and people in the network and move rules that regulate the movements and interactions of
vehicles and people. Thus, there were two main components in a road network system simulation:
(1) the road network itself; and (2) the movement rules of the road network that all vehicles and people
should follow. However, it is challenging to explicitly include all road network features in simulation
model [28]. Therefore, many studies have suggested using a simplified road network which consists of
a number of nodes, edges and edge weights [33,34]. A set of edges and nodes can be routed from one
node to another in a road network. In this study, the road network was set to two-way road, and the
Dijkstra’s algorithm [35] was applied to find the shortest paths between nodes.

As for the movement rules, it stipulates the movement and interaction mechanisms of the vehicles
and people in the road network. Among a variety of transportation network simulation methods,
the Nagel–Schreckenberg model (N-S model) proposed by Nagel and Schreckenberg [36] is widely
used to simulate the movement of the vehicle and the speed of the vehicle was adjusted by the road
maximum limit speed, the speed of ahead vehicle, and a safe distance, etc. While regarding the
short-distance evacuation process in a population-intensive community, people mainly evacuate by
walking instead of using vehicles. Therefore, people’s evacuation speed is mainly affected by their
own walking speed and the density of people on the road. The calculation results of statistical data
in many studies showed that the speed of pedestrians is 1–2 m/s, and the pedestrian walking speed
would be increased or decreased under special circumstances. With regard to the density of people on
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the road, it reflects the intensity of people in a certain space for each time step. Specifically, it refers
to the value that the number of people on the road unit where you stay plus the number of people
on ahead road unit, then divide it by 2. Although there are various models to study the relationship
between the evacuation speed and the people density [10,37–39], they have similar general speed rules.
In this study, the relationship between the speed of agent and agent density was referenced by the
SGEM model [40] developed by Wuhan University and City University of Hong Kong (represented
by Equation (6)).

vi =


1.4
0.0412ρi

2
− 0.59ρi + 1.867

0.1

i f
i f
i f

ρi ≤ 0.75
0.75 < ρi ≤ 4.2

ρi > 4.2
(6)

where vi denotes the speed of agent i, ρi denotes the agents density (agents/road_unit) on the road unit
where agent i stay. The speed of all non-vulnerable resident agents and committee staff agents were vi,
and the speed of vulnerable resident agents was set to 0.8 times of vi.

In order to find more detail information during the evacuation process, in this study, the road
congestion index (RCI) was used to reflect the degree of crowdedness in the transportation network.
It can be estimated by calculating the proportion of agents whose speeds reduce more than a certain
percent at each time step (as shown in Equation (7)).

RCI =

n∑
i=1

SSAi

n
(7)

where RCI denotes the extent of the road congestion, n denotes the total number of resident agents who
are evacuating to the shelter, and the SSAi is a binary function which is used to indicate whether the
speed of agent i has decreased significantly, if its speed less than 50% of its max moving speed, SSAi
takes 1, otherwise SSAi takes 0. In addition, the higher the RCI value, the more congested the road.

2.2.5. Model Assumptions and Outputs

It is very difficult to consider all the impact factors in one evacuation simulation model. Therefore,
some main assumptions were set to simplify the model and ensure the availability and credibility of
results. They were: all residents in the community were required to carry out emergency evacuation,
and all residents were in their homes when the flood risk warning was issued; the evacuees were
assumed to have good knowledge about the transportation network and they will head to the nearest
road node first and then look for the shortest route to the shelter.

Besides, the community is a complex system due to it consists of residents, residents committee
staff, roads, etc. When simulating the process of emergency evacuation, each agent interacted and
influenced each other under certain rules. These interactions and influences happened in the process
of flood risk perception update, evacuation decision, road congestion and other aspects. Actually,
each agent makes different decisions during these interactions, and these behaviors were assumed to
occur in a stochastic manner. Hence, the community evacuation system turns into highly randomness,
nonlinear and noncontinuous. For such a system, obtaining the closed-form analytical solutions
become very difficult.

In similar studies, numerical simulation methods were usually used by researchers to solve such
problems [41–43]. Monte Carlo methods, which rely on repeated random sampling to obtain numerical
results, are often used in physical and mathematical problems [44]. Therefore, in order to obtain stable
numerical results, in this study, the Monte Carlo approach was applied to analyze the impacts of different
agent variables on the evacuation process. The model was executed 500 times on the netlogo 6.0.4 platform
per scenario to ensure the stabilization of numerical results. The 15% trimmed mean method was applied to
further reduce the randomness and contingency of numerical results [45]. In addition, in order to improve
the efficiency of the model, the model was optimized based on the method proposed by Steven et al. [46].
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Multiple indicators were used to measure agents’ evacuation behaviors at the system level
(i.e., a community). These indicators were: (1) road congestion index RCIt, representing the extent of
the road congestion at time step t. (2) resident agents’ evacuation status, where were the percentage of
the resident agents with different status (i.e., start to evacuate, on the way to the shelter and successfully
evacuated to the shelter) at time step t. (3) total evacuation time, representing the time cost to evacuate
all the residents to the evacuation shelter; average evacuation time, representing the average value of
all the resident agents’ total evacuation time.

2.3. Synthetic Community and Scenario Design

2.3.1. Synthetic Community Design

In this study, the agent-based model proposed above was applied in a synthetic community
(as shown in Figure 4), which was constructed according to the characteristics of urban communities’
structure and the mechanism of community grid management in China. The synthetic community
included a transportation network, nine community grids and an evacuation shelter in the bottom
right. There were sixteen intersection nodes and twenty-four roads in the regular lattice road network,
and the length of each road was 100 units. Each community grid contained a number of community
residents committee staff and residents, and these community grids were connected by roads. In order
to make the simulation more in line with the real situation of the community, all agents were randomly
distributed in their corresponding community grid.

In addition, the impacts of the number, distribution, and capacity of evacuation shelter were
worth to study, and the results can be useful in the evacuation plan or shelter plan. However, it is
difficult to analyze all the factors in one study. Therefore, in this study, only one evacuation shelter
was built and was assumed to be able to accommodate all agents.
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2.3.2. Scenario Design

Table 3 showed the values of model parameters. Those model parameters were important to
build the agent-based model and necessary to format the agents’ status and behaviors. As mentioned
in Section 2.2.2, the resident agents obtained information from multiple separate sources and each
agent can decide how much it adheres to its past risk perception when new information was available.
However, the impact of different weights of information sources and learning rate were not the focus
of this study. Therefore, with reference to previous studies, the weight of government information α j
and the weight of neighbor behavior β j were set to 0.5 and 0.5, respectively, and the learning rate ω j
was sampled from a normal distribution with a mean of 0.5 and standard-deviation of 0.1. In addition,
the value of the government flood risk warning FRW was set to 1, which means the red warning of
flood risk. Moreover, the agents only received one flood risk warning at the beginning of the model
execution, and would not receive any other flood risk warning in the following simulation.

Table 3. The Values of Model Parameters.

Parameters FRW αj βj ωj

Values 1 0.5 0.5 0.5(0.1) a

a x1(x2) indicates the value of the parameter is sampled from a normal distribution with a mean of x1 and
standard-deviation of x2.

With the synthetic community as a case study area, the aims of this study were to explore
how residents’ heterogeneous behaviors (i.e., flood risk tolerance threshold), community properties,
and mutual aid mechanism affect the emergency evacuation process. Four different scenarios
were designed based on five important parameters (as shown in Table 4). The five parameters
were respectively the flood risk tolerance threshold of the resident agents, the community density,
the percentage of vulnerable resident agents, the mutual aid mechanism status, and the proportion of
the non-vulnerable resident agents who willing to aid.

The first scenario aimed to investigate the impact of the community properties on the
evacuation process. There are many variables can be used to measure the community characteristics,
such as community size, community density, community layout, education level, etc. In this study,
only community density was concerned, as it may significantly affect traffic during an emergency
evacuation process. The second scenario investigated how the flood risk tolerance threshold of resident
agents affects the evacuation process. The different threshold of flood risk tolerance represents the
different residents’ response to flood risk. Appropriate flood risk tolerance threshold could enable
more efficient evacuation. The third scenario explored the effects of the community vulnerability
(expressed by the percentage of the vulnerable resident agents) on the evacuation process under
different community density. In the fourth scenario, the potential influence of mutual aid mechanism
on emergency evacuation was investigated which combined with other three influencing factors.

Table 4. Parameters Design for Four Scenarios.

Scenario density risk_tolerance vulnerable_pct aid_stat help_pct

Scenario 1 10:10:200 a 0.7(0.05) b 0.1 false 0.0
Scenario 2 10:20:200 0.5:0.1:0.9 0.1 false 0.0
Scenario 3 10:20:200 0.7(0.05) 0.1:0.1:0.5 false 0.0
Scenario 4 10:20:200 0.7(0.05) 0.1:0.1:0.5 true 0.1:0.1:1

a x1 : d : x2 denotes a numeric vector from x1 to x2 with increment of d. For example, in scenario 2, the mean value
of flood risk tolerance threshold 0.5:0.1:0.9 means vector [0.5 0.6 0.7 0.8 0.9]. b x1(x2) indicates the value of the
parameter is sampled from a normal distribution with a mean of x1 and standard-deviation of x2.
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3. Results and Discussion

3.1. Impacts of Community Density on the Evacuation Process

The first scenario was mainly to investigate the impact of community density on the emergency
evacuation process. To be specific, this scenario addressed two questions: (1) Does the community
density affect the evacuation process? (2) To what extent does the community density affect the
evacuation efficiency? The first question was to demonstrate that the community density can affect the
evacuation process and the second question was to attempt to evaluate the importance and the impact
of community density in evacuation process.

Figure 5 showed the simulation results for the first scenario in which the mean value of flood
risk tolerance threshold was 0.7, the percent of vulnerable resident agents was 10% and no mutual
aid behavior between resident agents. The results indicated that the higher the community density,
the longer the evacuation time required. In other words, the community density had a negative
correlation with the evacuation efficiency. Moreover, when the community density was less than
120 agents/grid, the total evacuation time and average evacuation time gradually increased with the
increase of community density. However, when the community density was greater than 120 agents/grid,
the total evacuation time and average evacuation time increased rapidly. These results were similar to
the findings in most published studies [26,28,41].
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In order to explore how community density affected the evacuation process, the changes in the
percent of evacuated agents with time in communities with different densities were investigated
(as shown in Figure 6). It was clear that the lower the community density, the faster the percent of
the evacuated agents reached 100%. Furthermore, for every increase in community density, more
and more evacuation time was needed to reach the same evacuation ratio, especially in the case
of high evacuation ratio situation. In other words, when achieving a high level in the evacuation
ratio, the increase in evacuation time was much larger than the increase in community density [28].
For example, considering the time needed for 90% of the resident agents evacuated to the shelter,
when the community density increased from 40 to 80 agents/grid, the evacuation time increased by
20.65%, while when the community density increased from 160 to 200 agents/grid, the evacuation time
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needed increased by 57.06%. In both cases, the community density increased by 40, but the increase
of the total evacuation time of the latter (high-density community) was far higher than the former
(low-density community). These results indicated that achieving high level of evacuation ratio was
much more difficult in high-density community than in low-density community due to the marginal
evacuation time needed rapidly increasing.

In addition, it was also worth noting that when the community density was greater than
120 agents/grid, the percentage of evacuees increased slowly or even stopped growing for a period
of time (as shown in Figure 6). For example, when the community density was 160 agents/grid,
the evacuation ratio slowly increased after reaching 80%. Besides, the percentage of evacuated agents
did not increase for a period time. The reason for this phenomenon may be that a number of resident
agents farther away from the shelter gather on the road intersections, which made the road intersections
crowded and the moving speed of resident agents decreased. These results implied that traffic was
a very important factor need to be considered in the emergency evacuation of high-density communities.
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3.2. Impacts of Flood Risk Tolerance Threshold of Resident Agents on the Evacuation Process

The resident agents’ behavioral heterogeneity (i.e., agents’ flood risk tolerance threshold) indicated
the different response behavior to the same flood risk condition. As mentioned in Section 2.2.2,
the difference of the mean value of the flood risk tolerance threshold mainly influenced the evacuation
decision-making timing of resident agents. Therefore, the second scenario was to find out how the
mean value of the flood risk tolerance threshold of resident agents affects the evacuation process in
communities with different densities. In this section, the difference of the total evacuation times in
communities with different densities were compared to investigate this effect.

As shown in Figure 7, with regard to the flood risk tolerance threshold, its effects on the evacuation
process varied in communities with different densities. In low-density community, such as communities
with density less than 120 agents/grid, the difference in the flood risk tolerance threshold had slight
impact on the evacuation process. To be specific, at a given community density range from 20 to
100 agents/grid, the total evacuation time fluctuated little no matter how the mean value of the flood risk
tolerance threshold of resident agents changed. However, in the high-density communities (i.e., greater
than 120 agents/grid), the impact of the flood risk tolerance threshold on the evacuation process can be
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easily captured. It was clear that as the mean value of the flood risk tolerance threshold increased,
more time was needed to evacuate all the resident agents to the shelter, especially in higher density
communities, the total evacuation time can be reduced more by reducing the mean value of resident
agents’ flood risk tolerance threshold. For example, for two communities with different densities
(such as 140 and 200 agents/grid), when the mean value of the flood risk tolerance threshold of resident
agents was reduced from 0.9 to 0.5, the total evacuation time of the whole community was respectively
reduced by 94 ticks and 166 ticks. These results implied that it was effective to reduce the residents’
flood risk tolerance threshold in high-density communities because it reduced the total evacuation
time and improve evacuation efficiency, while it was not effective in low-density communities.
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3.3. Impacts of Vulnerable Residents on the Evacuation Process

The vulnerability of communities is an important issue that should be considered in the flood
risk management of urban communities. As mentioned in Section 2.2.2, the vulnerable residents only
evacuate when the community staff or other non-vulnerable residents inform them to leave and move
to the shelter together. In general, the movement speed of the vulnerable residents is slower than the
non-vulnerable residents. Thus, the number of vulnerable residents in the community would affect
the entire community emergency evacuation process because the later evacuation behaviors and the
slower movement speed of the vulnerable resident agents.

In this section, the relationship between the proportion of the vulnerable resident agents and the
total evacuation time was studied to investigate how the vulnerable residents affects the evacuation
process in communities with different densities. Communities were divided into three types, namely,
low-density, medium-density and high-density communities. There were less than 120 agents/grid
in low-density communities and more than 120 agents/grid in high-density communities. As shown
in Figure 8, with the increase of the proportion of vulnerable resident agents, the total evacuation
time showed different trends in the three types of communities. To be specific, (1) in low-density
communities, the time required to evacuate all agents increased significantly as the proportion of
vulnerable resident agents increased, and the result was similar to the previous study [26]; (2) in the
medium-density communities, the total evacuation time firstly showed a slight trend of decline when
the proportion of vulnerable resident agents increased from 5% to 30%, and then gradually increased
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when the proportion of vulnerable resident agents continued to increase; (3) in the high-density
communities, the increase in the percentage of vulnerable resident agents resulted in a slight decrease
in total evacuation time, which was significantly different from the other two types of communities.
These results demonstrated that the proportion of vulnerable resident agents is an important factor in
community evacuation.
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Then, the road congestion index was used to explore why the proportion of vulnerable resident
agents had different effects on the evacuation process in three types of communities. As shown in
Figure 9a, it can be found that in low-density communities, the congestion degree and the duration
of congestion were relatively short (e.g., RCI less than 40%), and the increase in the proportion of
vulnerable resident agents did not significantly affect the degree of road congestion. This was because
a low number of resident agents did not significantly contribute to road congestion. Although the
road congestion index in low-density communities was low, the increase in density can also lead
to an increase in total evacuation time (as shown in Figure 8). This was mainly due to the slower
movement speed of vulnerable resident agents, which required more time to evacuate. In addition,
it can also be seen from Figure 9b that in high-density communities, the degree of road congestion
remained at a high level, with RCI greater than 50% most of the time. However, an appropriate
increase in the proportion of vulnerable resident agents could reduce the degree of road congestion,
thus accelerating the evacuation of residents and reducing the evacuation time. For example, from 0 to
650 ticks, the higher the proportion of vulnerable resident agents, the lower the road congestion index.
This was because vulnerable residents were evacuated later than non-vulnerable residents, so the
evacuation process could be carried out in batches. Especially when the proportion of vulnerable
resident agents was large, it can avoid a large number of resident agents pouring into the road at the
same time, thus reducing the total evacuation time.
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These results implied that in low-density communities, the total evacuation time was mainly
affected by the movement speed of vulnerable residents, while in high-density communities,
the road congestion caused by a large number of residents was the main factor. With regard to
the medium-density communities, as the proportion of vulnerable resident agents increased, total
evacuation time was first mainly affected by the movement speed of vulnerable resident agents
and then affected by the road congestion. Therefore, in vulnerable communities with different
densities, government decision-makers need to formulate different evacuation policies according to
the evacuation characteristics of the communities.

3.4. Impacts of Community Mutual Aid Mechanism on the Evacuation Process

Mutual aid behavior between neighbors is a common way to respond to the flood disaster
events. However, whether this kind of behavior can significantly reduce evacuation time and improve
evacuation efficiency has not been widely concerned and is worth studying. In order to investigate
how the mutual aid mechanism affects the evacuation process of different communities, in this study,
the percent of non-vulnerable resident agents willing to aid was used to indicate the mutual aid
mechanism between neighbors. Besides, the community density and the percent of vulnerable resident
agents were considered together to represent different types of communities. Similar to the Section 3.3,
communities were divided into three categories: low-density, medium-density, and high-density.
The results of the total evacuation time in different types of communities under the influence of mutual
aid mechanism were shown in Figure 10.
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In the low-density community, as shown in Figure 10a, it can be found that the mutual aid behavior
between neighbors was effective and can reduce the total evacuation time significantly. When the problem
of community vulnerability was serious (e.g., the proportion of vulnerable resident agents was 50% and
70%), more aid from non-vulnerable residents can significantly reduce the total evacuation time. To be
specific, the total evacuation time decreased by 20% when the proportion of non-vulnerable residents
willing to aid increased from 0% to 100%. However, when the proportion of vulnerable residents was 10%
and 30%, the total evacuation time firstly decreased and then remained almost unchanged after the percent
of non-vulnerable residents willing to aid increased to a certain proportion. This was because when the
number of non-vulnerable residents willing to aid was equal to the number of vulnerable resident agents,
all the non-vulnerable residents had been aided to go to the shelter. Therefore, continuing to increase the
number of non-vulnerable residents willing to aid would no longer affect the total evacuation time.

With regard to the evacuation in the medium-density community, as shown in Figure 10b,
the results indicated that the mutual aid mechanism between neighbors had little effect on the total
evacuation time. For example, for a medium-density community with 10% or 70% vulnerable residents,
the total evacuation time barely changed regardless of how many non-vulnerable residents were
willing to aid. As for the community with 50% vulnerable residents, the time needed to evacuate all
residents began to increase significantly after the percent of non-vulnerable residents willing to help
reached to 40%. These results implied that the mutual aid mechanism between neighbors slightly
affect the evacuation process in medium-density community, especially when the percent of the
vulnerable residents was low or high (e.g., 10% and 70%). In other words, managers of medium-density
communities should not promote a high percent of mutual aid behaviors.
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In the emergency evacuation of high-density communities, especially those with a high proportion
of vulnerable residents, the mutual aid mechanism was ineffective and actually increased the total
evacuation time (as shown in Figure 10c). This result was completely contrary to the result of
low-density communities. Specifically, for communities with 30% or more vulnerable residents,
the total evacuation time increased significantly as more non-vulnerable residents were willing to aid.
For example, in communities with 50% vulnerable residents, when the percentage of non-vulnerable
residents willing to aid increased from 0 to 50%, the total evacuation time increased by 33.6%, and when
the aid ratio increased to 100%, the evacuation time significantly increased by up to 58.7% percent.
This may be because in high-density communities, the greater number of non-vulnerable residents help
vulnerable residents to go to the shelter together, the more likely that a large number of residents would
pour into the road at a certain moment, which would cause traffic congestion and increase evacuation
time. The results suggested that the more non-vulnerable residents offered aid in high-density
community, the less efficient evacuation because the total evacuation time increased significantly.

4. Conclusions

In this study, an agent-based modelling framework that incorporated the resident psychological
model and transportation network model was conducted to explore the influence of community
properties, resident’s psychological attributes and mutual aid mechanism on the flood evacuation
processes. Specifically, four main factors: community density, flood risk tolerance threshold of residents,
percent of vulnerable residents and mutual aid mechanism were considered together to investigate
how they interplay with each other to affect agents’ flood evacuation process. Indicators such as total
evacuation time, mean evacuation time, percent of evacuated agents and road congestion index were
used to evaluate the evacuation efficiency of the whole community. The advantages of this study were
mainly in three aspects. Firstly, this study considered residents’ self-rescue and community staff’s
assistance at the same time which is more in line with the reality of community evacuation. Secondly,
different from previous evacuation studies, this study focused on vulnerable communities, and the
results can identify the main difficulties in evacuation in different types of vulnerable communities.
Thirdly, this study highlighted the mutual aid mechanism among residents in the evacuation process,
which were usually neglected in previous evacuation studies. The influence of mutual aid mechanism
in different communities were identified and the results can provide community managers with
information on how to deal with mutual aid behaviors in different types of communities.

The key findings from the simulation results under different scenarios were: (1) The community
density was found to be negatively correlated with flood evacuation efficiency. Achieving a high level of
evacuation ratio was much more difficult in high-density community than in low-density community
due to the marginal time needed rapidly increasing. That was because evacuations from high-density
communities can easily cause road congestion. (2) Lower flood risk tolerance threshold can help residents
respond to flood disasters timely, but this effect was different in communities with different densities.
In high-density communities, appropriately reducing the value of flood risk tolerance threshold of
residents can obviously reduce the total evacuation time and improve evacuation efficiency, however,
it was not effective in low-density communities. (3) The proportion of vulnerable resident agents had
opposite effects in different types of communities. With the increase of the proportion of vulnerable
resident agents, the total evacuation time increased significantly in low-density communities, decreased
first and then increased in medium-density communities, and decreased in high-density communities.
(4) Mutual aid mechanism can reduce evacuation time in low-density communities, and the effect was
more pronounced with a higher proportion of vulnerable resident agents in the community. However,
in high-density communities, the mutual aid mechanism would actually increase the evacuation time.
Besides, the higher the proportion of vulnerable resident agents, the more the evacuation time would
increase. In the medium-density community, the percent of non-vulnerable resident willing to aid had
a negative relationship with total evacuation time, but it was not obvious.
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Such information can help urban community managers and decision-makers increase disaster
evacuation efficiency by developing different evacuation strategies according to the specific characteristics
of different communities. For example, managers must pay special attention to the impact of community
density, especially evacuation in high-density communities. Appropriately lowering the residents’ flood
risk tolerance threshold could prompt residents to make evacuation decisions earlier. The change of
the proportion of vulnerable residents in low and medium-density communities can easily affect the
evacuation efficiency. Community managers can adopt various means of transportation to improve the
evacuation speed and encourage mutual aid behaviors between residents to reduce the evacuation time.
While evacuation in the high-density community, the traffic congestion is the main challenge. Community
managers should avoid road congestion caused by the mutual aid behaviors among a large number of
people, and should arrange for evacuations in batches when road capacity is inadequate.

But, the limitation of the study should also be taken into consideration. Firstly, in order to make
the agent-based model uncomplicated, feasible and operable, not all the factors affecting the residents’
evacuation process were considered in this study. For example, the families or friends were assumed
to evacuate at the same time in this study, but in reality, residents’ behaviors of seeking relatives and
friends during the evacuation are common. These searching behaviors are more complex and can affect
the simulation results, which will be considered in future studies. Secondly, the agent-based model
was conducted in a synthetic community and the usability of the model was verified by comparing
the simulation results with previous studies and empirical data. However, due to the difficulty in
obtaining more detailed evacuation data, it is difficult to further verify the simulation results of the
entire evacuation process. Thirdly, the more parameters in ABM model, the more likely random results
will appear. In this study, the model was running 500 times and calculated the truncated mean value
to avoid randomness. However, it would be more time-consuming and labor consuming to increase
the number of runs in order to get more stable model results. Even so, some interesting results were
found and can be used to optimize flood risk management in urban community.

Future work will use the empirical data to measure the various behavioral parameters, modify and
improve the mutual aid mechanism based on community interviews and survey results, use realistic
communities and transportation networks as the research areas, consider the dynamic impact of flood
events, and combine the spatial-temporal uncertainty of multi-stage flood warnings.
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 Search and rescue operation is performed to save human life, for example 

during natural disasters, unfortunate incidents on the land, in the deepwater, 

or lakes. There were incidents happened to the search and rescue crew during 

the operation although they were well trained. A new method using robotic 

technology is important to reduce the crew's risk during operations. This 

research proposed a development of an autonomous surface vessel for search 

and rescue operations for deepwater applications. The proposed autonomous 

surface vessel is equipped with a global positioning system (GPS) and 

underwater sensor to search for the victims, black box, debris, or other 

evidence on the surface and underwater. The vessel was designed with 

monitoring and control via radio frequency wireless communication. The 

autonomous surface vessel prototype was developed and tested successfully 

with the telemetry at the ground station. The ground station acts as the 

control centre of the overall system. Results showed the vessel successfully 

operated autonomously. The operator at the ground station was able to 

monitor the sensor data and control the vessel's manoeuvre according to the 

created path. The telemetry coverage to monitor the water surroundings and 

control the vessel's manoeuvre was around 100 meters. 
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1. INTRODUCTION 

Search and rescue, SAR is an operation to search for the living victims that are in danger. However, 

many cases have happened where SAR crew to be in danger and involved in fatal accidents during the 

operation. For example, six firemen in Malaysia drown during rescuing a drowning teenager at a mine [1]. In 

Indonesia, during the search and rescue mission for the Lion Air aeroplane crashed, one of the divers died 

during the operation due to the decompression of the human body in the deep sea [2]. 

Nowadays, robotic technologies offer many innovative solutions to assist and reduce the risk of 

humans at work. Autonomous surface vessel (ASV) has been used in many areas that are considered to be 

dangerous and risky. Biologists have used ASV to monitor the quality of the water, the military operation has 

been using ASV for monitoring coastal area and detecting sea mines, drones and robots have been using in 

handling chemicals and other dangerous tasks those could cause health problems [3]-[5] and many more. It 

has been proven that the utilisation of ASV and robots have increased productivity, improved time efficiency 

with more flexibility.  
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Recent research on ASV mainly focuses on general control objectives such as asymptotic tracking, 

guaranteed transient tracking performance, the stability of the vessel, robustness towards disturbances, 

adaptation to environmental change, and collision avoidance. Y. Hu et al. [6] has developed an avoidance 

system using real-time fuzzy logic, considering the steering dynamic of the ASV. Based on experience, an 

algorithm called fuzzy case base reasoning has been proposed. The proposed system was able to avoid a 

collision when similar cases happened in ASV heading control system. Z. I. Bell et al. [7] and C. Dong et al. 

[8] have developed adaptive controllers for ASV subject to parametric uncertainties and time-varying 

disturbances. The Lyapunov theory has been used as the adaptive algorithm. The vessel was successfully 

operated subject to parametric uncertainties and time-varying disturbances. Another challenge, ASV, when 

operated on the sea yaw angle, is exposed to disturbances. Therefore robust control is suggested by W. Guan 

et al. [9]. The technique used was closed-loop shaping, which incorporates with recursive least squares 

method. Astrov et al. [10] has proposed neural predictive control for ASV. The work conducted focused on 

modelling and simulation of a nonlinear system of ASV via Simulink/Matlab. The research conducted on 

ASV has successfully achieved its objectives. However, the complete design of ASV for safety and rescue 

mission is still not available. Therefore the design and implementation of ASV for search and rescue are 

proposed.  

The SAR team has used a sonar sensor from Germany to find two drowned victims in the lake [11]. 

The mission used a side-scan sonar sensor, and it was successful. The victim was found in just several hours 

instead of several days for manual diver search. There were research about sidescan imaging sonar for SAR 

in improving the quality of sonar image.  For example author in [12] proposed quantitative model for by 

predicting the shadow contrast ratio. With this motivation, the proposed ASV will use a sonar sensor to 

identify the depth of water or shape/object underwater. 

SAR missions usually involved a wide coverage area. The most critical features of the ASV system's 

wireless communication are reliability, real-time data transfer (position and sensor status). In the HydroNet 

ASV water quality project, the data has been transferred using a WiFi module and 433Mhz channel module 

[3]. The system was able to communicate approximately 10km apart between the rover and ground station 

and locate three rovers simultaneously during the execution of the mission. Jafaar Fahad A. Rida [13] has 

proposed improving mobile wireless communication based on non-line of sight; however, for this SAR 

application, the ASV is operated at the water surface where there are no high rise buildings and trees at the 

searching area. Other wireless communications that have been used in ASV are radio frequency (RF) and 

global system for mobile (GSM), as discussed in [14-17]. Shadman Sakib Arnob et al. [17], GSM was used 

to notify the control room if the passenger boat is overloaded and in danger. The author used the global 

positioning system (GPS) and proportional integral controller (PID) to track and avoid the autonomous boat. 

The proof of concept was tested on a miniature boat where the communication range of the ultrasonic sensor 

achieved during the experiment was between 30cm to 200cm. Similar to SAR missions, [18] developed eCall 

for Malaysia's automotive industries when accidents occurred. The system automatically transmits a call to 

the public service answering point and certain vehicle-related information using a microcomputer, GSM, and 

GPS technologies when a collision was detected; to inform the emergency response unit for their immediate 

action.  

Some examples of the application used at the ground station for ASV monitoring are XRradioLS D4 

and quantum first-person view (FPV). XRLS D4 was successfully deployed with first-person view video 

footage and can control the rover [19]. It is costly, compared to quantum FPV. Quantum FPV ground station 

was built for video streaming purposes only, without control features of UAV [20]. FPV camera in a rover 

has also been used as visual monitoring in SAR application. From the FPV camera, information from 

surrounding was collected and work lifting to collect/remove load was also performed [21]. In the proposed 

research, the monitoring and control of ASV will be conducted by the SAR crew at the ground station where 

GPS data is used to determine the real-time position of ASV. All data from the ASV and sensors would be 

acquired.  

In a more complex autonomous system such as light-detection-and-ranging (LiDAR) where various 

parameters are to be configured simultaneously, [22] developed genetic algorithm for robot navigation 

system for the robot to be navigated from one point to another in a fast and safe environment; without hitting 

static or dynamic obstacles. LiDAR can collect more than 1 million points per second of high-quality 3D 

data, make the simultaneous localisation and mapping (SLAM) algorithm for mapping and localisation using 

robotic operating system (ROS) important [23]. LiDAR is usually used to measure the ground's shape and 

contour from the air, but not suitable for underwater scanning.  

In summary, ASV for search and rescue operation has been proposed in this research. The ASV is 

equipped with a side-scan sensor that could help in the searching operation, suitable for underwater scanning. 

The data collected from the sensor could be access from the ground station where the SAR team could access 
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the area's current situation. The SAR team would monitor and control the ASV with the help of video footage 

at the ground station via RF wireless communication. 

 

 

2. RESEARCH METHOD 

The overall design of ASV for SAR proposed in this research is shown in Figure 1. It involved three 

components: surface vessel, ground station, and communication system. The ground station controls the ASV 

and monitors the monitoring aid system's data via a communication line (wireless RF). The surface vessel 

can be controlled by the operator remotely either in autonomous or manual mode. 
 

 

 
 

Figure 1. Overall system design of ASV for SAR 

 

 

2.1.  Surface vessel 

The ASV is designed with three main components that are hull design, communication system, and 

manoeuvring system. The selection of hull design is essential as it affects the stability and performance of the 

vessel. In the hull prototype design, a single planning hull design with deep-V style has been proposed due to 

easy manoeuvring a higher speed and smooth ride through the rough water surface. The vessel/hull has been 

installed with several sensors and actuators, as shown in Table 1. All of the sensors and actuators are 

powered up using an 18.0V LiPo battery. Two 18V LiPo battery with a capacity of 5200 mAh is connected in 

parallel to double output capacity to deliver to the system, thus double up the working hours. 
 

 

Table 1. Electronic component specification 
Sensor/Actuator Voltage (V) Current (A) Supply Voltage (V) 

Motor (Thruster) 18 - 18 

Motor Driver (120A Max) - 120 - 

Servo (HS=805BB) 4.5-6 8m 5 
APM (ArduPilot Mega) 5 - 5 

GPS (Garmin 19X HVS) 8-33 40m 18 

Side Scan Sonar (CruzPro DSP Active Depth and Temperature Transducers) 9.5-16 3.5m 12 

 

 

2.2.  Portable ground station 

A portable ground system is used to monitor and control the ASV using RF telemetry. It consists of 

an industrial computer, wireless module connection for sensor data transfer, and remote control for manual 

control of the vessel manoeuvring system. LiPo battery has been chosen due to its small size and portable. 

 

2.3.  Communication system 

In the proposed design of ASV for SAR, there are two parts of communications required. The first 

part is RF wireless communication used to transmit data from the side-scan sonar sensor to the ground station 

for underwater image analysis and perform manual control of USV. The second part is to receive data from 

the GPS to keep track of the ASV location and control the ASV with the desired location.  

 

2.3.1. Data transmission 

In the proposed system, RF wireless telemetry has been used for the communication system on data 

transmission due to its capability to transmit the data at long range. RF connection allows the data packet to 
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be transferred between vessels and the ground station. At the ASV, the sensor data are transferred using the 

National Marine Electronics Association (NMEA) 0183 standard protocol. NMEA 0183 is a standard marine 

data protocol that provides multiple data in one input string. NMEA protocol enables one talker to provide 

multiple data in a single string for a listener at one time. Besides that, the NMEA 0183 standard data protocol 

provides extra reliability on data transmission [24]. In this system, the sensors that are using NMEA protocol 

are GPS and single beam side scan sonar. Since more than one sensor is used in this system, the data from the 

sensors are combined using the NMEA data combiner to make the data transfer across one telemetry 

connection. The architecture of the communication system is shown in Figure 2. 

 

 

 
 

Figure 2. The architecture of the ASV communication system 

 

 

2.3.2. Autonomous system 

In Figure 3, the ASV has been set with the desired location in the autonomous system design. A 

microcontroller, ArduPilot Mega (APM), has been used and installed at the vessel. The APM has been 

programmed to operate the vessel autonomously from the ground station.  

 

 

 
 

Figure 3. Autonomous system diagram 
 

 

The ASV could be monitored and controlled from the ground station wirelessly. The connection has 

been established using RF telemetry communication between the ground stations with the vessel. Data of the 

specific setting and desired location have been sent from the ground station to the microcontroller. The 

microcontroller has processed all the data by comparing it with the GPS and inertial measurement unit (IMU) 

data. Based on the comparison between these data, the APM control the vessel autonomously.  

 

2.3.3. Search and rescue monitoring system 

Search and rescue monitoring system has been set at the ground station. Data from side-scan sonar 

and global positioning system, GPS are received. Side-scan sonar provides surrounding data on the water 

surface and underwater and draws the underwater image that made underwater searching possible. GPS 

sensor is used to provide location data of the vessel.  
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3. RESULTS AND DISCUSSION  

The integration of the overall system, as shown in Figure 4, has been done to evaluate the ASV 

system's performance. GPS and single beam echo sounder (sonar sensor) have been installed at the vessel, 

the communication system and the ground station have been integrated. The system was tested at Tasek 

Selayang, Malaysia. 
 

 

 
 

Figure 4. Experimental setup of ASV 

 

 

3.1.  Experiment on global positioning sensor data 

In this project, GPS has been used to provide real-time positioning of the vessel. The sensor used an 

RS232 serial communication interface connected to the computer or sensor. In order to read the data of the 

sensor, the GPS was connected to the computer. Data was read at the computer, using raw data reader 

software called Teraterm. Figure 5(a) shows the data of the GPS using the NMEA 0183 standard protocol. 

This data can be used in mapping software to visualise the real-time position of the vessel. The definition of 

each NMEA sentence identifier can be found in [25]. 

 

3.2.  Experiment on single beam echo sounder data 

In this research, a sonar sensor was used to help in underwater search operations by scanning an 

underwater image. Figure 5(b) shows single beam echo sounder NMEA 0183 data sentences obtained from 

the experimental work at Tasek Selayang. The data contained information on the depth and temperature of 

the water. 

 

3.3.  Experiment on wireless serial communication 

All the sensors' data from the surface vessel was sent wirelessly to the ground station for monitoring 

purposes. The Arduino read the data and then sent to the ground station through the HC-12 wireless module. 

Figure 6(a) shows the developed wireless communication prototype of the overall autonomous system 

diagram (ASV side) of Figure 4. The sensor used RS232 physical protocol, which used 12V signal logic. Due 

to the ArduPilot Mega (APM) microcontroller signal requirement of ±5V, RS232 to TTL converter was used 

to convert 12V signal logic to 5V signal logic. APM then sent the sensor data via the HC-12 transceiver 

wireless module to the ground station. The data was received at the ground station through the HC-12 

transceiver module, which was connected to another Arduino microcontroller. The Arduino was connected to 

the ground station's computer via a USB port. In order to check the connection, the Teraterm software was 

used to display all the data received from the vessel to the ground station. 

 

3.4.  Experiment on real-time positioning  

Using google earth pro software, the real-time GPS data were plotted during the experimental test at 

Tasek Selayang. The result showed that the location of the vessel was plotted and display at the ground 

station. As the vessel moved across the lake, its route was mapped on the Google Earth Pro as a red line. The 

result is shown in Figure 6(b). The data of the GPS were sent by APM using the HC-12 wireless module. At 

the ground station, the receiver was connected to the computer and displayed the vessel movement's position 

using google earth pro software. 
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Figure 5. These figures are, (a) Example of GPS, (b) Single beam echo sound raw data 
 

 

  
  

(a) (b) 
  

Figure 6. Wireless module and path movement, (a) Wireless communication module, (b) Vessel path 

movement on google earth pro 

 

 

3.5.  Experiment on single beam echo sounder underwater mapping 

A single beam echo sounder was used to scan the 2D image of the underwater cross-section where 

the depth and shape underwater surface could be identified. The sensor data was sent through the wireless 

module and received by the Arduino at the ground station in real-time. Since there is no available  

open-source software to sketch the 2D underwater image, NMEA data was used by the microcontroller to 

obtain the depth of water. The data was visualised using a serial plotter function in Arduino IDE, as shown in 

Figure 7. From the graph, the depth of the lake water is around 5 meters. 

 

3.6.  Experiment on the autonomous system 

In the autonomous system, the Ardupilot board or APM was used to control the vessel's movement 

using open-source software, Mission Planner. The board was placed on the vessel and controlled from the 

ground station using a telemetry receiver that receives the flight data from the telemetry transmitter at the 

ground station. The vessel was controlled using the path planning function, which guides the vessel's 

movement according to the path created. 

The autonomous system was tested on the lake. First, the path was created using the Mission 

Planner. Then, the path was uploaded to the vessel via telemetry (transmitter). Once the telemetry (receiver) 

received the signal, the vessel started the mission by following the path created. As shown in Figure 8, the 

path created is shown in the yellow line. The purple line shows the actual direction of the vessel. Due to some 

factors from the climate change during the experiment, the telemetry coverage to monitor the underwater 

image and control the vessel's manoeuvre was around 100 meters. 
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Figure 7. Graph showing the depth of the water 
 

 

 
 

Figure 8. Experiment on path planning of the autonomous system 

 

 

4. CONCLUSION  

In conclusion, the objective of this research has been achieved. An autonomous surface vessel for 

search and rescue for a deepwater operation has been designed and developed. The developed prototype 

includes a portable ground station where RF wireless communication has used the communication between 

the vessel and the ground station. Experiment results showed that the proposed system could scan the 2D 

image of the underwater cross-section, which were the depth and temperature of the water; shown at the 

ground station. When the SAR crew created a path at the telemetry, the vessel moved successfully to the 

created path. Future research includes integration with more sensors for intelligence, surveillance, command 

and control for the possibility to be implemented for military purposes. 
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Abstract: This study focused on pre-flood measures to estimate evacuation times impacted by flood
depths and identify alternate routes to reduce loss of life and manage evacuation measures during
flood disasters. Evacuation measures, including traffic characteristics, were reviewed according to
different flood depths. Several scenarios were constructed for different flooding situations and traffic
volumes. Evacuation times in the study area were evaluated and compared for all scenarios with
reference to dry conditions. Results of network performance indicators compared to the dry situation
showed that average speed dropped to 2 km/h, VHT rose above 200%, and VKT rose above 30%.
Cumulative evacuee arrival percentage increased when flood levels were higher than 5 cm. Flood
levels of 10–15, 15–20, 20–25, and 25–30 cm represented percentages of remaining evacuees at 9%,
19%, 49%, and 83%, respectively. Time taken to evacuate increased according to flood level. For flood
depths of 5–30 cm, travel time increased by 40, 90, 260, and 670 min, respectively, suggesting the need
for early evacuation before the flood situation becomes serious.

Keywords: traffic behavior; evacuation time; flood water evacuation; road network

1. Introduction

In cities in Southeast Asia, due to squalls and typhoons during the rainy season, floods
occur frequently, causing great damage to people’s lives. Especially in urban areas, most
of the ground is covered with concrete, which has low rainwater infiltration capacity and
insufficient drainage. Therefore, once a flood occurs, the inundation progresses rapidly,
and it is not uncommon for many residents to be unable to evacuate and suffer damage. In
order to deal with this problem, it is necessary to predict the occurrence of floods, secure
evacuation routes in advance in response to ever-changing flood conditions, and reduce
loss of life.

The city of Hat Yai, which was the subject of this study, is the economic and trans-
portation center of Songkhla Province and southern Thailand and is the gateway for car,
train, and air travel to Malaysia and Singapore. Hat Yai city is located on a large plain as a
pan basin surrounded by mountains to the west, south, and east. The area slopes to the
south and west toward Songkhla Lake. The climate in Hat Yai city consists of northeast
monsoon winds from October to January and southwest monsoon winds from May to
October, resulting in heavy rainfall and runoff from the mountains into the U-Tapao Canal.
This was designed to support only 500 cubic meters per second of water flow.

As shown in Figure 1, between 2010 and 2019, low- and medium-density residential
areas and rural agricultural areas in Hat Yai City experienced urbanization with the con-
struction of infrastructure such as roads and houses. The construction of this infrastructure
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proceeded without strict enforcement of urban planning laws, which reduced the water
intake area due to land reclamation and surface concrete, which had a significant impact
on water runoff during the rainy season [1].

Figure 1. The expansion of Hat Yai city, a major city in southern Thailand, from 2010–2019.

The reduction in natural water intake areas has resulted in frequent flooding problems.
Frequent flooding areas (red pins) are recorded by the Hat Yai municipality and identified
from the analysis of satellite imagery. Figure 2a shows the pattern of flooding in Hat Yai.
The Khlong U-Tapao Basin (black arrow) in Sadao District flows through Hat Yai City
and drains into the Songkhla Lake within 10–30 h, causing the U-Tapao Canal to overflow.
Rainfall of more than 100 mm in 6 h causes runoff from Khohong Hill (brown arrow) into
the Khlongrien Basin [2]. Repeatedly flooded areas are also shown in Figure 2a. Damage
caused by flood has been huge. For example, the flood event in 1988 caused damage of
more than THB 2000 million, while 12 years later in 2000, flooding caused damages of THB
10 billion and the deaths of 30 people.

After this flood, the government upgraded the U-Tapao Canal by constructing natural
branch drainage canals [3]. However, the fact that a major flood in 2010 impacted 80%
of the area shows that these structural improvements to the drainage of the area did not
reduce economic losses and social risks. Data analysis from field surveys [4], showed that
many roads were cut off by the flood, as shown in Figure 2b. A maximum flood level of 4 m
was recorded, with damage estimated at more than THB 16 billion. Therefore, in addition
to upgrading the canal, flood countermeasures such as ensuring of evacuation routes
need to be adequately carried out by meeting about the situation before, during, and after
flood events.
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Figure 2. Location, maximum flood depth, frequency flood, and network model of Hat Yai city.

The objective is to evaluate the road network and suggest alternate routes during flood
disasters using a dynamic traffic assignment (DTA) model to reduce loss of life and manage
evacuation measures. Subsequently, the secondary objective of this study is to estimate
evacuation time and identify measures to control flooding based on past evaluations.

This paper is organized as follows. First, the background and objectives of the study
are explained in the introduction. Second, the literature on the identification of flooding
evacuation procedures and dynamic traffic assignment (DTA) is reviewed. Third, the
summary of background information, such as flooding impact on road transportation and
actual evacuation behavior in Hat Yai, is described. Fourth, the DTA model network by
Dynameq is explained. Fifth, the result of the scenario analysis is analyzed and evaluated
based on the travel speed, VHT, and VKT. Finally, conclusions and possibilities for future
work are summarized.

2. Literature Review

Planning an evacuation is the best way to avoid or mitigate the effects of disasters such
as hurricanes [5–8], nuclear power plant accidents [9–11], and earthquakes [12–14]. Several
previous studies have also been conducted to identify flooding evacuation procedures and
instigate optimal preventive measures [15–20]. Evacuation success depends on adequate
warning time, public preparedness, clear instructions, evacuation routes, traffic conditions,
and dynamic traffic management measures [19,20]. In particular, findings showed that
the key elements influencing the efficiency of evacuation services included controlling
road conditions at the outgoing motorway connections in the given network during the
evacuation period and access capacity from the downtown area to outbound freeway links.
A thorough analysis of the traffic impacts of a mass evacuation of the Halifax Peninsula
under several flooding scenarios was also conducted [21]. However, variables such as
human behavior and the type of disaster that triggers the evacuation are uncertainties [22].

In an evacuation scenario, extremely concentrated time-varying origin–destination
(O-D) demands result in highly unstable and disorderly link flows, with oversaturated
queues. In practice, the methodology generally followed by evacuation studies is to
assume the percentage of the population that is going to evacuate and then use behav-
ioral response curves to estimate the timing of the evacuation under random population
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distributions [23,24] with demand based on linearized S-curves at half-hour intervals re-
lated to a clearance time lower in magnitude than the average travel time. The clearance
time may be insufficient to provide adequate planning measures unless comprehensively
analyzed. Evacuation response problems can also be solved using census demographic data
and travel survey data to calculate the proportion of the population commuting into, out of,
or across an at-risk area to generate the percentage of the population that is going to evacu-
ate and make predictions on the behavioral capabilities of the different social groups [25].
To prevent traffic congestion, staggered departure times could be assigned to different
groups of evacuees in endangered areas [26,27]. Evacuation overcrowding on the roadways
will result in a partial or full loss of capacity at certain network links [24,28–31] because it
affects reliable evacuation times under realistic transportation network conditions.

An evacuation planning model aims to achieve different network optimal states that
mirror real-world evacuation events. The network might lose capacity as a result of both
human and disaster-related factors, while variations in the size and timing of evacuation de-
mand generated by the dynamic traffic assignment (DTA) model will provide more realistic
outcomes. DTA has been used to determine evacuation scenarios in macroscopic [32–34],
mesoscopic [35–38], and microscopic models [39–44].

The viability of using the Dynasmart-P DTA model was assessed for alternate traffic
evacuation tactics in downtown Minneapolis, Minnesota in the event of an emergency
requiring the evacuation of a sold-out crowd from the Metrodome [45].

Several previous studies were conducted to identify flooding evacuation procedures
and instigate optimal preventive measures. Land surface modeling connecting the Halifax
Stream and transportation networks was used to determine the magnitude of the flood and
associated network disruption. An examination of network performance showed persistent
congestion of 4 to 7 h during the evacuation. An analysis of transportation systems in
emergency conditions due to disaster scenarios was also presented in Di Gangi (2009) [46].
Piyapong et al. (2021) used mesoscopic (DTA) as a tool to improve road network traffic
flow performance under different flood conditions by applying the concept of the Macro
Fundamental Diagram (MFD) and take appropriate traffic control measures. A mesoscopic
(DTA) model was developed to determine quantitative indicators for estimating the ex-
posure component of total risk incurred by road networks [47]. Appropriate quantitative
methodologies based on a dynamic approach (DA) are a useful tool to support evacuation
strategic planning at different regional scales. A DA concept to simulate the supply of
transportation and the interplay between supply and demand for travel in an urban road
transportation system under emergency circumstances was presented [48]. Traffic data
were collected during a practical evacuation experiment carried out at Melito di Porto Salvo,
Italy and used to calibrate and validate transport supply models. A calibrated DA model
can be a helpful tool when planning and managing road networks and transportation in
emergency situations. A modeling approach was conducted on the Boston, Massachusetts
road network and a range of practical challenges related to evacuation modeling was
examined in Balakrishna et al. (2008) [49].

There is a case study used DynaMIT, a cutting-edge DTA model, to demonstrate
the advantages of network management methods. A Cellular Automata-based Dynamic
Route Optimization (CADRO) method was also considered for hydrodynamics, terrain,
and human response time to determine dynamic flood evacuation routes (FERs) [50]. The
CADRO method was employed in a suburb of Yangzhou City, China. Findings showed
that compared to the conventional method used for evacuation route optimization, average
and max lengths of FERs were reduced by roughly 32.70%, 34.04%, and 7.90%, respectively.
Mathematical model formulations underlying traffic simulation models used in evacuation
studies and behavioral assumptions were assessed by Pel, Bliemer, and Hoogendoorn
(2012) [51].

Evacuation travel behavior, which is based on the viewpoint from the social sciences,
as well as empirical investigations have also been discussed in detail. Traveler decisions,
such as whether to evacuate, what time to leave, where to go, and how to get there,
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can be forecasted using simulations. Facets of transportation systems under emergency
circumstances brought on by dangerous events were examined by Di Gangi (2011) [52] using
a mesoscopic (DTA) model to produce objective measurements and assess the exposure
attributes of overall risk suffered by regional road networks. Impacts on the transport
network were examined to demonstrate how effective quantitative approaches built on a
DA concept were a helpful tool to aid evacuation strategic planning. A macroscopic traffic
flow model utilizing a DYNEV II large-scale evacuating planning system was presented by
Lieberman and Xin (2012) [34]. This concept was represented as a single processing unit for
generalized networks with connection lengths ranging from 100 feet to several miles. The
model allowed simulation time steps of one minute or longer, significantly greater than
utilized for other models, and supported up to four turn motions from each link with a
wide variety of traffic controls at junctions to accurately reflect congested areas and their
spill back processes.

Therefore, this study creates a novel model to determine the effect on flood evacuation
time estimation of varying water depth with evacuation behaviors. Generally practical, the
methodology followed by evacuation studies is to assume the percentage of the population
that is going to evacuate. Then, it uses behavioral response curves to estimate the timing
of the evacuation under random population distributions [23,24] with demand based on
linearized S-curves at half-hour intervals related to a clearance time lower in magnitude
than the average travel time. The clearance time may be insufficient to provide adequate
planning measures unless comprehensively analyzed. However, this study fills the gap
by using the data from the questionnaire survey on flood evacuation behavior in Hat Yai
Municipality to analyze evacuation behavior during the flood. Moreover, this study consid-
ers the efficiency of the road network, which decreases with rising water levels, leading
to the ability to estimate evacuation time. This can be determined from the inundation
model characterizing the inundation in the study area. The model used in this study
brings the advantage from both macroscopic and microscopic levels, called the mesoscopic
level, which is a novel application for solving the road traffic network that increases the
modeling accuracy compared to the macroscopic without the need to prepare the same
in-depth details as on the microscopic level. The expectation is to obtain the preparation
plan, which is a solution helping government officials to avoid evacuation delays and loss
of life and property.

3. Background Information

Travel models can analyze evacuation processes and estimate evacuation times. How-
ever, simulation is a time-consuming process that includes model development, validation
of data collection, model testing, and data interpretation. In this study, the authors updated
the existing traffic demand by using a static origin–destination (OD) matrix to describe
the trip distribution. The estimation was based on current traffic counts using matrix
algorithms, which have been available for many years for static assignment models and
can be used to pre-process demand matrices for dynamic traffic assignment (DTA) models.
Trips were assigned to the city’s traffic analysis zones and existing roadway networks
extracted from the model. Reference trip tables were constructed for areas outside the city
to form background vehicle traffic as trips traveling to or from evacuation zones. Data were
taken directly from the travel model for a typical day and then distributed over each hour
of the day. The DTA model only reflected personal vehicle traffic, with travel modes such
as public transit or walking not considered. The overall vehicle travel demand was based
on hourly typical travel daily activity until the evacuation notice was given. The travel
demand for evacuation zones was separated from background traffic not associated with
evacuation zones. Departure times for leaving the evacuation zones varied according to the
time and type of the event. To conduct this study, the existing traffic demand was updated
as a static origin–destination (OD) matrix. Flood evacuation behavior in each area was
reviewed including percentages of evacuation timing (do not evacuate immediately after
warning or based on flood level), evacuation destination (out zone, evacuation center), and
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travel patterns used for evacuation (walking, passenger car, motorcycle). These variables
are important to estimate the OD matrix of each flood scenario in a particular area.

3.1. Network Configuration and Parameter Setting

Estimating the spatial and temporal distribution of travel demand is important for
DTA models. One common approach is to use the calibrated OD matrix of macroscopic
travel demand models as Static Traffic Assignment (STA). This study used the OD matrix
from the regional demand model of Hat Yai District developed by Luathep et al. (2013) [53]
using the EMME program. The road network of Hat Yai City consists of 2507 links and
923 nodes including 142 zone centroids. Among the nodes, 41 are intersections with a
traffic signal, as shown in Figure 2c. Connectors were used to link the zone centroids to the
network. These were carefully placed to be as reflective of the actual situation as possible
while avoiding false network congestion.

The regional demand model data were then imported into the Dynameq program,
and a DTA road network was set up. Signalized intersections and signal plans and timings
were imported from the real world. The following settings correspond to Dynameq settings
required to run the assignment. This was implemented in order to get reasonable paths
while still respecting the observed free-flow times on locals and collectors. Dynameq allows
for signal offsets as inputs and provides improved computational efficiency compared to
a microscopic model in a regional network. This is particularly important for simulation-
based DTA. All movement capacities were calculated based on their types and parameters,
such as gap acceptance and property relationships. At intersections, movements and rules
were based on the signal plans. Links in the modeled network, characteristics of network
geometry including position, shape, and length, and functional characteristics such as
free-flow speed correspond to the real-world existing road network. Link capacity was
calculated using three factors: link free-flow speed, effective vehicle length, and vehicle
reaction time.

There is the possibility to clear the traffic during the flood by controlling the traffic
signals using a detecting system, which gives an input to the current system, with the
goal that it can adjust the changing traffic density patterns and provides a vital sign to the
controller in a continuous activity. Using this method, improvement of the traffic signal
switching expands the street limit, saves time for traveling, and prevents traffic congestion.

As mentioned above, model parameters such as drivers’ response time and vehicle
relative length can vary. Here, 6.25 m and 1.25 s were chosen as the worldwide effective
vehicle length and response time parameters, respectively. In Dynameq there are default
values for passenger car average effective length (6.25 m) and average response time (1.25 s).
The default and user-specified effective length and response time values can also be altered
for entire scenarios or for individual links through the use of multiplier factors for Effective
Length and Response Time. Any modifications to these two parameters resulted in a
change in jam density and maximum flow rate at each link. The free-flow speed is also an
important component that defines link capacity.

3.2. Origin–Destination Matrix

Data to produce the DTA model were obtained from the Hat Yai regional demand
model. This static assignment model could be reused for long periods and was also used
as a pre-processed travel demand matrix for the DTA model. Static traffic demand was
designed using a conventional 4-step model. Trip distribution was divided into two groups
as aggregate (secondary data) and disaggregate (survey) methods. Both models were also
combined as mixed distribution models [54]. A trip distribution model can be estimated
using a Poisson regression using variables extracted from a trip generation model [55],
with no constraints on the spatial relationships between origins or destinations, thereby
guaranteeing good reliability of the estimated parameters [56]. The cost objective, referred
to as an entropy function, plays a key role in terms of potential, exponential, and combined
trip distribution and is most commonly used to describe the empirical relationships between
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economic and behavioral variables [57]. For this study, with extracted trip production and
trip attraction from the Hat Yai regional model for every zone in the network, we then used
the growth rate of the population [58] to calculate the production and attraction trip of
2022. The calculation of the entropy function between each OD pair d, Ed in the network is
defined as

Ed = exp
(
− uod

ū

)
(1)

where
uod is the free-flow speed travel time between OD pair d;
ū is the mean of free-flow travel time between all OD pairs.
The process of trip distribution to find the prior OD matrix, the matrix balancing

method [59], was used, which balances the matrix of trip production data and attraction
data by entropy as weight for distribution. The prior matrix from the previous one will
be calibrated based on the observed hourly link volume. Using this method, the travel
demand matrix was automatically adjusted to existing peak-hour traffic volume. This
model was also used as a gradient method [60] to minimize the objective function as a
measure of the distance between observed flows (v′a) and assigned flows v(g). This distance
was weighted by the constant α, (0 ≤ α ≤ 1), which was used to weigh deviations from the
counts, the sum of squares between the new matrix, and also the difference between the
adjusted matrix g and the original matrix to be adjusted g’, as a constant used to weigh
deviations from the adjusted and the original matrices [61].

The mathematical formulation is shown in Equation (2).

Minimize: z(v, g) = α ∑
a3A

(va(g)− v′a)
2 + (1− α)∑

i3I
(gi − g′i)

2 (2)

where
a ∈ A are the links that have counts;
v(g) is the assigned flow using the adjusted matrix;
(1− α) is used to weigh the deviations from the adjusted and the original matrices,

and OD pairs are denoted by the index i, i ∈ I;
I is the OD cells that are included in the demand term of the objective function.
The best value choice as parameter α is dependent on the data when a particular

adjustment is carried out, such as the number of links with counts. The higher the value of
α, the more weight is given to fitting the counts. To preserve the structure of the adjusted
matrix, a judicial value of α would give weight to the demand matrix deviations. The model
was calibrated using a set of 1-morning peak hour of traffic counts and included data from
annual average daily traffic (AADT) converted to peak hour by comparing the percentage
of 1 peak hour with daily traffic. Peak-hour morning traffic was used for calibration because
the distribution of traffic was more uniform than in the afternoon, as seen from the Peak
Hour Factor (PHF). The 110 traffic links were compared with the model and results were
assessed using Bland–Altman plots, as shown in Figure 3.

Figure 3 is the plot of differences between model flow and observed flow vs. the
average of the two measurements, which help to investigate any possible relationship
between measurement error and the true value. Results show a bias of 19 units, represented
by the gap between the X-axis, corresponding to zero differences, and the parallel line
to the X-axis at 19 units. After ensuring that our differences are normally distributed,
we can use the standard deviation (SD = 144) to define the limits of agreement at a 95%
confidence interval. So, results measured by model flow are approximately 305 units below
or 264 above observed flow (red line).
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Figure 3. Bland–Altman plots between model flow and observed flow.

Then, considering the statistical values by using a two-sample t-test between model flow
and observed flow, the results are as follows. The mean in the model flow group was 4896.945
(SD = 3804.629), whereas the mean in the observed flow was 4878.239 (SD = 3793.905). A
two-sample t-test showed that the difference was not statistically significant at the t-test
statistic value, where p-value = 0.971 > 0.05 (95 percent confidence). The degree of correlation
was determined after traffic demand was adjusted by the iteration process. The degree of
correlation was calculated between the manually counted traffic volume and the developed
model traffic volume. Results showed that the developed model was calibrated at 0.986, as
shown in Figure 4.

Figure 4. Relationship between modeled and observed link volumes.
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3.3. Evacuation Behavior during the Flood

Travel and evacuation behavior data collected from a questionnaire were used to
investigate people’s behavior before, during, and after a flood incident from past experi-
ences. A total of 102 affected communities (zones) were integrated into four main areas
(zone groups) according to the Hat Yai flood response [62] to determine the proportions
of different evacuation decisions during flooding, as shown in Figure 5. More people in
all four areas of Hat Yai decided to evacuate than decided not to evacuate. Evacuation
scenarios were evaluated immediately after the warning: water level less than 50 cm, water
level of 50–100 cm, and water level of 100–150 cm.

Figure 5. Percentages of evacuation timing.

The secondary data in Table 1 were examined to determine the evacuation behavior of
people in Hat Yai municipality. Results showed that, on average, 71% of people chose to go
to evacuation centers provided by the local government within each flooded area, with 29%
going to centers outside the flooded areas. For evacuation, 88.75% of people chose private
cars as the primary mode of transport.

Table 1. Data from the questionnaire on flood evacuation behavior in Hat Yai Municipality.

Destination(%) Transport Mode Choice (%)
Area Evacuation

Center Outzone Walking Passenger
Care

Public
Transport

1 74.60 25.40 11.11 87.98 0.91
2 67.00 33.00 9.00 90.00 1.00
3 71.60 28.40 8.20 90.40 1.40
4 70.74 29.26 11.80 86.60 1.60

Average 71.00 29.00 10.02 88.75 1.23
Source: kb.psu.ac.th/psukb/handle/2016/11582 (accessed on 29 May 2022).

For sudden flood situations, this study applied the calibrated static OD matrix as a
1 h peak to evaluate an evacuation plan. This plan was then analyzed to determine the
proportion of evacuation decisions during flooding with water levels less than 50 cm and
then consider the trip production of zones distributed to trip attractions as evacuation
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zones designated by the local government. Private cars were selected as the main mode of
transport for evacuation, as shown in Table 1. Cars could drive through flooded roads with
water levels less than 50 cm and were assigned based on reduced road efficiency according
to flood depth.

3.4. Flooding Impact on Road Transport

Flood levels have different effects on the safety and reliability of the road network. Sev-
eral studies examined flooding effects on vehicle speed [63–78]. Pregnolato, Ford et al. [79]
combined data from experimental studies, observations, and modeling to develop a func-
tion that described speed limits of different vehicle types based on their dimensions (small
vehicles, large vehicles, and heavy vehicles). Interviews with taxi drivers and pickup truck
drivers also showed a relationship between flood depth and vehicle speed as a curve trend
(orange line) and combined data from experimental studies, observations, and modeling to
develop a function that described speed limits of different vehicle types based on their di-
mensions (small vehicles, large vehicles, and heavy vehicles). Interviews with taxi drivers
and pickup truck drivers also showed a relationship between flood depth and vehicle
speed [80] as a curve trend (estimated function), as shown in Figure 6. For this study, we
change the the free-flow speed parameter on the link to the set value according to the results
obtained by the flood function at different levels. However, we consider a flood depth not
exceeding 30 cm, in which the vehicles’ speed is reduced to 0 km/h as the ultimate level for
safe driving of most vehicles. At a flood depth of 30 cm, vehicle speed is reduced to 0 km/h.
When driving through flood water of less than 30 cm depth, drivers should consider safety
as their main priority. Driving in a water level of 5–10 cm is considered safe because the
water can easily be seen on the road surface. A water level of 10–20 cm is also considered
safe for cars to pass normally, but it may impact the movement of smaller cars with lower
ground clearance. Most passenger cars have a height clearance of 150–170 cm, and water at
a 20–30 cm depth will cover the exhaust pipe outlet. Short distances are manageable, but
traveling long distances is not recommended for safe driving. Water levels above 30 cm are
considered dangerous for all types of vehicles, and driving is not recommended.

Figure 6. Relationships between flood depth and vehicle speed [65–75,80].

4. DTA Model Network

This study presented the DTA at the mesoscopic scale using Dynameq 4 to efficiently
model traffic lane usage. Traffic flow is described with three components: car following,
gap acceptance, and lane changing [81]. Following the above, the application of the
relationships between flood depth and vehicle speed, which define vehicle motion on the
roadway through time of the car-following model, is shown in Equation (3).
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x(t) = MIN
[(

x f (t− RT) + FFS× RT
)
,
(
xl(t− R)− EL

)]
(3)

where
x f is the location of the following vehicle at time t;
xl is the location of the primary vehicle at time t;
FFS is the free speed of the roadway (km/h).
Equation (3) describes the trajectory of a vehicle based on a triangular diagram, as

shown in Figure 7, defined by the three parameters of free-flow speed (FFS), maximum
flow (qm), and jam density (kj), which represent flow as a function of density in each link.
This is similar to how Newell’s kinematic wave theory [82] was used for the propagation
of traffic delay. A positive slope in the first segment (increase, k < kc) indicates a vehicle
moving at FFS, where the absolute value of the negative slope in the second segment
(decrease, k > kc) is equal to the backward wave speed (BWS).

Figure 7. The triangular fundamental diagram.

This fundamental diagram shape changes if the average vehicle speed is reduced as a
result of any condition, such as bad weather affecting the maximum flow that can traverse
a road segment. The Dynameq program used a triangular shape diagram to describe
only three macroscopic traffic flow parameters (maximum flow, jam density, and wave
speed), thereby reducing the required input data. Values of the three macro traffic flow
parameters for a specific vehicle type and a specific road were determined from the free
speed of the link, the effective length, and the response time of the vehicle type, as shown in
Equation (4) below.

qm =
1

(RL + EL
FFS )

, k j =
1

EL
, vwave =

EL
RL

(4)

where
qm is the maximal possible flow rate (veh/h/lane);
k j is the stationary state when traffic flow stops completely, or jam density (veh/km/lane);
vwave is the speed at which shock waves move through a platoon of traffic against the

direction of flow for a specific vehicle type (km/h);
EL is the average space that the vehicle occupies on the road;
RL is the driver response time to change speed when the traffic flow state ahead

changes and the backward wave speed (BWS) is the rate of propagation of the change in
traffic flow state upstream as a result of changes in the downstream traffic flow.

At DTA equilibrium, vehicles starting their trips in the same zone and ending their
trips at the same destination will have the same travel time. To reduce travel time, the
dynamic user equilibrium (DUE) model was used [83]. This is a time-dependent path flow
that uses the method of successive averages (MSA). Corresponding path travel times were
determined following the method of Mahut et al. (2004) [84] using the Dynameq 4 program.
The overall structure of the study is presented as a schematic algorithm in Figure 8.
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Figure 8. Structure of the solution algorithm.

This study used two major components. The first determined the latest set of time-
dependent paths using the last cycle time-dependent paths, while the second defined the
actual travel time after completion of a given set of path flow rates. Large numbers of
vehicles in each particular zone caused network loading problems. To solve this, a route-
based dynamic traffic model was adopted. The initial paths must be provided to start the
algorithm; to satisfy this, the shortest paths are used based on the free-flow circumstances.
The mathematical equation representing dynamic equilibrium, consisting of demand for the
OD pair I(ga

i ), path flow for path k(h(a,n)
k ), travel time for path k(s(a,n)

k ), and the shortest

travel time for the OD pair I(u(a,n)
i ), was calculated for every time interval during the

assignment (a) for all iterations made during the simulation (n). The procedure is shown
below (Algorithm 1).

Algorithm 1 Dynamic MSA Equilibration Algorithm [85–88]

Step 0 Initialization (iteration n = 1); compute dynamic shortest paths
based on free-flow travel times and load the demands to obtain an
initial solution; n = n + 1

Step 1 If n ≤ N, compute a new dynamic shortest path and input path flow
(h(a,n)

k ) to each path k ∈ K

ha,n
k =

ga
i

n
, i = 1, 2, . . . , |i|

If n > N, identify the shortest among used paths and redistribute
the flows as follows:

ha,n
k =

{
ha,n−1

k
( n−1

n
)
+

ga
i
l if sa,n

k ; k 3 K, i 3 I, all a
ha,n−1

k
( n−1

n
)

otherwise

Step 2 If N ≤ L as the maximum number of iterations or RGap ≤ ε as
maximum average relative gap, STOP; otherwise, return to step 1
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Figure 8 illustrates the two main components of the Dynameq system, namely the
route choice model and the dynamic road traffic network loading. The system uses an
iterative approach to achieve dynamic user balance for dynamic traffic assignment (DTA)
based on mesoscopic traffic simulation. In each iteration, the route choice model and the
dynamic network loading model are run. The route choice model first allocates the OD
traffic volume of each point in the road traffic demand OD matrix at each departure time to
the effective road network based on the existing road traffic conditions. Subsequently, the
traffic flow of the road section that changes with time is transferred to the traffic simulation
model. This calculates the dynamic travel time of the road section, which is then sent to the
route choice model to correct the next route choice. This iterative process continues until a
predetermined critical value is reached, indicating equilibrium in the system. Overall, the
Dynameq system provides a robust and efficient approach for simulating and analyzing
dynamic traffic patterns under various scenarios [81].

A comparative gap is used in DTA to signify a perfect DUE flow. The stopping criterion
of the MSA was defined using the gap function, as shown by Equation (5) [88].

RGapa,n =
∑i∈I ∑k∈K ha,n

k sa,n
k −∑i∈I ga,n

i ua,n
i

∑i∈I ga
i ua,n

i
(5)

where
I is the set of all OD pairs;
Ka

i is the set of paths for the OD pair i and assignment interval a;
ha,n

k is the path flow for path k in interval a in iteration n;
ga

i is the OD demand for OD pair i in interval a;
sa,n

k is the travel time for path k in interval a in iteration n;
ua,n

i is the shortest travel time for OD pair i in interval a in iteration n.

5. Results

This study was performed by adjusting the free-flow speed factors of the model.
Alternative scenarios were developed based on evacuation demand (Flood ≤ 50) in
Figure 6 and FFS according to flood depth and vehicle speed in Figure 7. In the first
baseline scenario, the calibrated model identified potential congestion locations through-
out the network. This situation was utilized as the baseline to compare other situations
including flood depths of 0–5, 5–10, 10–15, 15–20, and 20–30 cm. The mesoscopic traffic
network model for Hat Yai developed by the Dynameq 4 platform is shown in Figure 9.

There were 142 zones including 133 communities and 9 evacuation centers, 923 nodes,
2507 links, and 41 signals. The appropriate OD matrix of personal vehicles, estimated using
the EMME subarea tool, was included in the imported demand matrices from the Hat Yai
regional model. A simulation was conducted, without a traffic volume warm-up interval,
to load the network at the beginning of the analysis period and cool down for network
clearance. The authors selected a ten-minute assignment period. This was identical to
6 cycles for a 1 h allocated OD matrix. Up to 20 routes were searched for one assignment
interval. Stop conditions were set at 200 cycles with a comparative difference of 1%.
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Figure 9. Road network in Hat Yai city with Dynameq platform.

5.1. Result of Model Convergence

There is consistency with previous research on short-notice evacuation events, as docu-
mented in the Approach to Modeling Demand and Supply for a Short-Notice
Evacuation [89]. Departure time from the evacuation zones varies according to the flood
levels, with residents in the greatest danger evacuated first followed by those closer to the
highway. For events where ample notice is given, less time is required to prepare for the
evacuation. The time required to prepare for an evacuation is typically longer, as residents
need to pack their belongings and collect their animals. Using different evacuation starting
times will lessen the impact of the evacuation on roadway conditions. The evacuation curve
can be shifted or compressed toward the end of the assumed evacuation event. When con-
sidering evacuation orders, public officials must allow the residents ample preparation time
for departure balanced against the dangers of delaying the evacuation. Integrating travel
demand modeling and flood hazard risk analysis for evacuation and sheltering should
ensure the redundancy of critical transportation routes and allow continued access and
movement in the event of an emergency. This may also include addressing vulnerabilities
of bridges, major roadways and highways, railways, traffic signals/traffic control centers,
and other transportation facilities and infrastructure components to ensure the availability
of multiple viable evacuation routes [90,91].

Considering the implemented transportation operational strategies for evacuation
events, in the assessment above, capacities are based on typical limiting signal green time
allocations. The development of an evacuation coordination plan would achieve additional
capacity. Traffic signals in vulnerable areas could be prioritized, with improvements
connected online to the Traffic Management Center together with contingency plans for
loss of power and communications grids [92].

Before investigating the impact of floods on the road network, this study first assessed
the sensitivity of the network’s performance to degradation in free-flow speed under dry
conditions. This was carried out by considering scenarios in which the free-flow speed
was reduced by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% and then evaluating
the resulting changes in average speed and vehicle hours traveled (VHT), as shown in
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Figure 10. The aim was to understand how much the road network performance could be
affected by changes in free-flow speed.

Figure 10. Free-flow speed network degradation.

The analysis revealed that the average speed on the network decreased linearly with a
relatively stable slope as the free-flow speed was reduced. This indicates that the reduction
in speed has a consistent impact on the network’s performance, regardless of the severity
of the speed reduction. However, the decrease in average speed was not the only factor af-
fecting the network’s performance. The study also found that the VHT gradually increased
as the speed reduction became more severe, until the network degradation reached 60%, at
which point the increase in VHT became more rapid. This suggests that the network was
starting to experience congestion and delays as a result of the reduced speed, particularly
when the speed reduction was more severe.

Overall, these findings highlight the importance of maintaining high levels of free-flow
speed on road networks, as even relatively small reductions in speed can have significant
impacts on travel times and congestion. The study also underscores the need to consider
the sensitivity of road networks to different types of disruptions, such as floods, in order to
better prepare for and mitigate the impacts of such events.

After running the DTA, it generated an output of model convergence to verify the
path flow corresponding to each driver’s assumed behavior mechanism in trying to reduce
their own travel time. Figure 11 shows that the convergence output, as the value of the
relative gap in the initial assignment interval, increased with an increase in departure time
as network congestion increased. Percentage variation in travel times increased for the
used pathways, according to the same starting time period, then steadily decreased, while
relative gap values increased to the 100th iteration. Beyond a set number of cycles, the
designed assignment resolved effectively, with an overall average difference of 5%. After
200 iterations, the relative gap for any given departure time interval became constant.
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Figure 11. Model average convergence of baseline scenario.

At every time interval, trip assignments were completed, indicating that almost all
vehicles arrived at their destinations and exited the road network within the time period
following the final demand loads. Figure 12 compares the total number of cars waiting
to access the network (on virtual connections) at the conclusion of the interval, measured
by the waiting time (red line). The total number of cars in the network at the conclusion
of the period was assessed by traveling time. Demand of departures during the first time
interval to the last demand loads used 11 time intervals (100 min) for network clearance.
All vehicles arrived at their destinations and exited the road network within a time interval
after the last demand loads.

Figure 12. Total number of vehicles waiting and traveling in the network of baseline scenario.
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The first time interval showed a non-congested situation and then traveling time
increased and the network began to fill up. Congestion then occurred as well as cars
waiting to enter the road network. Average speed continued to decrease, resulting in delay
in the network until the sixth time interval. Then, no waiting caused the trend of traveling
to decrease and speed increased.

5.2. Result of Scenario Evaluation

Urban floods affect transportation by increasing travel times, route changes, and
congestion due to low speed. Roads with a flood depth of more than 50 cm are considered
completely unusable by private vehicles. Therefore, evacuation timing demand in flood
levels lower than 50 cm was assigned to evacuation centers and out areas to compare the
efficiency of the road network under different flood conditions. Vehicles take the shortest
path to reach their destinations but change to longer paths with longer travel time under
flood conditions. For this model, variables of road function were degraded by flooding.
Vehicles changed routes to reduce their travel time based on user equilibrium principles.

Table 2 shows network performance indicators during the seven scenarios. Vehicle
speed during the flooding scenarios changed. The average speed during dry conditions
was 29.72 km/h. During the 0–5 cm flooding situation, speed decreased to 27.70 km/h, a
6.79% speed decrease. Similarly, 5–10, 10–15, 15–20, 20–25, and 25–30 cm flooding scenarios
decreased vehicle speed to 21.29, 14.43, 8.57, 4.08, and 2.03 km/h, with percentage changes
in speed of −28.38, −51.45, −71.15, −86.26, and −93.16 from the dry scenario.

Table 2. Network performance indicators comparison.

Performance Measure

Scenario Speed (km/h) VHT (veh-h) VKT (veh-h)

Value Change (%) Value Change (%) Value Change (%)

Dry 29.72 - 3542.68 - 109,276.68 -
0–5 cm 27.70 −6.79 3794.14 7.10 109,220.79 −0.04
5–10 cm 21.29 −28.38 4835.76 34.08 109,634.47 0.33
10–15 cm 14.43 −51.45 7034.85 72.40 113,030.73 3.42
15–20 cm 8.57 −71.15 11,000.06 120.05 120,578.22 10.00
20–25 cm 4.08 −86.26 25,961.01 186.83 136,639.76 22.69
25–30 cm 2.03 −93.16 56,626,33 204.47 152,914.00 31.94

Vehicle hours traveled (VHT) increased as vehicle speed decreased by 204.47% of
travel time from the dry condition to the 25–30 cm flooding scenario. Vehicle kilometers
traveled (VKT) also increased because, due to flooding, drivers choose alternate routes
to reach their destinations. The VKT value in a flood of 0–5 cm was negative. Drivers
may choose the fastest route by time but there may be a shorter distance because the
overall performance of the whole network at the flood level was not different from the dry
condition. Kilometers traveled increased by 31.94% compared to the dry condition for the
25–30 cm flooding condition. Results showed that flooding scenarios had a negative impact
on network performance.

Figure 13 represents the seven scenarios plotted as a percentage of evacuation against
time. Evacuation time for the baseline was “0” as dry. The evacuees took 110 min to arrive
at evacuation centers, while none remained in the road network. The dry condition was
compared to the seven scenarios. Evacuation time increased with deeper flood levels. For
the 0–10 cm depth, evacuation time was not different to the dry condition. When flood
levels increased to 10–15, 15–20, 20–25, and 25–30 cm, evacuation times increased to 40, 90,
260, and 670 min, respectively. The remaining evacuees increased with increasing flood
levels. For flood levels of 10–15, 15–20, 20–25, and 25–30 cm, the percentages of evacuees
remaining were 9%, 19%, 49%, and 83%, respectively.
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Figure 13. Cumulative evacuee arrival percentage.

6. Discussion and Conclusions

Hat Yai city, the economic and transportation hub of Songkhla province and southern
Thailand, experiences heavy rainfall and flooding throughout the year due to northeast
monsoon winds from October to January and southwest monsoon winds from May to
October. Sudden flooding, in particular, makes it impossible for people to move and
increases the risk of disaster. Therefore, people need to be evacuated quickly before flooding
occurs to avoid injuries and deaths. Several scenarios were constructed by changing
flooding situations and traffic volumes. Evacuation times in the study area were evaluated
and compared for all scenarios with reference to dry conditions.

In this study, evacuation time was estimated and measures were identified for coming
floods using past evaluation by providing dynamic alternate routes using DTA with a
positive impact on network performance. Six flood level scenarios were used—0–5, 5–10,
5–10, 10–15, 15–20, and 25–30 cm—and compared with the dry situation. During flooding,
the average speed dropped to 2 km/h, VHT rose above 200%, and VKT rose above 30%.

Cumulative evacuee arrival percentage showed that evacuees remaining in the road
network increased when flood levels were higher than 5 cm. Flood levels of 10–15, 15–20,
20–25, and 25–30 cm represented percentages of remaining evacuees at 9%, 19%, 49%, and
83%, respectively. Time taken to evacuate increased according to flood level. For flood
depths of 5–30 cm, travel time increased by 40, 90, 260, and 670 min, respectively. This
suggests that it is necessary to start evacuation as soon as possible before the flood situation
becomes serious.

This work was able to fully analyze the road network in depth to plan for route choice
planning. The outcome of this study can be extended for actual operation, which can
be identified to evaluate the road link that can be traveled the fastest in terms of travel
time; the shortest available road network map will be provide this to the evacuation traffic
planner. The avoidance route can be followed according to the historical data. The more
necessary data to be included is the Flood Model for analyzing the road network flooding
possibility. We conclude with some additional ideas to further expand on the topic of flood
evacuation traffic management.

Integration of Emergency Response Plans: This study could explore the integration of
emergency response plans into traffic management strategies during a flood evacuation.
The study could analyze how different emergency response agencies can work together to
coordinate traffic management efforts and ensure effective evacuation of affected areas. The
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study could also consider the role of public information campaigns in promoting awareness
and preparedness among the public.

Evaluation of Evacuation Routes: This study could evaluate the effectiveness of dif-
ferent evacuation routes in reducing traffic congestion during a flood event. The study
could analyze how different factors, such as road capacity, network connectivity, and
population density, affect the efficiency of evacuation routes. The study could also con-
sider the impact of natural features, such as rivers or mountains, on the availability of
evacuation routes.

Assessment of Driver Behavior: This study could assess how driver behavior affects
traffic flow during a flood evacuation. The study could analyze how different factors, such
as age, gender, and experience, influence driver decision making during a flood event. The
study could also consider the impact of driver emotions, such as fear and anxiety, on traffic
flow and evacuation efficiency.

Use of Intelligent Transportation Systems: This study could explore the use of intelli-
gent transportation systems (ITSs) to improve flood evacuation traffic management. The
study could analyze how different ITS technologies, such as connected vehicles, traffic
signal prioritization, and dynamic message signs, can be integrated into traffic management
strategies. The study could also consider the impact of ITSs on reducing traffic congestion
and improving evacuation efficiency during a flood event.

Consideration of Vulnerable Populations: This study could consider the needs of
vulnerable populations, such as elderly people or people with disabilities, during a flood
evacuation. The study could analyze how different factors, such as accessibility of evac-
uation routes and availability of transportation options, affect the ability of vulnerable
populations to evacuate. The study could also consider the impact of community outreach
and support programs on improving evacuation outcomes for vulnerable populations.
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Abstract: When flooding occurs, people should be evacuated safely to designated shelters along
the optimal routes to minimize serious damages on lives and properties. However, in general,
only limited information related to evacuation procedures and using a directional arrow to indicate
existing shelters is provided on the evacuation map. Moreover, the evacuation routes leading to
nearby shelters are not presented effectively to people in an emergency situation. This paper aimed
to provide an approach to generate a flood evacuation cartogram based on an actual evacuation. The
proposed time–distance cartogram preserves the topological characteristics by minimizing distortion
in transforming the evacuation routes. To empirically evaluate its application, we applied the
proposed method to Siheung city in Korea. As a result, optimal shelter and evacuation routes were
derived by considering significant factors influencing the actual access to the facilities. Moreover,
the flood evacuation cartogram provides a more intuitive visualization than classic topographic
maps, by relocating shelters and reshaping the routes intended for evacuation. The suggested
method is significant as it provides practical flood evacuation information effectively and intuitively,
and the generated cartograms as empirical results also provide helpful insights for more efficient
evacuation plans.

Keywords: flood evacuation map; flood evacuation cartogram; time–distance cartogram; optimal
shelter location; optimal evacuation route

1. Introduction

As the development of coastal areas continues through land reclamation, the risk of flooding
is increasing and the risks related to huge losses of both life and property caused by inundation are
increasing as well [1,2]. Natural disasters, such as hurricanes and tsunamis, can cause serious damage
in coastal cities. In the case of such a disaster, it is critical to evacuate people as quickly as possible to
minimize fatalities. When an evacuation order is issued by the government, people should move to
the closest shelter as quickly as possible. However, the current evacuation system does not prescribe
how evacuees should choose a route [3]. Therefore, people generally lack information on which shelter
is the closest and easiest for them to access. Especially for circumstances in which inundation is
occurring, accurate forecasts and prevention measures using various physical and statistical models
are challenging due to the complexity of the hydrological process [4].

Moreover, the actual evacuation distance and time could change due to the dynamic situations
created by a natural disaster event. Therefore, it is obviously necessary to deploy an actual evacuation
time to extract the optimal route to the most accessible shelter to facilitate an evacuation during a flood.
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Moreover, the visual provision of evacuation information related to shelter locations and corresponding
routes is essential for the effective evacuation of people in real time. As shown in Figure 1, disaster
information maps in Korea show only the locations of shelters in a particular area or provide simple
directions to the shelters outside of the flooded area. It is difficult to identify the exact shelter location
to which people in a particular place should move [5]. Specifically, if only location information of
shelters is provided as shown in Figure 1a, there is a dearth of reliable information to select which
evacuation path is the safest and fastest. Figure 1b shows the direction of evacuation route with arrows,
but it is not explicit to know the time it takes to evacuate or the shelters that can be reached at the
shortest time. In other words, if several adjacent shelters exist, it is impossible to determine which
shelter is most accessible in the shortest amount of time based on the information represented in the
disaster map in Figure 1. This lack of information may result in the loss of valuable time needed for
evacuation and increase damages [6].
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In this context, this paper suggests an alternative method for constructing a flood evacuation
map by incorporating the actual travel time for a given distance during a flood situation, and a
more effective visualization method for a time–distance cartogram. We provide an effective flood
evacuation map for Siheung city in South Korea as an empirical example; in this location, spatially
concentrated heavy rain often occurs on a seasonal basis. For the flood evacuation map, we first
extracted the optimal inundation shelters and routes specifically based on the evacuation time derived
from the pedestrian network in residential areas. The evacuation time cartogram, which was created
by replacing the geographical distance between the residential areas and the flood evacuation shelters
with the evacuation time attribute, was generated to visualize evacuation routes and optimal shelters
effectively. The suggested flood evacuation cartogram would provide very intuitive and effective visual
information about optimal shelters and evacuation routes for those who do not know the optimal
shelter and even for those who have received limited evacuation information. Moreover, it provides
significant insights for policy makers wishing to construct their own flood evacuation plans.

This paper is organized as follows. In Section 2, previous studies related to flood evacuation
and the concept of a time cartogram are discussed. Then, an alternative method for creating a flood
evacuation map is proposed in Section 3. In Section 4, the empirical application of this approach to
flood evacuation mapping is shown using Siheung city in Korea as an example. Finally, the conclusions
and future work are discussed in Section 5.

2. Related Works

Various studies have been carried out on evacuation situations in flooded areas for decades,
including an analysis of the service area and the accessibility of shelters, as well as the derivation of



ISPRS Int. J. Geo-Inf. 2020, 9, 207 3 of 15

optimal evacuation routes. For example, Masuya et al. [7] analyzed the areas vulnerable to flooding
and computed their accessibility to shelters. Moreover, Zhang et al. [8] investigated a methodology of
feasible evacuation planning for dike-break flood with flooded roads extraction and flood simulation.
Coles et al. [9] integrated flood inundation modelling with service area analysis of emergency services
and analyzed the accessibility of districts during flood through a network analysis. Kulkarni [10] used
elevation data to assess the safety of routes, considering the depth of the inundation. The system used
for route selection in flooding situations was designed to extract the optimal evacuation route through
the path and randomized segment penalty algorithms. However, it is difficult to recognize which
route is more suitable based on the evacuation time because all routes are equally represented on the
topographic map without considering the temporal weights for evacuation.

Moreover, no studies have been conducted thus far that effectively provide results from the flood
evacuation analysis for those individuals who are actually endeavoring to escape. Although it is
noteworthy that Uno and Kashiyama [11] proposed an evacuation simulation system for disasters by
visualizing an evacuation situation using 3D animation, there is still a lack of intuitive information
about the optimal shelters to which people can escape. To visualize results from a flood evacuation
analysis, Leskens et al. [12] developed an interactive simulation and visualization tool for flood analysis.
The arrival time of a simulated flood and the accessibility of the roads were visualized, while the
evacuation route information was not included in the results. Similarly, although Zhang et al. [8]
provided information on heavily congested roads and vulnerable villages and Masuya et al. [7]
analyzed vulnerable residential houses, the evacuation time was not intuitively expressed visually in
both studies.

Among the wide range of visualization techniques, in the context of flood evacuation, one useful
method is a cartogram that highlights information related to the actual evacuation time instead
of precise spatial information for shelters. Cartograms have become popular in various fields of
application to supplement existing maps [13,14]. They take an advantage of visualizing geographical
information with statistical information simultaneously [15]. Although a cartogram might distort
the actual geometry of the map, it is more helpful in understanding the intended attribute of the
phenomena. Especially for time information, mapping time information spatially would lead to
have better understanding in travel perceptions and patterns [16]. Regarding the flood evacuation
map, a distance cartogram is appropriate because it visualizes the relative time and distance and is
therefore useful for identifying the actual movement of the routes and the nearest shelters within a
pedestrian network during a flood. Many studies have been introduced that create distance cartograms
representing various spatial relationships by replacing the geographical distance with other attributes.
The methods previously introduced have mostly been limited by their unrecognizable levels of
distortion or the uncertainty of the information [17]. In addition, various visualization techniques
emphasize the phenomena represented by the data, but they are not suitable for expressing temporal
information [18,19]. A time cartogram is a map that replaces the geographic distance between locations
with a time-related property; therefore, the geography is transformed in response to that property [20].

Many studies have been carried out regarding the creation of time cartograms using information
from various attributes. Shimizu and Inoue [17] proposed a process for creating intuitive and
easy-to-use distance cartograms, in which the bearing was applied to the initial value to modify
the Levenberg-Marquardt method. However, this method only describes how a network can be
transformed over travel time. Buchin et al. [21] proposed a model suitable for visualizing travel times
using road networks. The travel time was expressed through the length of the segments using sinusoid
curves, but it was difficult to intuitively recognize the travel time because the position was fixed and
there was no deformation for straight distances. Kaiser et al. [22] proposed a modified time–distance
deformation algorithm for multi-scale road networks. The technique can be used for a visualization
that can improve spatial perception, but the complexity of the operation when applied to a large range
of networks is limited. Kraak et al. [23] introduced a kind of line cartogram by combining time and
distance cartograms to identify the primitive characteristics of movement behavior, allowing users to
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explore these characteristics directly through a Web-based visualization of the movements. However,
the network for the movement was not preserved.

Ullah and Kraak [20] proposed a technique to generate the centered time cartogram using
scheduled movement data. By applying this method, the station, railway, and boundary of the Dutch
railway network are deformed to create a cartogram. The locations of the stations are displaced in
proportion to the travel time from the departure point to each station, and the travel time is represented
using concentric circles. For railway networks and the map’s boundary, the homeomorphism and
topology were maintained by a visually continuous and smooth. Since the deformation criterion of
railway links and station nodes in the same railway network is different, the resultant cartogram
may be severely distorted. Moreover, the computation is complicated because the deformation must
be performed separately. Conversely, Lee et al. [24] analyzed and visualized time–distance-based
accessibility using traffic data. The movement graph was constructed to search for the shortest path
and calculated accessibility based on the travel time of the path. However, there was a limit to the
effective provision of the linear path information, since the results were visualized using an areal shape.

3. Methods: Flood Evacuation Mapping and Cartogram Visualization

When a flood disaster happens, an immediate evacuation is necessary, but it is difficult to use
vehicles and other forms of public transportation for evacuation. Therefore, it is necessary to find the
path of the shortest distance that is available on the pedestrian level as an optimal escape route [5].
In this study, we assumed a situation in which pedestrian evacuation is possible such as slow rising
floods. This study calculated the evacuation time and extracts the escape route based on pedestrian
networks, which are characterized by more detailed walkways, to create a more suitable evacuation
map for an actual situation (Figure 2).
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Kim and Lee [5] extracted the service area of the shelter after estimating the pedestrian evacuation
time in accordance with the influence of the inundation depth and the slope. Similarly, as our first
step in generating the flood evacuation map, the pedestrian network and Digital Elevation Model
(DEM) data were used to calculate the actual escape time reflecting the slope of the pathway, as shown
in Figure 2. When calculating the evacuation time, a decrease in walking speed due to flooding
is considered for those in the expected inundation area which is represented in inundation map.
Moreover, for the area with deeper depth than critical inundation depth, an extremely high time cost
was assigned as the evacuation time to avoid passing through those areas. After designating the flood
shelters and origins, and establishing the expected flooded area as the restricted area, the Origin and
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Destination (OD) matrix between each individual residence and shelter can be created using the closest
facility analysis. The Central Disaster and Safety Countermeasures Headquarters and the National
Emergency Management Agency of Korea have recommended a 30-minute emergency evacuation.
Therefore, to extract the most feasible evacuation route, the routes with a total travel time of 30 min
or less were selected as the optimal routes with optimal shelters. Thereafter, the optimal shelter was
displaced based on the evacuation time, and the evacuation route was deformed according to the
relocated shelter to create the flood evacuation map.

3.1. Calculation of the Evacuation Time

Since walking time increases with an upward slope, the modified Langmuir’s law [25] was applied
to each link to calculate the travel time according to the slope. Table 1 shows the equations for walking
time according to a given slope by the modified Naismith–Langmuir law. According to the law in
Table 1, elevation difference should be calculated and stored in the pedestrian network to reflect the
increase and decrease of evacuation time by the slope. Increased evacuation time can be calculated by
overlaying the pedestrian network and DEM, assigning elevation values to each node, and calculating
the difference in elevation between both end nodes of each link. [5]

Table 1. Modified Naismith–Langmuir law [25].

Slope(◦ ) Equation for Walking Time (t)

Flat (0◦ ~ −5◦) t(min) = L(m)
v(m/min)

Ascents (over 0◦) t′(min) = t(min) + 0.1× ∆E(m)
Moderate descents

(−5◦ ~ −12◦) t′(min) = t(min) − 0.03× ∆E(m)

Steep descents
(under −12◦) t′(min) = t(min) + 0.03× ∆E(m)

t : walking time, t′: changed walking time considering slope, L: length of travel link, v: walking speed, ∆E:
elevation difference.

Moreover, the evacuation time increases as evacuees pass through the flooded area. In this study,
the equation in [26] is modified to calculate walking speed v during immersion which decreases linearly
by the flood depth as follow:

v (m/s) = 2 – 0.011d (cm) (1)

where v is the walking speed by the flood depth; d is the depth of water; 0.011 is the decreasing rate
by the inundation depth in the equation in [26]; 2 is the average walking speed in a normal state. In
previous studies [27–29], the average speed of fast walking for adults is in the range of 1.32–2.53 m/s.
To estimate travel time that increases with slope and immersion depth, the standard for fast walking
is set as 2 m/s in this study. In addition, it is possible to walk only by relying on a fixed object in
a waterway when its immersion depth reaches 0.55 m [30]. Therefore, the critical water depth for
evacuation is set to 0.55 m, so evacuation routes can be calculated using a detour route for areas in
which flooding is expected to occur above the critical depth.

3.2. Extraction of the Optimal Shelters and Routes

In this study, residential clusters in the area where inundation has occurred in the past or is
expected in the future are used to define the evacuation points for the analysis of the closest facility.
Residential clusters are formed based on densely distributed housing areas. Since densely distributed
housing areas are regions with a large population, they can be considered as areas in which evacuation
is generally urgent. To create residential clusters, dwelling types, such as single-family houses,
multi-family houses, or apartment buildings are extracted from the building layers of the Korean
Road Name Address Map database provided by the Ministry of the Interior and Safety of Korea.
Houses with a high possibility of flooding are selected by overlapping the buildings, the inundation
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trace map [31], and the inundation map, and are assigned to the nearest shelter based on the shortest
evacuation time. An inundation map represents expected flooded areas, expected damage range,
and the depth of inundation, considering the traces of flooding in the past, including factors such as
earthquake-induced tsunami, extreme rainfall, and the collapse and overflow of dams; meanwhile,
inundation trace maps are created to show previous inundation areas, and the attributes of flooding
depth and time are depicted on continuous cadastral and digital topographic maps. Because the
adjacent buildings are assigned to the same shelter and therefore have a very similar escape route,
residential clusters are created for adjacent building groups and the centroid of each cluster is set as
the origin for evacuation.

In this study, only flood shelters which are particularly subject to altitude conditions were extracted
and entered as a facility layer to perform the closest facility analysis. In the case of an actual evacuation,
it is necessary to analyze the evacuation route by establishing the inundation area as the restricted area,
since access to the flooded area may be prohibited. Therefore, the expected flooded areas are entered
as restricted for the closest facility analysis to derive a detour route for those flooded areas above the
critical water depth. The expected flooded areas are derived from the previously established inundation
map (Areas comprising the inundation map are classified into inland-flooded and outwater-flooded
areas and detailed expected flooded areas by frequency of occurrence and rainfall are constructed in a
polygon) [32]. Using evacuation origins and the restricted area for facilities and pedestrians, the closest
facility analysis can be performed by defining the travel time of each link as the cost, and the OD
matrix is then established. Consequently, optimal shelters and routes are selected with an evacuation
time of less than 30 min based on the OD matrix.

3.3. Construction of the Flood Evacuation Time–Distance Cartogram

To provide intuitive and effective information on the optimal shelter and its path as people are
being evacuated, it is essential to transform the evacuation map based on travel time to the shelter. For
each evacuation origin, the route to the optimal shelter is deformed using the time of the evacuation,
and the shelter is relocated to create time–distance cartograms for use during a flood evacuation. The
process for constructing the time–distance cartogram is shown in Algorithm 1. If many optimal shelters
are available for a single origin, all corresponding routes can be combined into one layer and processed
at one time.

Algorithm 1 Algorithm for flood evacuation cartogram

(1) Split the route links into segments at the point at which the direction changes and create nodes at the
segmented locations

(2) Assign nodes of route links and shelters to a set of points P
(3) Calculate the evacuation time distance dti and the time–distance coefficient rt based on the

following equation: dti = rt × di, where rt =
∑k

n=1 ln/
∑k

m=1 tm where,

a. location of the origin = [X0 , Y0]

b. location of point i = [Xi , Yi]∀ i = 1, . . . , k
c. straight distance from origin to each point i = li
d. travel time from origin to point i = ti

e. evacuation time distance = dti

f. time–distance coefficient = rt

(4) Adjust the locations of P based on the following equation: X′t =
(Xi−X0)·dti

li
+ X0 Y′t =

(Yi−Y0)·dti
li

+ Y0

where adjusted location of point i′ = [X′t , Y′t ]
(5) Construct the displaced shelter layer by extracting the last point of adjusted P
(6) Deform the evacuation routes by reconnecting the adjusted nodes of route links
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First, the route links for each evacuation origin are split into segments based on the point at which
the direction of the link is switched, and nodes are created at the segmented locations and combined
with the optimal shelter layer. Through the combination of the corresponding layers, the shelter can
constitute the last node of each route. According to the station relocation principle from [20], every
point can be displaced by converting the geographical distances into evacuation time distances while
maintaining the directional information of the shelters and the nodes from the origin. The geographical
distance utilizes the straight-line distance from the origin to the corresponding point. The evacuation
time distance dti can be calculated to reflect the ratio of the time that is required to reach each segment
node along the pedestrian network to the total evacuation time required to travel from one origin to an
optimal shelter. While maintaining the direction of each point from the origin, the straight-line distance
from the origin to each point is replaced by dti to adjust the position of the point. The layer with
relocated shelters can be created by extracting the last node from a point layer, whose location has been
adjusted. It is also possible to reconfigure nodes that have been relocated to deform the evacuation
routes. Even in cases in which there are multiple evacuation routes to different shelters, if the directions
of the shelters are similar, some sections are moved through the same links, and information on such
redundant paths must be preserved after the link is deformed. If the link is modified by the proposed
method, it is possible to preserve the redundant path since it is modified by applying the same time
distance coefficient rt. Although the post-transformed link shape is distorted for the existing path, it is
easy to recognize the evacuation route because the direction information from the origin is preserved
for all changing direction points of the link, that is, all the nodes comprising the route link.

After the time–distance-based cartogram has been created through the relocation of shelters and
link deformation, five-minute intervals of concentric circles can be added to provide direct information
on the evacuation time to optimal shelters.

4. Empirical Applications

4.1. Results of Empirical Applications

In this section, we present an empirical application for the proposed approach to flood evacuation
mapping using the case of Siheung, a coastal city in South Korea. Siheung is suitable as a study
area from which flood evacuation maps are created, as it is considered to be at high risk of flooding
due to its small number of mountainous areas and large number of coastal reclamation sites [32].
According to the guidelines for disaster maps provided by the Ministry of the Public Administration
and Security [33], a disaster map should be generated for severe instances of inundation. In addition,
Siheung is affected by river flooding. Therefore, the expected inundation area is established using
an inundation map, where 500 mm is the maximum rainfall and 10 years is the maximum frequency.
Figure 3a shows Siheung in South Korea and Figure 3b represents the pedestrian network with the
expected outwater inundation area based on a 500 mm/10 year-frequency for Siheung.

A total of 38 flood evacuation shelters were designated in Siheung (Figure 4a). Existing flood
shelters in Figure 4a are distributed throughout Siheung, including the expected inundation areas.
Flood shelters are designated with sufficient altitude due to the nature of the flood, and more shelters
are concentrated near dense residential clusters and the expected inundation area which has a high
probability of damage. The shelter layer was used as the facility data for the closest facility analysis. To
establish the evacuation origin points based on the residential clusters, a group of buildings classified
as ‘housing’ were first extracted from the building layer of the Korean New Address Map database.
The centroid of the clustered buildings was then extracted and the optimal shelter and corresponding
evacuation route from the residential cluster centroid are derived by conducting the closest facility
analysis. Since the analysis shows that adjacent buildings are allocated to the same shelter and their
evacuation routes are also equivalent, it is reasonable to combine buildings into one group to create a
cluster. The centroid of each residential cluster was used as the evacuation origin point, as shown in
(Figure 4b), which shows 20 points of evacuation origins for Siheung. Even areas that are less likely to
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be flooded because they are far from the expected inundation area may be additionally selected as
origins since they are dense residential clusters which require prearranged evacuation plans.
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Using the pedestrian network and DEM with a 90m × 90m resolution [34], the altitude value
was assigned to each node on the network, such that the varying elevation is stored in the pedestrian
routes. Then, the evacuation time per link was calculated based on the slope by applying the formula
in Table 1. Using the inundation map, the evacuation time for the links that were included in the
expected inundation areas could be calculated to consider a reduction in walking speed in the flooded
area. Moreover, a portion of the expected flooded area was defined as a restricted area, which was
classified as such once it exceeded the critical water depth. Based on the pedestrian network, which
includes evacuation time and restriction attributes, a closest facility analysis between the shelter and
the evacuation origin is performed. ‘Origin 16’ is located near the inundation area, and the route to
the nearby shelters is often through the inundation area. Figure 5 shows the change in the optimal
evacuation route both with and without the inundation area restriction for ‘origin 16’. To intuitively
show that the optimal shelter and evacuation route is altered by the inundation area, the route to
20 nearby shelters was derived for two cases without limiting the maximum evacuation time for ‘origin
16’: (1) No reflection of the inundation area (Figure 5a), and (2) Reflection of the decrease in walking
speed according to the water depth of the inundation area (Figure 5b). As shown in Figure 5b, when



ISPRS Int. J. Geo-Inf. 2020, 9, 207 9 of 15

the flooded area is introduced, it can be confirmed that a new route bypassing that area is then derived
as a new optimal evacuation route.
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Next, the flood evacuation cartogram was generated to achieve a better understanding of the
actual shortest evacuation paths in terms of walking mode and to quickly identify the nearest shelter in
a flood emergency. An evacuation time of half an hour was defined as the threshold for extracting the
optimal shelters and their routes. Then, shelter displacement and route deformation were efficiently
performed using the suggested distance cartogram algorithm shown in Algorithm 1. Figure 6 shows
the result of relocating the shelter and transforming the escape route by substituting the geographical
distance with that of time while maintaining the original direction for ‘origin 16’.
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Figure 6 shows the time required to reach each shelter from ‘origin 16’ by adding isochrones to the
result, which was derived from the optimal shelter and its route based on the geographical distance.
‘Siheung Maehwa Elementary School’ which is closer in terms of geographical distance seems to be
the optimal shelter. However, in an actual situation, considering the restricted area and varying time
distances for evacuation, the escape route to ‘Siheung Maehwa Elementary School’ would actually take
longer because the route passes through the expected flooded area. Therefore, it can be concluded that
‘Siheung Maehwa Middle School’ is more suitable as an optimal shelter, as shown in the evacuation
time cartogram (Figure 6b).

Figure 7 shows the original escape routes leading from ‘origin 10’ to the existing shelters and
deformed routes based on actual evacuation time. For the deformed escape routes, the locations of the
existing shelters were relocated if more time is required to reach them, in reality. This is because the
lengths of the route links have been modified based on the actual escape time. Moreover, since the
same time–distance coefficients were applied for all nodes of the route, it is possible to preserve the
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redundant routes passing through the same links toward ‘Siheung Social Welfare Center for Disabled’
and ‘Chongwang Social Welfare Center’. Therefore, the cartogram algorithm minimizes the distortion
created by the transformation of the paths and preserves the topological characteristics.
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4.2. Discussion of Flood Evacuation Cartograms

Table 2 illustrates the flood evacuation maps created for five different origins using the suggested
algorithm for the flood evacuation cartogram. Nine of the total twenty origins were still assigned to
the same shelter locations and optimal routes because only one shelter could be reached within 30 min.
In addition, six origins were excluded from the cartogram because the geographical and evacuation
time distances are not significantly different. For five origins (6, 9, 10, 13, 16), which reveal a significant
difference between geographical and evacuation time distances, the optimal shelters were relocated
and the route links were deformed to create an evacuation time cartogram to provide an intuitive and
effective representation of escape route information.

For ‘origin 6’, it is noted that the geographical distance-based optimal shelters and the evacuation
time distance-based optimal shelters are slightly different because the origin and the optimal shelter
are not affected by the expected flooded areas. However, the reversal of the shelters still occurs.
Interestingly, for ‘origin 9’, if the evacuation plan is devised by referencing a geographical distance-based
evacuation map, it is highly likely that the evacuees will be guided to the nearest ‘Nongok Middle
School’, thus over the capacity of that shelter. As shown in the cartogram of ‘origin 9’, it is easy to
realize that the distances to shelters are different, but the evacuation times to those shelters are similar.
Specifically, it can be visually observed that three viable evacuation shelters are all located within
30 min’ travel time and thus, guidance for the distributed evacuation routes to any of the shelters can
be provided. ‘Origin 10’ is also likely to attract evacuees to ‘Chongwang Elementary School’, which is
geographically closer than other shelters, but in reality, ‘Siheung Social Welfare Center for Disabled’ or
‘Chongwang Social Welfare Center’ are more appropriate options in terms of evacuation time. Based
on the evacuation time for ‘origin 13’, the optimal shelter is ‘Mokgam Elementary School’ which is
located in ‘Nongok-dong’, rather than the ‘Mokgam Social Welfare Center’ which is geographically
closer and located in ‘Chonam-dong’ the same administrative district. Although the relocated optimal
shelter, ‘Siheung Maehwa Middle School’, is located within a different administrative district than
the residential areas in which ‘origin 16’ is situated, it is selected as the optimal shelter with shorter
evacuation time. This implies the cartogram can deliver the information about an optimal shelter and
its actual route more intuitively than a classic topographic map, even if shelters are not within a same
administrative district than the residential areas in which origins are located.
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Table 2. Flood evacuation maps (E.School and M.School mean Elementary school and Middle school,
respectively).

Origin ID Flood Evacuation Map Based on Geographical Distance Flood Evacuation Cartogram Based on Escape Time

6
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Not all of geographic features, including the road network and administrative boundaries, were
transformed as deformed solutions based on the actual evacuation time. Therefore, there might be
a visual difference between the deformed routes and displaced shelters and the reality with which
people are familiar. This is very common regarding the intended distortion of reality, which occurs
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in a distance cartogram. Alternatively, it is generally recommended to use additional information to
counteract the lack of visual familiarity so people can move along the deformed route on the evacuation
map without delay. For instance, adding some important POI (Point of Interest) information on the
escape routes could be helpful to mediate the effect of shelter and link deformation.

In this study, the evacuation time per link according to slope was calculated using DEM as
reference data for altitude value. It is assumed that the resolution of DEM which is similar to the mean
length of segments is not too low for assigning altitude value to end nodes of segments. However,
by using a high-resolution DEM, new nodes can be created at the point of change in altitude value,
and the link is split with those nodes. With these newly processed nodes and links as input data, it is
expected that changes in travel speed and evacuation time according to the slope can be measured in
detail. In addition, although this study assumes a pedestrian evacuation situation for ordinary adults,
various alternatives may exist in addition to vehicles and pedestrians. For the further study, through
applying behavior information according to travel mode such as speed, or using different type of
network, the study can be extended to cartogram construction considering evacuation situation by
other travel modes in detail.

5. Conclusions

This paper addressed an alternative method for generating flood evacuation maps to effectively
visualize the optimal shelters and routes for residents in emergencies caused by flooding. To extract
the optimal shelters and escape routes, information regarding the elevation and the pedestrian
network were combined to derive the actual evacuation time. Moreover, expected inundation areas
are also considered restricted when identifying an escape route. Therefore, the actual escape time,
which considers the variance in walking speed based on flood depth, was successfully modeled
to create the flood evacuation map. Further, the optimal routes to accessible shelters within the
standard maximum time were presented for use in an actual evacuation based on evacuation origins.
Moreover, the algorithm used to create the flood evacuation cartogram was developed for a more
effective visualization of the optimal evacuation shelters and routes. Optimal shelters in the suggested
cartogram are much more clearly and easily recognized than the closest option based on geographical
distance because they can preserve the directional information related to the origins. Since the same
time–distance coefficients have been applied to all nodes along the route, the topological characteristics
between the origin and the shelter are well maintained.

For an example of its empirical application, five flood evacuation maps were constructed for
Siheung city of Seoul. As a result, there is a position reversal in which the shelter perceived as
significantly closer and located the shortest distance from the origin but with a relatively longer
evacuation time is further away than other shelters in the flood evacuation cartogram. In other words,
the flood evacuation cartogram is able to convey more effective and intuitive information regarding
the optimal shelter, which is actually closer based on actual evacuation time, although the geographic
distance from the origin is longer. In addition, because the routes are deformed using the same
time–distance coefficients as the displaced shelters for all nodes on the route links, the distortion of the
escape route could be minimized and information regarding redundant routes could be preserved.

Although the proposed cartogram can effectively identify the evacuation shelters and routes
that are optimally determined, there is the visual gap of evacuation routes and the reality. However,
this can be complemented by representing auxiliary information such as POI on the flood evacuation
cartogram. In additoin, further consideration of more dynamic factors, such as immersion speed, may
improve the accuracy of evacuation time calculations. We believe that the suggested flood evacuation
cartogram is significant, in that it provides practical flood evacuation information very effectively and
intuitively for people in a real flooding situation. Our empirical results also provide helpful insights
for disaster authorities or policy makers to facilitate the creation of more efficient evacuation plans.
Nevertheless, additional investigation will be necessary if we wish to evaluate the actual effect of the
information delivery for such a cartogram approach on users.
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Abstract: For flood risk assessment, it is necessary to quantify the uncertainty of spatiotemporal
changes in floods by analyzing space and time simultaneously. This study designed and tested a
methodology for the designation of evacuation routes that takes into account spatial and temporal
inundation and tested the methodology by applying it to a flood-prone area of Seoul, Korea. For flood
prediction, the non-linear auto-regressive with exogenous inputs neural network was utilized, and
the geographic information system was utilized to classify evacuations by walking hazard level as
well as to designate evacuation routes. The results of this study show that the artificial neural network
can be used to shorten the flood prediction process. The results demonstrate that adaptability and
safety have to be ensured in a flood by planning the evacuation route in a flexible manner based on
the occurrence of, and change in, evacuation possibilities according to walking hazard regions.

Keywords: spatiotemporal flood fluctuations; inundation risk assessment; evacuation route; artificial
neural network; geographic information system

1. Introduction

Natural disasters threaten the lives and valuable assets of thousands of people every year [1],
and widespread destruction, economic loss, and loss of life are global phenomena. Korea is historically
vulnerable to flooding due to high precipitation (annual precipitation in Seoul is 1200–1600 mm)
compared to other regions of the same latitude [2]. Generally, flooding is caused by a complex
combination of meteorological and hydrological phenomena such as extreme rainfall and flowing
water [3]. Moreover, an impermeable layer such as a road or paved surface in an urban development
assigns much more vulnerability to any given rainfall runoff phenomenon. Losses due to flooding can
be reduced by better land-use planning, regulations, law enforcement, and non-physical mitigation
management such as the establishment of shelters and evacuation routes [4]. Disaster managers are
attempting to predict floods and flood management and establish action plans by utilizing prediction
materials. The main purpose of flood prediction is to eliminate or lessen the causal factors that trigger
flood disasters [5]. For example, successful prediction of rainfall and flood progress is utilized in
flood management by such means as the preparation of flood hazard maps, contributing significantly
to the reduction of casualties [6]. Representative models for predicting urban flooding include
deterministic models based on numerical analysis and data-driven models using artificial neural
networks that have learned the rainfall runoff relation. In the case of urban flooding prediction based
on a numerical analysis model, this provides accurate and precise results, but the problem is that

Water 2020, 12, 2271; doi:10.3390/w12082271 www.mdpi.com/journal/water



Water 2020, 12, 2271 2 of 18

pre- and post-processing takes quite some time. In the case of data-driven models, one possibility is
to employ a stochastic model that is based on data established in advance, including target values
and real-time simulation or prediction using an artificial neural network (ANN). In particular, if the
database used in a data-driven model is based on the result of deterministic model results, it carries
the advantage of enhancing the accuracy of the target value’s representation while simultaneously
securing sufficient time for evacuation [7].

To date, studies using artificial neural networks, genetic algorithms, and deep learning models
have been carried out variously with the purpose of predicting or controlling floods. According to
Mosavi et al. [8], the application of machine learning to hydraulic and hydrology has increased.
According to the same study, there is no absolutely predominant machine learning model, and it seems
that useful machine learning techniques differ depending on the purpose, data, and results of the study.
Jhong et al. [9] established an inundation prediction model by combining support vector machine (SVM)
and multi-objective genetic algorithm (MOGA) based on effective materials concerning typhoons,
and this made it possible to reduce the prediction time and to optimize input data. Granata et al. [10]
conducted post-rainfall overflow analysis through support vector regression (SVR) and compared
it with the results of the US Environmental Protection Agency’s Storm Water Management Model
(EAP-SWMM) to demonstrate that overflow had been overestimated in comparison to the SVR results.
Tehrany et al. [11] used the SVR to analyze flood susceptibility with different kinds of kernel function.
This research indicated that SVR could yield reliable assessment results for a flood susceptibility map.
Chang et al. [12] predicted flood depth, enabling sufficient time for evacuation by using rainfall and
stream runoff data and comparison with simulation results that indicated outstanding prediction
capability. A prediction of stream runoff was carried out by Zhou et al. [13], using the radial basis
function network (RBFN), extreme learning machine (ELM), and Elman network’s ensemble technique.
Empirical wavelet transform (EWT) was employed for data pre-processing, and the average monthly
runoff of the stream subject to study was predicted. Deep learning techniques have been adopted
in the water resource field to enhance floodgate predictions and to include more concepts in the
model. Hu et al. [14] used long short-term memory (LSTM) for rainfall runoff simulation with 86 items
of rainfall runoff pattern data. These results were compared with the ANN model to validate the
superiority of the LSTM neural network. Rahman et al. [15] developed a method by integrating artificial
neural network (ANN), logistic regression (LR), frequency ratio (FR), and analytical hierarchy process
(AHP) for flood susceptibility assessment. The integrated LR-FR model showed high predictive power.
This series of studies opens up new opportunities for planning and designing flood control measures.

Meanwhile, evacuation is an effective measure for minimizing damage and loss of life caused
by flooding [16,17]. However, according to studies on the lessons that can be learned from disasters,
it is apparent that, sometimes, evacuation to designated evacuation centers is not carried out [18–20].
The reasons for this were diverse and included problems in forecast and warning systems, in the
location of evacuation centers and evacuation routes, and in evacuation center functions. Such studies
throw doubt on the practicality of flood management policies, such as the preparation of evacuation
maps based on maximum inundation scope and flood depth. Meanwhile, the problem of assigning
location can be defined according to two factors—space and time—and, fundamentally, these two
factors must be analyzed simultaneously [21]. In addition, the impacts of spatial and temporal
changes in flooding can have significant consequences for the assessment of urban flood risks [22].
From this perspective, a few studies have recently conducted spatial and temporal analyses of urban
flooding. Huang et al. [23] analyzed the spatial–temporal patterns of urban floods during the period
of 2009–2015 in the central area of Guangzhou, China. Ahmad and Simonovic [22] mentioned that
although it is necessary to quantify the uncertainty of spatial and temporal changes in flood inundation,
this was hardly considered. Furthermore, they developed a map demonstrating the spatial and
temporal variation in reliability vulnerability, robustness, and resiliency indices through fuzzy analysis.
Chen et al. [24] integrated the flood risk factors for coastal lowland regions in 1970, 2004, and 2013
using a geographic information system (GIS) and analyzed flood hazard assessment maps for each of
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those years based on multi-criteria decision analysis. Results demonstrated that flood occurrence was
extremely variable in terms of time and space, depending on the associated flood risk factors. Therefore,
considering such circumstances in general, the appropriate solution to the problem of evacuation route
assignment should consist of real-time evacuation guidance following temporal and spatial inundation
progress. This study aimed to propose a methodology for designating such real-time evacuation route
guidance by analyzing spatial inundation progress following temporal inundation progress. We aimed
to predict flood overflow using a dynamic artificial neural network and to analyze expected flood
regions in advance through a two-dimensional submergence analysis of city regions. A methodology
then was proposed for designating an evacuation route based on inundation progress and evacuation
by walking hazard, and this was applied to the study area.

2. Materials and Methods

This study aimed to propose and apply a method for designating evacuation routes following
temporal and spatial inundation progress due to doubt in the practicality and utilization of the method
of preparing evacuation maps based on maximum inundation scope and flood depth.

The study comprised two stages, and the study flow can be seen in Figure 1 below.
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Figure 1. Flowchart of study methodology.

The first stage consisted of executing an inundation prediction for the study area. For this purpose,
various rainfall scenarios were analyzed and a one-dimensional runoff interpretation was carried
out with the SWMM provided by the EPA. SWMM is a one-dimensional urban runoff model based
on hydraulic calculation with consideration of the drainage network system. In this study, SWMM
was used to calculate the overflows in the urban basin, which were used as target data of the NARX
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(Nonlinear Auto Regressive with eXogenous inputs) neural network. Accordingly, dynamic neural
network input and learning were executed based on the accumulative rainfall–accumulative outflow
and established so as to enable the prediction of accumulative overflow in real-time for specific
rainfall instances. In this study, data concerning rainfall in the Gangnam region (Seoul city, Korea)
which lasted for 6 h on 21 September 2010 were used and the accumulative overflow was predicted.
A two-dimensional flood analysis was conducted based on predicted accumulative overflow and, in
turn, the flood depth and velocity of flow were calculated for every 10 min period during this 2010
occurrence of heavy rain in the study area.

The second stage involved the prediction of a safe evacuation route in consideration of spatial and
temporal demand change. Inundation scope by duration, flood depth, and flow velocity were utilized
to assign a flood hazard grade for inundation scope, using the risk calculation method proposed by the
UK Department for Environment, Food and Rural Affairs (DEFRA) and the Environment Agency [25].
The flood hazard grade classified the evacuation by walking possibility per duration by overlapping
with the pedestrian road network within the study area. In addition, a methodology for identifying
the shortest route from buildings within the expected flood region to the designated evacuation center,
or a detour route, was proposed.

The materials utilized for the methodology for the evacuation route prediction proposed in this
study are shown in Table 1 below.

Table 1. Required data.

Objective Data Properties Data Collection Source

A. Flood prediction

Rainfall scenario Rainfall data in 10 min
units, duration

Calculation of probable
rainfall and Meteorological

Administration Agency data
Overflow per manhole

point
Overflow, duration of

velocity of flow SWMM interpretation result

Predicted accumulative
overflow

Accumulative overflow,
duration of velocity of

flow

Prediction result of NARX
neural network

Digital elevation map
(DEM)

Grid coordinates and
elevation

LiDAR detailed topographic
map

B. Evacuation route
selection

Building Coordinates, purpose www.juso.go.kr
Evacuation shelter Coordinates, area https://safecity.seoul.go.kr

Pedestrian road data Coordinates www.juso.go.kr

Predicted flood data Maximum and hourly
flood depth per grid

Comprehensive analysis
results of NARX and 2D

immersion analysis program

3. Results

3.1. Study Area

In this study, the drainage sectors of Nonhyeon, Yeoksam, Seocho-3, Seocho-4, and Seocho-5,
including the Gangnam station region, were selected as the study area. The total area of the study area
was 7.4 km2 and the areas of each drainage sector were 1.8 km2 for Nonhyeon, 1.9 km2 for Yeoksam,
1.8 km2 for Seocho-3, 1.1 km2 for Seocho-4, and 0.8 km2 for Seocho-5 (Figure 2).

The study area, that is, the Gangnam station area, is relatively low in comparison with the other
regions, and with its complex sewer network, it can be considered a place with a high inundation
risk [26]. Moreover, it has a history of inundation in excess of 1.4 km2 as evidenced by an inundation
trace tap caused by heavy rainfall on 21 September 2010. The major manhole points selected in this
study, taking account of the SWMM, overflow, and frequency, are depicted in Figure 3.
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3.2. Artificial Neural Network-Based Inundation Forecasting

In this study, the flood overflow prediction model was established for the subject regions with
sufficient lead time in order to provide two-dimensional inundation mapping for calculating the
evacuation center location and evacuation route by hour. The NARX was used as the neural network.
NARX is a circulation-type dynamic neural network with a feedback connection surrounding multiple
neural network layers and has high learning ability for times series-based input data [27]. In this
study, the NARX neural network consisted of an input layer, one hidden layer, and a layer for output.
A single hidden layer neural network was used because there was insufficient data to use more than
two hidden layers. The input layer contains rainfall input data and feedback target data.

The input rainfall data for NARX used 24 probability rainfalls with a duration of 1 h, 80 probability
rainfalls with a duration of 2 and 3 h, and 18 observed rainfalls. The 24 sets of probability rainfall data
correspond to durations of 1 h in 10 mm increments of rainfall, ranging from 50 mm to 100 mm in
total. In addition, for rainfall, a rainfall duration of 2 or 3 h and a total of 80 rainfall events were used
with Huff’s temporal distribution data on rainfall frequencies of 2, 3, 5, 10, 20, 30, 50, 70, 80, and 100
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year periods. Each accumulated rainfall event was made from a single sequence of data (Figure 4a).
The target value data was used by accumulating SWMM simulation results for each rainfall event
and making them into a single sequence of data (Figure 4b). Following this, the input value and
target value of the neural network can be seen in Figure 4. The exogenous input for NARX training is
accumulative overflow in this study. A total of 103 manholes were considered and over 122 scenarios,
actual rainfall event data, and accumulative overflow data for each manhole were used for learning.
Data for training, validation, and testing were used by randomly extracting 70%, 15%, and 15% from
all data. To avoid overfitting, all of the aforementioned 122 rainfall runoff data sets were applied to
NARX, and the datasets for training, validation, and testing were chosen randomly. The prediction of
accumulative overflow for each manhole point was conducted for the 21 September 2010 rainfall.
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The NARX neural network has two main parameters; one is the delay time of input data (p)
and the other is the delay time of target (feedback) data (q). In this study, the values of 1, 3, and 6
were applied to q parameter, and the value of 0 was used for p parameter. As the time delay of target
data increased, the number of feedback input data was more plentiful. The accumulative overflow
prediction by manhole point for the study region was conducted with prediction time delays of T + 1
(10 min), T + 3 (30 min), and T + 6 (60 min). The prediction time delay could be selected by the user. It
was performed to confirm the prediction result of NARX according to the time delay. When using
the T + 1 delay time, two target value data were fed back to the input layer, and when using the T +

3 delay time, four target value data were fed back to the input layer. When using T + 6 delay time,
six target value data were fed back to the input layer. As the number of feedback data increased, the
learning time increased. With regard to the 2010 rainfall event subject to prediction, the SMWW result
was calculated at seven manhole points, and the NARX prediction was also made for seven manhole
points (Figure 5).

The results from the NARX neural network were evaluated together with statistical analysis of
the previously constructed input data. The performance was evaluated using the root mean square
error (RMSE) to compare the SWMM results with prediction model results as a basic index, as defined
in Equation (1). The RMSE is an index that quantifies the error between the simulation value and
prediction result. The RMSE at each manhole is shown in Table 2.

RMSE =

√∑ (
Qsimulated −Qpredicted

)2

n
(1)
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Table 2. Root mean square error (RMSE) at each manhole (21 September 2010 event).

Classification

Root Mean Square Error (m3/s) at Each Manhole

Manhole
1

Manhole
40

Manhole
41

Manhole
51

Manhole
57

Manhole
64

Manhole
103

Time
delay

T + 1 0.606 2.44 4.702 1.008 2.992 4.626 1.134
T + 3 0.270 3.491 4.131 0.628 1.677 2.471 1.013
T + 6 0.285 3.918 3.157 1.375 1.945 2.059 1.532

RMSE observations standard deviation ratio (RSR) was also considered for more statistical error
analysis. RSR standardizes RMSE using the standard deviation in the observations, and it combines
both an error index and some additional information. RSR was calculated as the ratio of the RMSE to
the standard deviation of the measured data, as shown in Equation (2).

RSR =

√∑ (
Qsimulated −Qpredicted

)2√∑
(Qsimulated −Qsimulated.mean)

2
(2)

The coefficient of determination (R2) was analyzed in addition to quantitative error analysis.
The coefficient of determination is a square value of the correlation coefficient (R) and ranges from
0 ≤ R2

≤ 1. This indicates that the simulated and predicted values have some constant tendencies,
but the two values are not identical.

The Nash–Sutcliffe efficiency coefficient (NSEC) was used to evaluate the prediction performance
of the model presented in this paper. The NSEC is a standardized value of residual relative degree
that ranges from −∞ < NSEC ≤ 1. The closer the NSEC value is to 1, the more it indicates an accurate
result of the prediction model. In Equations (1)–(3), Qsimulated refers to the simulated flow result,
Qpredicted refers to the predicted flow result, and Qpredicted refers to the mean of the predicted flow
result. The values of RSR, NSEC, and R-square are represented in Table 3.

NSEC = 1−

∑ (
Qsimulated −Qpredicted

)2

∑ (
Qsimulated −Qpredicted

)2 (3)

Table 3. Total overflow error analysis.

Classification
RSR Nash–Sutcliffe R-Square

T + 1 T + 3 T + 6 T + 1 T + 3 T + 6 T + 1 T + 3 T + 6

Time delay 0.199 0.129 0.151 0.963 0.985 0.979 0.969 0.985 0.982

Accumulative overflow prediction results confirmed that, when compared to the results of error
by delay time analysis, the longer the predicted delay time, the better the prediction ability. In the
case of two-dimensional interpretation through predicted accumulative overflow, a 60 min prediction
result delay time was used as well as LiDAR’s detailed topographical data and composite roughness
coefficient. Two-dimensional interpretation was conducted using the established topographical data
and predicted overflow data, and a 10 min simulation of the 21 September 2010 rainfall event with 6 h
duration was conducted. The process involved is shown in Figure 6.
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The results of conducting two-dimensional interpretation based on accumulative overflow
prediction results are given in Figure 7, and the prediction result appropriateness was validated
through the National Disaster Management System (NDMS) and inundation trace map. The suitability
of the simulation results and the flooding trace was found to be 81%. Therefore, the inundation
simulation results applied in this study were deemed to be feasible for application as baseline data for
selecting evacuation routes by recurrence hour and evacuation center.
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3.3. Spatial and Temporal Flood Hazard Analysis

Studies aiming to estimate the scale of damage loss arising from flooding have been carried
out comprehensively, including such approaches as the development of the mortality rate function
(e.g., [28,29]). However, studies of evacuation under life-threatening circumstances caused by floods
are rare [30–33]. Studies of the direct and indirect effect of flooding on people have focused primarily
on the inundation depth and velocity for evacuation by walking [25] (Table 4).

Table 4. Hazards as a function of inundation depth and velocity [25].

d × (v + 0.5) Flood Hazard Degree Description

<0.75 Low Caution
“Flood zone with shallow flowing water or deep standing water”

0.75–1.25 Moderate Dangerous for some (i.e., children)
“Danger: flood zone with deep or fast flowing water”

1.25–2.5 Significant Dangerous for most people
“Danger: flood zone with deep fast flowing water”

>2.5 Extreme Dangerous for all
“Extreme danger: flood zone with deep fast flowing water”

DEFRA and the Environment Agency [25] mentioned the need for the classification of flood
hazards and proposed a classification of inundation hazards that can be seen in Table 4. Otherwise,
research into evacuation speed during inundation or risk classification have been carried out in
preceding studies such as Kang [20], OFAT et al. [30], Ishigaki [31], Ishigaki et al. [32], and Lee et al. [34].
In this study, DEFRA and the Environment Agency’s [25] risk classification method was applied based
on inundation depth per hourly progress and velocity of flow via artificial neural network, and the
flood hazard result obtained is shown in Figure 8 below. This method makes it easy to evaluate flood
hazards based on the depth and flow velocity of the two-dimensional flood analysis and NARX results.
Other previous research results mentioned above can provide data for categorizing flood hazards,
but it is difficult to generalize because there are few test subjects, and experiments are conducted at
characteristic places.

After 1 h, only a small district was flooded and there were no regions that exceeded 0.75 in terms
of risk classification. However, after 2 h, there were some regions that exceeded a risk classification of
0.75. As can be seen in Table 5, regions with inundation risk increased rapidly between 1~2 h and
2~3 h.

Table 5. Time-dependent changes in flood hazard area.

Classification 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h

Area (m2) 0 71,625 150,600 150,825 150,925 151,475 151,575 151,750

Increment (m2) - 71,625 78,975 225 100 550 100 175



Water 2020, 12, 2271 11 of 18

Water 2020, 12, x FOR PEER REVIEW 10 of 18 

 

3.3. Spatial and Temporal Flood Hazard Analysis 

Studies aiming to estimate the scale of damage loss arising from flooding have been carried out 
comprehensively, including such approaches as the development of the mortality rate function (e.g., 
[28,29]). However, studies of evacuation under life-threatening circumstances caused by floods are 
rare [30–33]. Studies of the direct and indirect effect of flooding on people have focused primarily on 
the inundation depth and velocity for evacuation by walking [25] (Table 4). 

Table 4. Hazards as a function of inundation depth and velocity [25]. 

d × (v + 0.5) Flood Hazard 
Degree 

Description 

<0.75 Low 
Caution 

“Flood zone with shallow flowing water or deep standing water” 

0.75–1.25 Moderate 
Dangerous for some (i.e., children) 

“Danger: flood zone with deep or fast flowing water” 

1.25–2.5 Significant 
Dangerous for most people 

“Danger: flood zone with deep fast flowing water” 

>2.5 Extreme 
Dangerous for all 

“Extreme danger: flood zone with deep fast flowing water” 

DEFRA and the Environment Agency [25] mentioned the need for the classification of flood 
hazards and proposed a classification of inundation hazards that can be seen in Table 4. Otherwise, 
research into evacuation speed during inundation or risk classification have been carried out in 
preceding studies such as Kang [20], OFAT et al. [30], Ishigaki [31], Ishigaki et al. [32], and Lee et al. 
[34]. In this study, DEFRA and the Environment Agency’s [25] risk classification method was 
applied based on inundation depth per hourly progress and velocity of flow via artificial neural 
network, and the flood hazard result obtained is shown in Figure 8 below. This method makes it 
easy to evaluate flood hazards based on the depth and flow velocity of the two-dimensional flood 
analysis and NARX results. Other previous research results mentioned above can provide data for 
categorizing flood hazards, but it is difficult to generalize because there are few test subjects, and 
experiments are conducted at characteristic places. 

   
(a) (b) (c) 

Water 2020, 12, x FOR PEER REVIEW 11 of 18 

 

   
(d) (e) (f) 

  

 

(g) (h)  

Figure 8. Flood hazard spatial and temporal variation analysis results (1~8 h). (a) 1 h elapsed; (b) 2 h 
elapsed; (c) 3 h elapsed; (d) 4 h elapsed; (e) 5 h elapsed; (f) 6 h elapsed; (g) 7 h elapsed; (h) 8 h 
elapsed. 

After 1 h, only a small district was flooded and there were no regions that exceeded 0.75 in 
terms of risk classification. However, after 2 h, there were some regions that exceeded a risk 
classification of 0.75. As can be seen in Table 5, regions with inundation risk increased rapidly 
between 1 ~ 2 h and 2 ~ 3 h. 

Table 5. Time-dependent changes in flood hazard area. 

Classification 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 

Area (m2) 0 71,625 150,600 150,825 150,925 151,475 151,575 151,750 

Increment 
(m2) 

- 71,625 78,975 225 100 550 100 175 

3.4. Evacuation Route Analysis 

In order to designate an evacuation route, there must be a point of departure and a destination. 
In this study, a building within the maximum expected flood scope was set as the demand point. The 
destination was the flood evacuation facility designated within the subject site. The area of 
maximum expected flood scope in the study area, Gangnam station region, is 772,425 m2, and 1153 
buildings are distributed within the expected scope. Location–allocation analyses have been utilized 
to establish evacuation plans, including evacuation routes in multiple preceding studies, but this 
study excluded quantitative analysis of evacuation demand and evacuation facility capacity. 

Furthermore, as the assumption was made that evacuees would evacuate to the closest 
evacuation facility, the closest facility analysis was utilized to assign the evacuation route. In 

Figure 8. Flood hazard spatial and temporal variation analysis results (1~8 h). (a) 1 h elapsed; (b) 2 h
elapsed; (c) 3 h elapsed; (d) 4 h elapsed; (e) 5 h elapsed; (f) 6 h elapsed; (g) 7 h elapsed; (h) 8 h elapsed.

3.4. Evacuation Route Analysis

In order to designate an evacuation route, there must be a point of departure and a destination.
In this study, a building within the maximum expected flood scope was set as the demand point.
The destination was the flood evacuation facility designated within the subject site. The area of
maximum expected flood scope in the study area, Gangnam station region, is 772,425 m2, and 1153
buildings are distributed within the expected scope. Location–allocation analyses have been utilized
to establish evacuation plans, including evacuation routes in multiple preceding studies, but this study
excluded quantitative analysis of evacuation demand and evacuation facility capacity.

Furthermore, as the assumption was made that evacuees would evacuate to the closest evacuation
facility, the closest facility analysis was utilized to assign the evacuation route. In addition, prohibited
pedestrian sector by hourly progress was set by overlapping flood risk regions identified in Section 3.3
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with road data, and was utilized as a barrier of network analysis. The results of the evacuation route
temporal and spatial variable analysis are given in Figure 9.
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In the event that evacuation is not carried out prior to flooding, the pedestrian evacuation hazard
region increases with the inundation progress, and the number of buildings from which evacuation by
walking was deemed impossible (dangerous) is shown in Table 6 below. After 2 h, 200 of the 1153
buildings distributed within the maximum inundation scope were deemed dangerous for evacuation
by walking. The time when buildings would be predicted to have the highest ratio of evacuation by
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walking danger would be after 3 h (22.12%). Results further indicated that an average of 15.51% of
buildings would be expected to face difficulty in terms of evacuation by walking.

Table 6. Analysis results for buildings with possibility of evacuation by walking by hourly progress.

Classification

Number of Buildings in Flooded Areas

Buildings Where
Evacuation by Walking

is Possible (a)

Buildings Where
Evacuation by Walking

not Possible (b)

Percentage of Buildings
Where Evacuation by
Walking not Possible

(b/a + b)

1 h 1153 0 0.00%
2 h 953 200 17.35%
3 h 898 255 22.12%
4 h 957 196 17.00%
5 h 958 195 16.91%
6 h 958 195 16.91%
7 h 958 195 16.91%
8 h 958 195 16.91%

Analyzing the evacuation route under the assumption that evacuation by walking would cause a
detour into dangerous regions, leading to the closest evacuation facility, the evacuation by walking
distance by hourly progress results are shown in Figure 10 below. Buildings where evacuation by
walking is impossible have been excluded from the evacuation by walking distance analysis in Table 6.
Prior to flooding, the average evacuation distance from 1153 buildings to the closest evacuation facility
was 478.85 m, and the longest evacuation distance was 1183.30 m. In the event of evacuation by
avoiding regions where evacuation by walking is impossible (dangerous) as flooding progresses,
it was determined that there would not be a significant change in the average walking distance by
hourly progress.
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However, analysis indicated that the longest evacuation distance would increase significantly
after 2 ~ 4 h, and that the occurrence of evacuation by walking hazard region (inundated buildings)
following inundation progress increased rapidly between 90 ~ 160 min, and then dropped slightly.
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Accordingly, the average evacuation by walking distance reached its maximum value at 140 min,
but the maximum evacuation by walking distance occurred at 210 min. The number of buildings
where evacuation by walking was impossible following evacuation by walking hazard region reached
a maximum at 150 min.

4. Discussion

4.1. Inundation Forecasting

The purpose of this study was to identify an evacuation route with consideration of spatial
inundation progress following the time lapse related to flooding after heavy rainfall. Moreover,
inundation progress was predicted by using a dynamic artificial neural network because, ultimately,
the aim was to provide a real-time evacuation route. This is because urban flood predictions
based on numerical analysis models provide accurate and precise results, but the necessary pre-
and post-processing takes quite some time. The accumulative overflow for manhole points was
predicted through use of the NARX neural network, and after conducting two-dimensional inundation
interpretation with the predicted value, an inundation map by hour was created. Comparing the
inundation trace map and the NDMS resident report point concerning the two-dimensional
interpretation results, appropriateness was judged to be 81%. By predicting the two-dimensional model
input data with the NARX neural network, it was possible to save time following one-dimensional
urban runoff interpretation. In this study, the inundation prediction via NARX neural network was
completed within 3 s, and in the same computer environment, an inundation prediction via SWMM
takes approximately 10 min. It can be applied to other river basins or stream floods if rainfall, flood
data, and a spatial distribution technique of flood depth are provided. The rainfall, flood volume,
and flood depth data can be calculated through a numerical analysis model or can be obtained from
observed values. In this study, the flood depth was predicted through a flood volume prediction
system using NARX and by linking a two-dimensional flood analysis model. It can be applied to other
water basins or flood types if the data can be pre-processed sufficiently.

In this study, the total flood volume of the rainfall input data was predicted in real-time using
the NARX neural network. This was then inputted into a two-dimensional flood analysis program
to calculate the flood map. It is different from other studies that predict the flood volume only for
rainfall events. Also, it has an advantage in that the predicted total flood volume is the sum of the
flood volumes predicted for each of the manhole points and so the flood risk for each point can be
identified quickly. Since the time may be depicted in the two-dimensional flood analysis simulation,
if the spatial distribution of the flood depth can be predicted in real-time, it could be a very practical
method. However, for the preparation of a two-dimensional inundation map in this study, the real-time
provision of evacuation route information via numerical analysis was still poor.

4.2. Flood Hazard and Walking Evacuation

An evacuation route was selected under the assumption that buildings distributed within the
maximum inundation scope were set as representing evacuation demand, and that people would
evacuate to the closest evacuation facility. In the case of the study area, it was observed that buildings
where evacuation by walking became impossible following inundation progress increased significantly
after 2 ~ 3 h. Regarding the detour evacuation route distance, it was observed that this increased
significantly after 2 ~ 4 h. Such analysis results show that adaptability and safety have to be ensured
in inundated situations by planning in a flexible manner following the occurrence and change of
evacuation by walking hazard regions in the process of selecting an evacuation route. Considering such
results, the methodology of this study has been deemed usable for the purposes of establishing an
evacuation plan that takes into account the situation after a disaster occurs. Although it can serve
to contribute to the achievement of substantiation when establishing evacuation plans in the future,
integrated analysis of occurrence and change in the evacuation by walking hazard region, distribution
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of buildings within the expected inundation region (evacuation demander), and the road network
is required for this. Moreover, as 10 min and 1 h inundation prediction data were utilized to assign
evacuation routes by hour in this study, the inundation progress of each point was not analyzed in
detail. Therefore, it is recommended that studies such as the development of a methodology for
evaluating the flood risk of pedestrian evacuation in a road network by analyzing the flooding progress
in detail (e.g., trend analysis and space–time cluster analysis) be conducted. Such a methodology could
lead to the development of an evacuation decision model for buildings in the expected flooding area
according to the progress of flooding.

The flood hazard classification method applied in this study [25] can be applied to various flood
types such as flash floods, coastal floods, and urban floods because it uses the relationship between
flood depth and flow velocity. However, studies based on experiments [20,31,32,34] suggest that the
inundation depth of a specific location (e.g., underground or stairs) or water level that an adult can
walk in is 30 ~ 50 cm. Therefore, careful notice must be taken when applying the flood hazard risk
classification of DEFRA and the Environment Agency [25]. Also, it is necessary to modify the standards
related to flood hazard to people through the collection of experimental data related to the safety of
people during a flood according to the specific location or their gender, age, and disability.

Evacuees often choose the wrong direction (due to personal wrong choice or leader follow effect)
due to panic or lack of evacuation information. To prevent this, it is important to provide real-time
evacuation information to evacuees. In this respect, real-time evacuation guidance using mobile
applications is drawing attention from researchers (e.g., [35–37]). By applying the methodology
proposed in this study, it is possible to minimize the casualties caused during the evacuation process by
selecting the evacuation route when flooding occurs. However, for real-time evacuation guidance, the
role of IoT (Internet of Things) technologies is important because it is necessary to provide the evacuee’s
location-based evacuation routes. Evacuation guidance and information related to IoT technologies
have recently attracted the attention of researchers and have been studied by Krytska et al. [38],
Zualkernan et al. [39], and Yin et al. [40], for example.

Meanwhile, “in rapid-onset disasters the time needed for evacuation is crucial” [41]. However,
in large-scale evacuation situations, time delays occur due to congestion (e.g., bottleneck effect).
Phased evacuation was suggested in a simulation-based previous study [42–44] as a method to reduce
the time delay due to congestion in an evacuation situation. Since this study focuses on the prediction
of the changing pattern of urban flooding according to the progress of flooding, it can be used to
establish a phased evacuation strategy.

5. Conclusions

This study aimed to perform inundation map forecasting with artificial neural network-based
methodology. In addition, it proposed a methodology for selecting an evacuation route by considering
temporal and spatial evacuation by walking hazard. Previous studies have not focused on the necessity
of temporal and spatial changes in the flood evacuation route, but this study once again demonstrates
that need. In addition, the evacuation route is determined according to the hazard of walking
evacuation, thus minimizing the hazard for evacuees during the evacuation process. The proposed
methodology is not a field test-based or practical application method for establishing a flood evacuation
plan, but it shows great potential in terms of efficiency. For example, if a further study can predict
not only urban runoff but also inundation map, the evacuation route can be calculated more quickly.
In addition, the proposed methodology can be extended to a model for calculating the spatial and
temporal changes in evacuation demand according to the flooding progress. It is envisaged that this
research will provide a basis for future comprehensive and cohesive research on flood evacuation
strategies according to the progress of flooding. In turn, research will lead to better preparedness and
response to flood evacuation problems.
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Abstract: Coastal countries began to develop green energy, and offshore wind power equipment in
coastal areas was gradually built. Since coastal wind power generation often requires carrying out
maintenance between wind turbines with the assistance of service operation vessels, this situation
may cause coastal areas to be prone to people falling into the water. However, traditional maritime
search and rescue plans take a long time to gather information from man overboard incidents. In
order to minimize injuries to people in distress, the maritime search and rescue process must be as
short as possible. Despite that all the search and rescue plans are based on the concept of the shortest
path, the efficient plans must not only consider the distance but also consider the cost of search
and rescue. Therefore, this study established a set of practices applicable to the on-site commander
(OSC) to dispatch rescue ships, as well as the planning of maritime search and rescue route models.
Based on the easy-to-observe state of the target in distress, the model is analyzed and calculated by
Floyd–Warshall algorithm and Grey relational analysis so as to sort the rescue plan and optimize
the effect of the search and rescue route at sea. According to the simulation analysis, when the man
overboard incident occurs in the coastal area, the OSC can immediately use this model to plan the
best search and rescue route and dispatch a reasonable number of rescue ships.

Keywords: maritime search and rescue; coastal countries; rescue ships; distress targets

1. Introduction

Offshore wind power is an energy that does not emit pollutants. Some coastal countries
have begun to build a large number of offshore wind power plants to develop green
energy [1,2]. With related wind power facilities being widely constructed, the importance
of maritime search and rescue operations is more emphasized by coastal countries. Still,
research in respect of applicable search and rescue routes for wind farm personnel falling
water incidents has not been proposed. A personnel falling water incident is an emergency
in which a person (crew or passenger) of a vessel at sea falls into the sea. This incident is
one of the most common main causes of endangering the lives and safety of ship personnel
at sea, particularly in large ships with slow sailing speeds, or in small ships with few
personnel [3]. Under such circumstances, the vessel is built with a high risk and less
protection of life and the property and environment regarding the personnel.

A maritime search and rescue operation provides reliable assistance to people in
danger or at a potential risk at sea. Traditional maritime search and rescue uses factors,
such as time gap, leeway, tide or currents, and swell of the distress target, to set the search
datum point. The on-scene commander (OSC) uses these data to evaluate and subsequently
plan a maritime search and rescue; meanwhile, it is in accordance with the international
maritime organization search and rescue (IMOSAR Manual) specifications [4,5]. However,
traditional search and rescue route plans require to go through the steps of spending and
collecting a large amount of time and data, and then move on to the next discussion. The
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“golden window” for victims is closing. The crux in the search and rescue mission is how to
quickly and effectively buy time to increase the possibility of survival. From these points,
maritime search and rescue plans and operations are executed on the basis of limited
information. Without a complete search and rescue route planning, maritime search and
rescue will be a time-consuming and resource-consuming task.

In the situation that there are multiple targets in distress at sea at the same time, if
the rescue mission is still conducted as the previous search and rescue mode, the rescue
time will be inevitably delayed. Hence, if the current search and rescue mode can be
optimized by converting factors of the traditional maritime search and rescue mode into
the rescue costs and calculating the shortest path, coastal countries will achieve search and
rescue missions more objectively and quickly. This study intends to propose an optimal
rescue maritime search model for persons in distress, considering the location, situation
and distance so that it could assist the OSC in planning the execution and to improve the
efficiency of maritime search and rescue. This model makes it easy to obtain and observe
the status of the marine distress target, immediately sorts the rescue plan by the existing
rescue resources, and optimizes the search and rescue route of the rescue fleet to quickly
arrive at the location of the marine distress target.

In this study, the shortest path algorithm of Floyd–Warshall was adopted. By setting
target 1 as the place of departure of the search and rescue fleet, the remaining nodes
are designed as targets of distress at sea (e.g., people who have fallen into the water at
sea). Furthermore, it is known from previous research that the path planning research
can be calculated in combination with Grey theory to obtain appropriate path planning
results [6–8]. The study adopted the Floyd–GRA algorithm as the analysis method. The
reason for adopting this algorithm in this study is the Floyd–Warshall algorithm is faster
than other path algorithms when performing calculations. Furthermore, after quantifying
the information, such as the fall into the sea, wearing life-saving equipment, and the
person’s situation of injury, through Grey relational analysis (GRA), this can be combined
with the distance matrix of the shortest path Floyd–Warshall algorithm. Through the
information, such as the scenario of the person falling into the water, wearing a rescue
suit, and the person’s injury, the model combines with the navigation distance between
the rescue ship and the person in distress (targets) and whether there is a barrier during
the rescue voyage. As a result, the search and rescue route at sea can be more efficient and
suitable. This is the innovation of this research.

The research goal of this paper is to establish a model of optimized maritime rescue
routes for the search and rescue of maritime personnel of coastal countries, and this model
can assist on-site commanders in planning search and rescue routes and dispatching rescue
ships. However, considering the priority of rescuing human lives at sea, the model is
not involved in oil spill monitoring. This model makes it easy to obtain and observe the
status of the marine distress target, immediately sorts the rescue plan by the existing rescue
resources, and optimizes the search and rescue route of the rescue fleet to quickly arrive
at the location of the marine distress target. Although the emergency decision-making
path plan for rescuing people who have fallen into the water considered weather and sea
conditions, it does not extend the aspects of early warning of oil spills at sea and pollution
prevention and control. The principle of the above functions is that, in all the decisions
concerning marine distress, saving human lives should be the primary consideration rather
than monitoring oil spills at sea; thus, the environmental impacts caused by oil spills are
not discussed in depth in this study.

The remainder of this paper comprises four sections. Section 2 reviews the literature on
maritime search and rescue routes and defines the research problem as well. Section 3 out-
lines the detailed steps of the proposed method. Section 4 discusses the analysis results that
arise from the proposed method. Section 5 presents conclusions and future applications.
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2. Maritime Rescue Route and Shortest Path Algorithm Literature Review

In addition to search and rescue ships, present maritime search and rescue missions
are generally operated by helicopters as a supporter [9,10]. In recent years, many scholars’
studies have shown that search and rescue work can be combined with drones to assist a
person in distress [10–12]. In the part of the academic research about planning maritime
search and rescue operations, Barciu [13] used risk assessment to determine the search
area to enhance the effectiveness of maritime search and rescue operations. Ai et al. [14]
proposed the intelligent decision-making algorithm to solve the problems of resource
allocation and situation scheduling in the maritime search and rescue mission. Agbissoh
OTOTE et al. [15] adopted a decision-making algorithm that is based on the optimal
search theory to optimize the calculation process of the probability of containment and the
probability of detection for improving the success rate of the maritime search and rescue.

Wu et al. [16] proposed the light-weight prediction-based opportunistic routing al-
gorithm to select and prioritize the forwarding nodes. According to the research results,
the trading of a 2% additional energy consumption per node for a 30% better delivery
success rate was desirable. Zhang et al. [17], according to the actual situation of maritime
search and rescue, improved an ant colony algorithm that is proposed for the route design.
The simulation results show that the improved algorithm can be used for route design
and obtain the optimal route suitable for sea search and rescue. Benz et al. [18] used
semi-structured interviews with 24 experts, which provides the framework based on a
literature review of the dimensions of search and rescue in the Arctic.

Cho et al. [19] proposed two phase methods for solving the coverage path planning
problem of multiple heterogeneous unmanned aerial vehicles. The experimental results
show that the randomized search heuristic yields are a better solution since, approximately,
the optimality gap has a shorter computation time than a commercial solver. Zou et al. [20]
adapted the extension cloud theory to the situation safety of two collisions, which was
evaluated, and the evaluation results reflect the effectiveness of the model. Furthermore,
many scholars and experts have researched and discussed the issue of the search area of
maritime search and rescue [11,14,21].

The route planning of maritime search and rescue is like the vehicle routing problem
(VRP) on the shore. By meeting the needs of customers (distress targets), at the same time,
under certain constraints, the goals of the shortest distance, the least cost, or the least time
are achieved [22,23]. Nowadays, the shortest path algorithm theories are well developed,
including the Bellman–Ford algorithm, Dijkstra’s algorithm, Floyd–Warshall algorithm,
Johnson algorithm, and other algorithms. However, various algorithmic theories have their
advantages and disadvantages. For example: the Johnson algorithm is known for its best
rescue effect, but its complex computational process is not suitable for emergencies [24].
The Dijkstra algorithm has lower computational complexity, but the analysis process cannot
effectively handle cases with negative edge weights [25]. The Bellman–Ford algorithm can
handle situations with negative edge weights efficiently, but its complex computational
process is not suitable for emergencies [26]. Floyd–Warshall algorithms can deal with cases
with negative edge weights, but the computational process is somewhat more complicated
than the Dijkstra algorithm [27].

Based on the above theory of summarizing the shortest path algorithms, this study
adopted the Floyd–Warshall algorithm to plan the optimal maritime search and rescue
route. The Floyd–Warshall algorithm can be used to find the shortest path to either of
two points under multiple targets [28,29]. In addition, the Floyd–Warshall algorithm is a
dynamically programmed algorithm that can effectively process the case of positive and
negative edge weights [27,30]. The Floyd–Warshall algorithm quoted in this study is no
longer limited to the sea distance of the traditional Floyd–Warshall algorithm but can be
measured by factors such as the fall into the sea, if the person wore life-saving equipment,
and the person’s situation of injury. By setting target 1 as the place of departure of the
search and rescue fleet, the remaining nodes are designed as targets of distress at sea (e.g.,
people who have fallen into the sea). The algorithm has a distance cost matrix on the left
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and a node matrix on the right. In the distance cost matrix, it is not limited to the sea
distance but can be measured in terms of personnel, ships, weather and sea conditions, and
other factors. The practice is to first normalize the values of the factors to be measured
individually into a de-united value between 0 and 1, and, after the standardized values of
each measurement factor are summed and then multiplied by the large circle navigation
distance between each node, it is brought into the distance matrix intermediate courtyard
of the Floyd–Warshall algorithm.

As for the restricted areas where search and rescue units cannot enter, or if the direct
route results in being indirect due to random dynamic drifting objects at sea (such as
islands, sea drifts, offshore working platforms, etc.), the Floyd–Warshall algorithm can find
the location of the transit point of the sea search and rescue route by setting the distance
cost between the nodes to ∞. The search and rescue fleet transit point may be more than
one, but it can make the total search and rescue route shorter and save more time regarding
the total search and rescue sea voyage.

3. Research Method

The concept of method in this paper is to convert the factors in the maritime search and
rescue into the search and rescue cost and calculate the shortest path in order to accelerate
the completion of the search and rescue mission. From the very beginning, the shortest path
situation is calculated according to the Floyd–Warshall algorithm. Afterwards, by Grey
relational analysis (GRA), the weight value of search and rescue factor is calculated and
converted into distance weight. Finally, based on the above analysis results, an optimized
path model is constructed; on the other hand, optimized solutions of search and rescue are
obtained.

3.1. Floyd–Warshall Algorithm

The main issue of the shortest path is to explore the shortest path between two target
points. This problem was first developed by military strategy, whose purpose is to consider
the transportation of strategic materials and tactical interception [28,31].

Robert Floyd proposed the Floyd–Warshall algorithm in 1962. It is one of the algo-
rithms to solve the problem of shortest path besides the Dijkstra algorithm [27]. Floyd–
Warshall algorithm is a type of algorithm of all pair shortest path, which finds the shortest
route for all pairs of nodes that exist on a graph. This algorithm does not just explore the
path between two particular nodes but creates the shortest path table between the nodes.
This algorithm is not only weighted and directed graph but also calculates the negative
cost [29,30]. Floyd–Warshall algorithm is one of the variants of dynamic programming,
which solves the problem by searching for mutually bound solutions from inspecting other
solutions. Thus, the solutions are formed by the front solutions, and more than one solution
is found.

The Floyd–Warshall algorithm starts with the iteration from the first point. Then, the
track or path is added by evaluating all points to the destination point. Briefly describe the
calculation process of Floyd–Warshall algorithm as follows: Assuming that G is represented
as an n× n matrix, the weight of its side is W =

[
wij
]
, as shown in Equation (1).

Wij =


0

w(i, j)
∞

, i = j
, i 6= j and (i, j) ∈ E
, i 6= j and (i, j) /∈ E

 (1)

Let d(k)ij be the distance of the shortest path from i to j, and all nodes on the path are set

to {1, 2, . . . , k}. Further, let d(0)ij be Wij; that is, there is no node; let D(k) be an n× n matrix[
d(k)ij

]
. Therefore, if the shortest path dij includes node k, the shortest path of dij is composed

of sub-paths dik and dkj. Each sub-path can only contain nodes between {1, 2, . . . , k− 1 };
that is, its distance is: d(k−1)

ik and d(k−1)
kj . According to the aforementioned calculation
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concept, D(0) =
[
Wij
]

and the above verified D(k), the following Equations (2) and (3) can
be obtained:

d(0)ij =

{
0 , i = j
Wij , i 6= j , i, j = {1, 2, . . . n} (2)

d(k)ij = min
{

d(k−1)
ij , d(k−1)

ik + d(k−1)
kj

}
,
{

k = {1, 2, . . . n}
k 6= i, j

(3)

3.2. Grey Relational Analysis

GRA is an analysis model proposed by Professor Deng in 1982. The features of GRA
can perform data analysis and calculations for things such as uncertainty, multivariate
input, discrete data, and data incompleteness [32–34]. GRA can project the sequence data
on the geometric space by finding the correlation of one sequence to other sequences. Then,
use the method of measuring the proximity of geometric shapes to solve the shortcomings
of general traditional statistical regression. Briefly describe the calculation process of the
GRA method as follows:

Let X = {x0, x1, x2, . . . , xi} be a sequence (alternative) set; x0 expresses the referential
alternative and xi refers to the compared alternative. Suppose x0i and xij are the respective
values at criterion k, while k = 1, 2, ...., n for x0 and xi. The Grey relation coefficient
γ(x0(k), xi(k)) of the alternatives at criterion k can be obtained by Equation (4)

γ(x0(k), xi(k)) =

min
i

min
k

∆0i(k) + ξ
max

i
max

k
∆0i(k)

∆0i(k) + ξ
max

i
max

k

(4)

where ∆ij = |x0(k)− xi(k)|, ξ is the distinguishing coefficient and ξ∈ [0, 1]. ξ is used to

weaken the situation where the value of
max

i
max

k
∆0i(k) is too large and distorted. ξ

will change the relative value of γ(x0(k), xi(k)) but does not affect the ranking of the Grey
correlation degree [32–34]. As shown in Equation (5):

γ(x0(k), xi(k)) =
n

∑
j=1

γ(x0(k), xi(k)) (5)

This paper comprehensively averages the Grey correlation degree obtained by each
ξ value at first and calculates the weight value after obtaining the comprehensive Grey
correlation sequence. As shown in Equation (6):

W(V)n =
Gn

∑ G
(6)

The (W(V)) obtained from GRA is used as the (W′(V)) of the Floyd–Warshall algorithm.
According to the reference, also pointed out that the Floyd–Warshall algorithm can find
all the distances of each node and calculate the minimum weight of all paths [27,29,30].
Before becoming (W′(V)), since the original point weight value is positive, the calculation
method of the Floyd–Warshall algorithm is reversed, the evaluation index needs to be
normalized, and this process can set all values to [0, 1]. The evaluation index in the article
needs to be standardized through the Min index value and the Max index value, as shown
in Equations (7) and (8):

Min :
Min (W(V))

W(V)n
(7)

Max :
W(V)n

Max (W(V))
(8)
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After the calculation of (W′(V)) is completed, it is continued to convert (W′(V)) to
(W(E)). In the conversion process, the ratio of the destination to all vertices other than the
departure point needs to be considered, as Equation (9) shows:

W(E)ij =
W ′(V)j

∑n
k=1 W ′(V)k −W ′(V)i

(9)

The final weighted distance is the value obtained by considering both (W(E)) and
distance cost (Dij ∗W(E)ij). In this article, the solution process of optimizing the maritime
search and rescue route is presented in the form of graphic method. This study considers
the shortest search and rescue route and cost to achieve the effect of optimizing the maritime
search and rescue route of coastal countries. When calculating the distance weight, (W′(V))
(the weight of the search and rescue target) needs to be converted to (W(E)) (the weight of
the distance between the two targets) to generate a distance weight in accordance with the
actual situation.

4. Experimental Results and Analysis

The Floyd–Warshall algorithm can find all the shortest paths in the multi-source
shortest path problem, which indicates that this mode can effectively allocate and find
the best search and rescue route and plan [29,30]. In order to optimize the formulation of
maritime search and rescue routes, the research adopts the practice to convert the distress
target information into weights by using GRA. The search and rescue cost is added as a
consideration in the calculation process. The search and rescue cost and distance will be the
following basis of evaluation of the shortest maritime search and rescue route. Through the
information of these known distress targets, the optimized maritime search and rescue route
is generated, so the OSC can use the evaluation results as the consideration of the overall
search and rescue dispatch. It makes OSC dispatch search and rescue fleets more accurate
and allows all the targets in distress to be rescued more safely within the effective time.

This research used a simulation case to illustrate the planning of maritime search and
rescue routes. In the test case of this article, the shortest path will first be used to plan
the maritime search and rescue route, and then the search and rescue cost is added based
on the analysis results of the shortest path to obtain the optimized maritime search and
rescue route.

The simulation case in the study is set as a ship in distress at sea, and the people falling
into the water are waiting for rescue while they are in the water or in a lifeboat. The target
in distress represents a person in distress, and the situation of each target in distress is as
follows: rescue departure target 1 is the place of departure of the search and rescue fleet. In
distress target 2, the person falling into the water is wearing life-saving equipment but is
seriously injured. In distress target 3, the person who is falling into the water did not wear
life-saving equipment and is slightly injured. In distress target 4, the person falling into the
water is wearing life-saving equipment and suffered minor injuries. In distress target 5, the
person falling into the water is wearing life-saving equipment and suffered minor injuries.
In distress target 6, the person in distress is not injured and is waiting for rescue on the ship
in distress. The distance between the distress targets is shown as Table 1.

The value of the distance table matrix in Table 1 is the direct sea navigation distance
between rescue departure target 1 and the distress targets (distress target 2 to distress target
6), but the diagonal distance value is located in the position of each target itself and is fixed
to 0 (ie., distress target 2 to distress target 2, distance = 0). In the study, the value of the
direct sailing distance between the two targets is calculated by the great circle sailing. For
example, the value of 14.78 in Table 1 is the direct sailing distance from rescue departure
target 1 to distress target 2; the value of 0.16 in the table is the direct sailing distance from
distress target 3 to distress target 5, and so on.
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Table 1. Distress target distance situation.

1 2 3 4 5 6

1 0.00 14.78 17.86 16.38 17.21 16.49

2 14.78 0.00 0.57 0.79 0.86 0.84

3 17.86 0.57 0.00 0.29 0.16 0.25

4 16.38 0.79 0.29 0.00 0.14 0.12

5 17.21 0.86 0.16 0.14 0.00 0.06

6 16.49 0.84 0.25 0.12 0.06 0.00
Note: the unit is nautical mile.

4.1. The Shortest Maritime Search and Rescue Route

This study adopted the Floyd–Warshall algorithm to calculate the shortest path. For
the distance situation of each distress target, refer to Table 1. This research provides
examples of data and how they are used, as shown in Appendix A. In Appendix A, this
study explains the calculation process graphically, as shown in Tables A1–A6. The results
after analysis and calculation are shown in Table 2.

Table 2. Floyd–Warshall algorithm calculation matrix.

Vertex 1 2 3 4 5 6 1 2 3 4 5 6

1 0.00 14.78 15.35 15.57 15.51 15.57 1 1 2 2 2 3 5

2 14.78 0.00 0.57 0.79 0.73 0.79 2 1 2 3 4 3 5

3 15.35 0.57 0.00 0.29 0.16 0.22 3 2 2 3 4 5 5

4 15.57 0.79 0.29 0.00 0.14 0.12 4 2 2 3 4 5 6

5 15.51 0.73 0.16 0.14 0.00 0.06 5 3 3 3 4 5 6

6 15.57 0.79 0.22 0.12 0.06 0.00 6 5 5 5 4 5 6

In the study, the two matrix values presented in Table 2 are brought into the initial
matrix data of the Floyd–Warshall algorithm matrix calculus according to the values of
Table 1, where the left matrix is the distance matrix (brought in by Table 1) and the right
matrix is the node matrix (adopted to cooperate with the calculation of whether the node
route of the optimal search and rescue route is directly sailing or it needs to be navigated
around other targets).

According to the results of the Floyd–Warshall algorithm analysis, the shortest mar-
itime search and rescue route and the navigation distance of search and rescue ships are
shown in Table 3 below.

Table 3. Floyd–Warshall algorithm shortest search and rescue route results.

Shortest Search and Rescue Route Search and Rescue Ship Sailing Distance

1→2→3 15.35

1→2→4 15.57

1→3→5 15.51

1→5→6 15.57

2→3→5 0.73

2→5→6 0.79

3→5→6 0.22
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The results of finding the shortest search and rescue route by using the Floyd–Warshall
algorithm show that, during the maritime search and rescue process, two ships need to be
assigned to search and rescue. One ship departs from rescue departure target 1, passing by
distress target 2, and finally reaches distress target 4. It sails 15.57 nautical miles. Another
ship departs from rescue departure target 1, passing by distress target 2, distress target 3,
and distress target 5, and finally reaches distress target 6, sailing 15.57 nautical miles. In the
case of completing maritime search and rescue missions, the shortest rescue distance can
be obtained.

4.2. Optimized Maritime Search and Rescue Route

In this study, three factors, including the situation of people in distress wearing life-
saving equipment, the situation of injury, and whether they fell into the water, will be used
for the evaluation indicators of search and rescue costs. The purpose is that, at the moment
of a shipwreck, these three evaluation indicators are the information of persons in distress
at sea that can be immediately known or directly observed.

To evaluate the weight value corresponding to the search and rescue, this study as-
sumes several weight values. In the case of people in distress wearing life-saving equipment
or not, the weight values are set to 3 for those not wearing it, 2 for one who is wearing, and
1 for one who is in the boat in distress. In the case of people falling into water or not, the
weight values are set to 2 for one who is falling and 1 for one who is not falling. In the case
of severity of people’s injury, the weight values are set to 3 for one who is seriously injured,
2 for one who is slightly injured, and 1 for one who is not injured. By quantifying and
sorting, the result of the matrix is shown in Table 4. The GRA analyses calculated according
to the results are shown in Table 5. In the study, the results in Table 5 were also drawn into
Figure 1 for presentation. In this way, errors of the GRA calculation results can be checked.

Table 4. Arrangement of Grey correlation matrix of marine distress situation.

Distress Target
Evaluation Index Life-Saving Equipment Fell into the Sea Situation of Injury

2 2 2 3

3 3 2 2

4 2 2 2

5 2 2 2

6 1 1 1

Table 5. GRA analysis and calculation.

Distress
Target

Distinguishing Coefficient (ξ) Grey
Correlation

Degree

GREY
Relational

Ordinal
Weight

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2 0.722 0.762 0.792 0.815 0.833 0.848 0.861 0.872 0.881 0.889 0.828 1 0.067

3 0.167 0.286 0.375 0.444 0.500 0.545 0.583 0.615 0.643 0.667 0.483 3 0.200

4 0.141 0.246 0.327 0.392 0.444 0.489 0.526 0.558 0.586 0.611 0.432 4 0.267

5 0.444 0.524 0.583 0.630 0.667 0.697 0.722 0.744 0.762 0.778 0.655 2 0.133

6 0.091 0.167 0.231 0.286 0.333 0.375 0.412 0.444 0.474 0.500 0.331 5 0.333
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Figure 1. Line chart of GRA analysis results.

According to the results in Table 5 and Figure 1, the GRA calculation results are
significant. The last step is to calculate the weighted distance of the distress target through
Equations (7)–(9) in this article to obtain the GRA analysis results. Then, start calculating
(W′(V)) and (W(E)). The results are shown in Table 6. This research provides examples of
data and how they are used, as shown in Appendix B. In Appendix B, this study explains
the calculation process, as shown in Tables A7–A9.

Table 6. Weighted distance sorting of distress targets.

1 2 3 4 5 6

1 0.00 14.78 5.95 4.10 8.61 3.30

2 14.78 0.00 0.09 0.09 0.21 0.08

3 5.95 0.27 0.00 0.07 0.07 0.05

4 4.10 0.45 0.06 0.00 0.04 0.01

5 8.61 0.47 0.03 0.02 0.00 0.01

6 3.30 0.53 0.05 0.02 0.02 0.00

After obtaining the weighted distance, this study uses the Floyd–Warshall algorithm
again to calculate. This research provides examples of data and how they are used, as shown
in Appendix C. In Appendix C, this study explains the calculation presented graphically, as
shown in Tables A10–A15. The results by analysis and calculation are shown in Table 7. The
Example Calculation is attached in Table S1 in the Supplemental Material available online.

Regarding the results of the analysis, the optimized maritime search and rescue route
and navigation distance are shown in Table 8 below.
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Table 7. The best search and rescue route calculation matrix.

Vertex 1 2 3 4 5 6 1 2 3 4 5 6

1 0.00 3.62 3.35 3.32 3.32 3.30 1 1 6 6 6 6 6

2 3.38 0.00 0.09 0.09 0.10 0.08 2 6 2 3 4 6 6

3 3.35 0.27 0.00 0.07 0.07 0.05 3 6 2 3 4 5 6

4 3.31 0.33 0.06 0.00 0.03 0.01 4 6 3 3 4 6 6

5 3.31 0.30 0.03 0.02 0.00 0.01 5 6 3 3 4 5 6

6 3.30 0.32 0.05 0.02 0.02 0.00 6 1 3 3 4 5 6

Table 8. Optimized search and rescue route results collation.

The Best Maritime Search and Rescue Route Weighted Distance for Search and
Rescue Ships

1→6→2 3.62

1→6→3 3.35

1→6→4 3.32

1→6→5 3.32

2→6→1 3.38

2→6→5 0.10

3→6→1 3.35

3→4 0.07

4→6→1 3.31

4→3→2 0.33

4→3 0.06

4→6→5 0.03

5→6→1 3.31

5→3→2 0.30

6→3→2 0.32

6→3 0.05

According to the results compiled in Table 8, the best situation for maritime search
and rescue is to assign two search and rescue ships. A ship departs from rescue departure
target 1, passing by distress target 6, and finally reaches distress target 4. The weighted
distance of the ship is 3.32, and the navigation distance of the search and rescue ship is
16.61 nautical miles. The other ship departs from rescue departure target 1, passing by
distress target 6, distress target 5, and distress target 3, and finally reaches distress target 2.
The navigation distance of this ship is 3.62, and the navigation distance of the search and
rescue ship is 17.28 nautical miles.

5. Discussion and Conclusions

In conducting maritime search and rescue tasks, a traditional maritime search and
rescue plan needs a great deal of time for collecting information regarding falling water
events. However, in order to minimize the harm of people in distress, the process of search
and rescue at sea must be as short as possible. The optimized maritime search and rescue
route established in this study can balance both the criticality of the distress target and
the distance cost. The simulation results show that the proposed modeling method is an
effective plan for maritime search and rescue routes.
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This paper has built a set of maritime search and rescue route models for coastal
countries, which are suitable for the on-scene commander planning search and rescue
routes and dispatching rescue ships. The model based on the observable state of the
distress targets sequences the rescue plan and optimizes the marine search and rescue route.
When the search and rescue center receives the status of the target in distress, including
the location and distance of the person who fell into the sea, the optimized planning of the
maritime search and rescue route developed by this research can provide suggestions for
the search and rescue operations. If the search and rescue center obtained only the distance
of the target in distress, it could still dispatch the fastest search and rescue ship in the task
through this shortest path mode.

Not every maritime distress incident must immediately dispatch a great deal of
manpower and equipment. Aside from the factor of limited search and rescue resources, it
is important to avoid depleting all the rescue resources on a single case, with the result being
that there are not enough to be transferred to other distressed areas when receiving word of
other simultaneous incidents. In the distance matrix of the Floyd–Warshall algorithm, the
optimization model of this study introduces a concept similar to the classification guidance
of marine injury inspection. This can help the maritime search and rescue commander to
dispatch a high-precision rescue fleet to participate in the falling water incident. At the
same time, it can also reduce the waste of search and rescue resources and the situation of
insufficient rescue energy.

In addition, the current maritime search and rescue system does not have a set of
global universal maritime injury classification guidelines, which is not as complete as
the emergency medical examination system of the land hospital. This study can assist
in planning maritime search and rescue routes in time-critical situations. This route can
reasonably allocate the fleet resources required by the search and rescue route. This avoids
resource shortages and delays of search and rescue at sea. In terms of future research, the
evaluation method of vital signs can be adopted. By introducing the concept of vital signs
of casualties on land, the accuracy of the assessment of the injuries of those who have fallen
into the sea would be improved. In this way, it can increase the chance of rescue of persons
in distress at sea.

The research goal of this paper is to establish a model of optimized maritime rescue
routes for the search and rescue of maritime personnel of coastal countries, and this model
can assist on-site commanders in planning search and rescue routes and dispatching rescue
ships. Although the emergency decision-making path plan for rescuing people who have
fallen into the water considered weather and sea conditions, it does not extend to the aspects
of early warning of oil spills at sea and pollution prevention and control. Some topics for
future study include, for example, adjusting the search and rescue route by adding the oil
spill monitoring model. In addition, it will be an interesting topic regarding comparing the
efficiency between search and rescue ships and search and rescue helicopters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse10040460/s1, Table S1. Example Calculation.
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contributed to the conception and design of the work (study design, data interpretation). All authors
have read and agreed to the published version of the manuscript.
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Appendix A

The calculation processes presented graphically are shown in Tables A1–A6. These
data sources come from Table 1.



J. Mar. Sci. Eng. 2022, 10, 460 12 of 16

Table A1. The step 1 graphical process of Floyd–Warshall algorithm.

Step 1

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 14.78 17.86 16.38 17.21 16.49 1 1 2 3 4 5 6
2 14.78 0.00 0.57 0.79 0.86 0.84 2 1 2 3 4 5 6
3 17.86 0.57 0.00 0.29 0.16 0.25 3 1 2 3 4 5 6
4 16.38 0.79 0.29 0.00 0.14 0.12 4 1 2 3 4 5 6
5 17.21 0.86 0.16 0.14 0.00 0.06 5 1 2 3 4 5 6
6 16.49 0.84 0.25 0.12 0.06 0.00 6 1 2 3 4 5 6

Table A2. The step 2 graphical process of Floyd–Warshall algorithm.

Step 2

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 14.78 15.35 15.57 15.64 15.62 1 1 2 2 2 2 2
2 14.78 0.00 0.57 0.79 0.86 0.84 2 1 2 3 4 5 6
3 15.35 0.57 0.00 0.29 0.16 0.25 3 2 2 3 4 5 6
4 15.57 0.79 0.29 0.00 0.14 0.12 4 2 2 3 4 5 6
5 15.64 0.86 0.16 0.14 0.00 0.06 5 2 2 3 4 5 6
6 15.62 0.84 0.25 0.12 0.06 0.00 6 2 2 3 4 5 6

Table A3. The step 3 graphical process of Floyd–Warshall algorithm.

Step 3

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 14.78 15.35 15.57 15.51 15.60 1 1 2 2 2 3 3
2 14.78 0.00 0.57 0.79 0.73 0.82 2 1 2 3 4 3 3
3 15.35 0.57 0.00 0.29 0.16 0.25 3 2 2 3 4 5 6
4 15.57 0.79 0.29 0.00 0.14 0.12 4 2 2 3 4 5 6
5 15.51 0.73 0.16 0.14 0.00 0.06 5 3 3 3 4 5 6
6 15.60 0.82 0.25 0.12 0.06 0.00 6 3 3 3 4 5 6

Table A4. The step 4 graphical process of Floyd–Warshall algorithm.

Step 4

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 14.78 15.35 15.57 15.51 15.60 1 1 2 2 2 3 3
2 14.78 0.00 0.57 0.79 0.73 0.82 2 1 2 3 4 3 3
3 15.35 0.57 0.00 0.29 0.16 0.25 3 2 2 3 4 5 6
4 15.57 0.79 0.29 0.00 0.14 0.12 4 2 2 3 4 5 6
5 15.51 0.73 0.16 0.14 0.00 0.06 5 3 3 3 4 5 6
6 15.60 0.82 0.25 0.12 0.06 0.00 6 3 3 3 4 5 6

Table A5. The step 5 graphical process of Floyd–Warshall algorithm.

Step 5

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 14.78 15.35 15.57 15.51 15.57 1 1 2 2 2 3 5
2 14.78 0.00 0.57 0.79 0.73 0.79 2 1 2 3 4 3 5
3 15.35 0.57 0.00 0.29 0.16 0.22 3 2 2 3 4 5 5
4 15.57 0.79 0.29 0.00 0.14 0.12 4 2 2 3 4 5 6
5 15.51 0.73 0.16 0.14 0.00 0.06 5 3 3 3 4 5 6
6 15.57 0.79 0.22 0.12 0.06 0.00 6 5 5 5 4 5 6



J. Mar. Sci. Eng. 2022, 10, 460 13 of 16

Table A6. The step 6 graphical process of Floyd–Warshall algorithm.

Step 6

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 14.78 15.35 15.57 15.51 15.57 1 1 2 2 2 3 5
2 14.78 0.00 0.57 0.79 0.73 0.79 2 1 2 3 4 3 5
3 15.35 0.57 0.00 0.29 0.16 0.22 3 2 2 3 4 5 5
4 15.57 0.79 0.29 0.00 0.14 0.12 4 2 2 3 4 5 6
5 15.51 0.73 0.16 0.14 0.00 0.06 5 3 3 3 4 5 6
6 15.57 0.79 0.22 0.12 0.06 0.00 6 5 5 5 4 5 6

Appendix B

The calculation processes of (W′(V)) and (W(E)) are shown in Tables A7–A9.

Table A7. Minimum revise table.

Distress Target Grey Relational Ordinal W Revise W

1 NIL. 0.00 0.00

2 1 0.07 1.00

3 3 0.20 0.33

4 4 0.27 0.25

5 2 0.13 0.50

6 5 0.33 0.20

Table A8. (W′(V)) table.

1 2 3 4 5 6

1 0.00 1.00 0.33 0.25 0.50 0.20

2 1.00 0.00 0.16 0.12 0.24 0.10

3 0.33 0.48 0.00 0.23 0.46 0.18

4 0.25 0.57 0.19 0.00 0.29 0.11

5 0.50 0.55 0.18 0.14 0.00 0.11

6 0.20 0.63 0.21 0.16 0.32 0.00

Table A9. (W(E)) table.

1 2 3 4 5 6

1 0.00 14.78 5.95 4.10 8.61 3.30

2 14.78 0.00 0.57 0.79 0.86 0.84

3 17.86 0.57 0.00 0.29 0.16 0.25

4 16.38 0.79 0.29 0.00 0.14 0.12

5 17.21 0.86 0.16 0.14 0.00 0.06

6 16.49 0.84 0.25 0.12 0.06 0.00

Appendix C

The calculation processes presented graphically are shown in Tables A10–A15. These
data sources come from Table 6.
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Table A10. The step 1 graphical process of the best search and rescue route.

Step 1

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 14.78 5.95 4.10 8.61 3.30 1 1 2 3 4 5 6
2 14.78 0.00 0.09 0.09 0.21 0.08 2 1 2 3 4 5 6
3 5.95 0.27 0.00 0.07 0.07 0.05 3 1 2 3 4 5 6
4 4.10 0.45 0.06 0.00 0.04 0.01 4 1 2 3 4 5 6
5 8.61 0.47 0.03 0.02 0.00 0.01 5 1 2 3 4 5 6
6 3.30 0.53 0.05 0.02 0.02 0.00 6 1 2 3 4 5 6

Table A11. The step 2 graphical process of the best search and rescue route.

Step 2

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 14.78 5.95 4.10 8.61 3.30 1 1 2 3 4 5 6
2 14.78 0.00 0.09 0.09 0.21 0.08 2 1 2 3 4 5 6
3 5.95 0.27 0.00 0.07 0.07 0.05 3 1 2 3 4 5 6
4 4.10 0.45 0.06 0.00 0.04 0.01 4 1 2 3 4 5 6
5 8.61 0.47 0.03 0.02 0.00 0.01 5 1 2 3 4 5 6
6 3.30 0.53 0.05 0.02 0.02 0.00 6 1 2 3 4 5 6

Table A12. The step 3 graphical process of the best search and rescue route.

Step 3

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 6.23 5.95 4.10 6.02 3.30 1 1 3 3 4 3 6
2 6.04 0.00 0.09 0.09 0.16 0.08 2 3 2 3 4 3 6
3 5.95 0.27 0.00 0.07 0.07 0.05 3 1 2 3 4 5 6
4 4.10 0.33 0.06 0.00 0.04 0.01 4 1 3 3 4 5 6
5 5.98 0.30 0.03 0.02 0.00 0.01 5 3 3 3 4 5 6
6 3.30 0.33 0.05 0.02 0.02 0.00 6 1 3 3 4 5 6

Table A13. The step 4 graphical process of the best search and rescue route.

Step 4

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 4.43 4.16 4.10 4.14 3.30 1 1 4 4 4 4 6
2 4.19 0.00 0.09 0.09 0.13 0.08 2 4 2 3 4 4 6
3 4.17 0.27 0.00 0.07 0.07 0.05 3 4 2 3 4 5 6
4 4.10 0.33 0.06 0.00 0.04 0.01 4 1 3 3 4 5 6
5 4.12 0.30 0.03 0.02 0.00 0.01 5 4 3 3 4 5 6
6 3.30 0.33 0.05 0.02 0.02 0.00 6 1 3 3 4 5 6

Table A14. The step 5 graphical process of the best search and rescue route.

Step 5

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 4.43 4.16 4.10 4.14 3.30 1 1 4 4 4 4 6
2 4.19 0.00 0.09 0.09 0.13 0.08 2 4 2 3 4 4 6
3 4.17 0.27 0.00 0.07 0.07 0.05 3 4 2 3 4 5 6
4 4.10 0.33 0.06 0.00 0.04 0.01 4 1 3 3 4 5 6
5 4.12 0.30 0.03 0.02 0.00 0.01 5 4 3 3 4 5 6
6 3.30 0.33 0.05 0.02 0.02 0.00 6 1 3 3 4 5 6
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Table A15. The step 6 graphical process of the best search and rescue route.

Step 6

Vertex 1 2 3 4 5 6 1 2 3 4 5 6
1 0.00 3.62 3.35 3.32 3.32 3.30 1 1 6 6 6 6 6
2 3.38 0.00 0.09 0.09 0.10 0.08 2 6 2 3 4 6 6
3 3.25 0.27 0.00 0.07 0.07 0.05 3 6 2 3 4 5 6
4 3.31 0.33 0.06 0.00 0.03 0.01 4 6 3 3 4 6 6
5 3.31 0.30 0.03 0.02 0.00 0.01 5 6 3 3 4 5 6
6 3.30 0.32 0.05 0.02 0.02 0.00 6 1 3 3 4 5 6
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Abstract: The time required for rescue is a critical factor for surviving a marine incident. The regulatory
framework, International Maritime Organization (IMO) Polar Code, utilizes a risk-based approach.
It states that the vessel operators are to define the time required for rescue but never less than 5 days.
Based on experience from the classification society DNV GL, utilization of the minimum requirement
of five days is the current industry standard when conducting risk assessments. The dimensioning
of search and rescue resources is a national issue. There are no international requirements defining
the adequacy of the resources for different geographical areas. The remoteness and lack of resources
present within the IMO Polar Code area imposes a significant challenge for mariners in distress.
The time required for rescue is highly dependent on multiple variables. Based on this study,
the number of persons to be rescued, the number and type of evacuation platforms and the
distance each evacuation platform must travel significantly impacts the time required for rescue.
In addition, the meteorological and oceanographical (metocean) conditions play a significant role
when determining the efficiency of a search and rescue operation.
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1. Introduction

Providing adequate SAR facilities dimensioned to handle the large passenger vessels in the
Arctic is challenging from an economic, practical and logistical perspective. Large distances, lack of
infrastructure and harsh metocean conditions represent risks that must be handled.

A substantial increase in the polar cruise tourism activity is expected, especially around Svalbard [1].
Several frameworks address the additional risks associated with this kind of activity [2,3]. However,
few quantitative studies address one of the key elements essential for survival—the time to rescue
(TTR). The time to rescue is mainly determined by the availability of SAR resources, which to a great
extent is determined by geographical distances, political decisions and the financial strength of the
business/governmental funding.

This paper assesses the time to rescue (TTR) for different scenarios, utilizing different paths to
survival (PTS) and investigates the factors influencing the outcome.
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2. Definitions

There is no international consensus with regards to the interpretation and definition of many of the
commonly used expressions relevant for the topic. In this paper the following definitions are utilized:

• Evacuation platform—means to evacuate the crew/passengers from the water, survival craft or
shore to a place of safety/temporary place of safety.

• FRC—fast rescue craft/mob-boat.
• JRCC—joint rescue coordination center, coordination of the resources to be utilized in the

SAR operation.
• Place of safety—location where rescue operations are considered to terminate; where survivors’

safety or life is no longer threatened; where their basic human needs (such as food, clothing,
accommodation, and communications and medical needs) can be met; and from where
transportation arrangements can be made for their next or final destination [4].

• PTS/Path to survival—the crew/passengers of a vessel of distress will have different options with
regards to maintaining survival until being rescued. The chosen combination of options is defined
as a path to survival. The preferred paths will depend on elements like:

1. Condition of vessel
2. Available equipment
3. Metocean conditions
4. Number of people involved
5. Access to SAR resources
6. Governing procedures
7. Organization and competence, including systems for training
8. Personnel judgment

An example of a path to survival (PTS) can be from a survival craft to FRC, further transportation
by FRC to SAR-vessel.

• Rescue—the crew/passengers are considered to be rescued when they are placed in a place of
safety or a temporary place of safety. The temporary place of safety will prohibit further escalation
of the incident on an individual level, e.g., onboard a helicopter, at a temporary place of safety or
onboard a SAR-vessel.

• SAR vessel—a purposely built vessel with competent crew, including FRCs and helicopter support
facilities, coming to aid the vessel of distress.

• Survival Craft—lifeboat or life raft.
• Temporary place of safety—a location where persons are protected from hazards to life and health

and provided with basic humanitarian services such as shelter from the elements, warmth, first aid
medical treatment, food, water and sanitation, where communications with the JRCC and a means
of accounting for and identifying surviving persons are provided and from which the survivors
may be safely transferred to a place of safety [4]. Ideally this will be located close to a helicopter
fuel depo to enable efficient refueling of the helicopter.

• Time to rescue (TTR)/time to recover—is the length of time beginning with the completion of the
ship abandonment and ending when all persons have been recovered from survival crafts into a
place of safety or a temporary place of safety [4].

• Vessel of distress—the vessel that is seeking help due to an unforeseen incident.

3. Model

The approach outlined in this paper is based on a case study approach. The research design is
based on the “gaps and holes” methodology [5] with the aim of advancing theoretical explanations.
The subjects of the case study have defined the input parameters required for a theoretical model.
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They have been obtained based on earlier incidents/accidents. In addition, parameters have been
gathered from full scale training/exercises involving the SAR providers. The objective of the study has
been to utilize the model to assess the efficiency of different approaches to rescue.

Based on simple relationships between travel speed, distance, time, resources available
and downtime (e.g., rest/maintenance), the TTR was calculated for different paths to survival.
This required input parameters representing real life conditions. Each path to survival was broken
down into subprocesses to provide an adequate model-resolution in the time domain. Most of
the defined parameters are based on expert opinions, gathered from experienced SAR-operators.
These values assume:

(1) Adequate metocean conditions to conduct an efficient operation
(2) Adequate number of competent personnel to conduct the operation in a safe manner
(3) No technical breakdowns

Due to large sensitivity, many of the parameters have external and internal mechanism; the above
assumptions were required to narrow down the process of time to rescue to comparable units. As a
result, the model is deterministic and does not consider robustness or reliability. Due to the above
assumptions, the model can be regarded as a “best case”. The model has been generated utilizing the
computer program Python 3.7.

The model has further been validated by comparing the results to real incidents, e.g., the helicopter
operation carried out on Viking Sky, the rescue of the crew of Northguider and the SAR-operation
carried out during the Maxim Gorkiy incident [6].

3.1. Discrepancies between the Model and a Real Scenario

Modeling of TTR involves handling a substantial amount of uncertainty. Every vessel that comes
to rescue will have its own specific resources, including level of training and number of personnel.

The following discrepancies are to be expected between the model and a real scenario:

• Number of available evacuation platforms—the available number of helicopters and FRCs
might be reduced during the operation due to technical failures, maintenance intervals and
grounding incidents.

• Level of crew training will greatly affect the efficiency and risk involved in the operation.

o The ability to get personnel from the survival crafts onboard the evacuation platform will be
affected by the sea state.

o The model does not consider any time spent for searching. With a controlled evacuation and
the IMO Polar Code requirement of equipment for communication between the survival
crafts, this should not represent a large challenge. It is however, to be recognized that this will
require functional communication equipment, which represents an uncertainty if comparing
the model with a real scenario.

o For operations that have an extended duration, the survival crafts are expected to be scattered
over an extensive area. Transportation and coordination of the effects caused by the scattering
effect are not considered in the model.

o The model considers a controlled evacuation and rescue effort. It does not consider a melee
situation, picking up individual survivors from the sea.

o In a real situation, a combination of survival paths is to be expected. The model only assesses
each survival path individually.

o The resources mobilized to the scene of the accident will be a dynamic process. This will
change throughout the operation and will be affected by mechanisms like availability, access to
well rested crew, technical breakdowns, maintenance intervals and duration of the operation.

• The model does not consider the effects of bad weather delaying or stopping the operation.
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3.2. Assigned Values

Based on best practice and practical experience from real-time operations, the following values
have been assigned to the different variables and utilized in the model:

• Transit speed of the SAR-vessel = 15 (knots) (ice free waters)

o Distance from SAR-vessel to survival craft when commencing FRC operations = 1 (nautical
mile) [7].

o Distance from survival craft to temporary place of safety (e.g., shore/vessel of opportunity)
= 4 (nautical miles)

o Time used for preparations before departure for the helicopter = 60 (min). Requirement from
the Governor of Svalbard [8]

o Time used for preparations before departure for the SAR-vessel = 60 (min)

• Number of FRC’s utilized in the operation/carried onboard the SAR vessel = 2
• Average speed of the FRCs = 15 (knots) [9]
• Time utilized per person to embark from the survival craft to the FRC = 1.5 (min) [9]
• Time per person utilized to embark off the FRC = 0.3 (min) [9]
• Time utilized to lower and hoist the FRC = 3 (min) [9]
• Time utilized to refuel the FRC = 15 (min) [9]
• Refueling interval for the FRC = 60 × 4 (min) [9]

o Number of passengers carried onboard the FRC (excluding FRC crew) = 10 (persons) [9].
This is based on the capacity of the MOB boats utilized by the Norwegian Coast Guard.
According to SOLAS requirements [10], the MOB boat is only required to carry 5 persons
sitting, in addition to one person on a stretcher.

• Number of helicopters involved in the operation = 2
• Speed of helicopter (AS332L1 Super Puma) = 120 (knots) [11]
• Average time utilized to hoist 2 persons simultaneously = 2.5 (min) [11]

o Time utilized for each person to depart from the helicopter, including landing procedures =

0.5 (min)

• Time utilized for refueling of helicopter = 10 (min) [11]
• Refueling interval of helicopter = 4 (h) [11]
• Time utilized for helicopter critical maintenance/daily check = 30 (min) [11]
• Critical maintenance interval = 24 (h) [11]
• Number of passengers onboard the helicopter (excluding helicopter crew) = 15 persons

o Time for maintenance and refueling is executed when the FRC or helicopter is at the
SAR-vessel, at the temporary place of safety or at the helicopter base.

• Additional helicopter crews are brought into the operation to ensure proper rest time.

o The time required from when a distress call is initiated until it is received by the JRCC is not
considered as it is expected to be relatively short.

o All equipment has an up-to-date maintenance schedule and no major maintenance intervals
(putting the helicopter out of service) are occurring during the rescue operation.

o The temporary place of safety has unlimited capacity to handle survivors.

Due to the elements mentioned above, it is to be expected that in a real scenario the time to rescue
is to be significantly longer than the absolute values identified by the model. However, the model
gives an indication of the sensitivity associated with the different paths to survival.
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3.3. Paths to Survival

Surviving a marine incident is a result of a combination of measures. The combination of measures
is defined as a path to survival (PTS). An example of a path to survival is PTS3. The survivors are
initially located inside a survival craft. From the survival craft, they are evacuated on to an FRC and
further onto a SAR-vessel. The model assesses the following paths to survival (Table 1).

Table 1. Paths to survival considered in this document.

Path to
Survival

Evacuation
From

Means
Loading Platform Evacuated To Means

Unloading

PTS1
Vessel of
distress/

survival craft
Hoist Helicopter

Shore/nearby
vessel of

opportunity
Walk

PTS2 Survival craft Hoist Helicopter Helicopter base Walk

PTS3 Survival craft Hoist & crawl Helicopter &
FRC SAR-vessel Walk

PTS4 Survival craft Crawl FRC SAR-vessel Walk

PTS5 Shore Walk Helicopter &
FRC SAR-vessel Walk

PTS6
Vessel of
distress/

shore
Walk FRC SAR-vessel Walk

PTS3 and PTS5 assume that the helicopter immediately will start to transport survivors to the SAR
vessel as it is transiting to the scene of the accident. In PTS3 and PTS4, the FRC operation (transporting
survivors from the survival crafts to the SAR-vessel) is not commenced until the SAR-vessel is located
less than 1 nautical mile from the scene of the accident.

Each path to survival has been broken down to individual subprocesses. The time required for
conduction of each subprocess was calculated and accumulated. For the paths to survival, this includes
the following subprocesses in chronological order, Table 2:

Table 2. The individual processes associated with the paths to survival.

Process Number Processes

1 Mobilize and transport the SAR resources to the scene of the accident.

2 Lower the FRC on the SAR vessel (for scenarios where applicable).

3 Transport the survival crafts/shore with an evacuation platform (helicopter/FRC).

4 Load the survivors from the survival craft/shore to the evacuation platform
(helicopter/FRC) within the capacity of the evacuation platform.

5 Transport the evacuation platform back to the SAR vessel/reception facility.

6 Hoist the FRC on the SAR vessel (for scenarios where applicable).

7 Unload the survivors from the evacuation platform.

8 Maintenance, if critical maintenance intervals were exceeded.

For incidents involving a large number of persons, the processes 2 to 9 were conducted continuously
until all the survivors were rescued.

The time required to conduct each process has been accumulated. The time required for some
of the processes is directly correlated with the number of persons involved, e.g., embarking from a
survival craft to a FRC, while other processes are not correlated with the number of persons involved,
e.g., hoisting/lowering of FRC.
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4. Results

The model has been run to assess different paths to survival for three scenarios. To capture the
effects different parameters had on the time to rescue, the scenarios were chosen to differ in both
distance from infrastructure and number of persons to be rescued. Both the number of persons to be
rescued and the distance from infrastructure were chosen based on realistic numbers associated with
marine activities along the coast of Svalbard.

4.1. Scenario 1—Small Passenger Vessel (Carrying Up to 600 Passengers) Operating in a Region 200 Nautical
Miles from Helicopter Base and Nearest SAR Vessel

The scenario assesses a relatively small passenger vessel carrying up to 600 passengers, at a
distance of 200 nautical miles from the nearest helicopter base and 200 nautical miles from the nearest
SAR-vessel. This can be representative for the expedition cruise vessels operating in remote regions.

PTS2 has been left out of the plot as it would have taken more than 80 h to complete the task.
This path of survival proved however to be efficient for a lower number of passengers, involving only
one or two flights.

The plot (Figure 1) reveals that it will take about 14 h until the first marine resource is available at
the scene of the accident and can start the rescue by FRCs. However, for PTS3 and PTS5 the helicopters
can start to move survivors from the scene of the accident to the approaching SAR-vessel/temporary
place of safety immediately upon being deployed, and the FRCs will be involved in the operation as
the SAR-vessel arrives at the scene on the incident.
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Figure 1. Time to rescue for small passenger vessel operating in a remote region.

For vessels in Scenario 1 involving 600 people, there is a relatively marginal difference between
PTS1, PTS3 and PTS5. They all have in common that the helicopters are deployed to the scene of
the incident and that one starts the evacuation by helicopter immediately upon arrival. In PTS1 the
survivors are shipped to the shore/nearby vessel of opportunity while in PTS3 and PTS5 they are
shipped back to the approaching SAR-vessel. The effect of FRCs contributing to the operation is not
critical for vessels carrying less than 500 people due to the relatively long response time associated
with the marine resources. The helicopter will be the critical asset and have completed most of the
evacuation before the SAR-vessel arrives.
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For vessels carrying less than about 500 persons, utilizing the helicopter for evacuation of personnel
from the survival crafts to an onshore safe heaven/vessel of opportunity (PTS1) is the preferred solution.

4.2. Scenario 2—A Larger Passenger Vessel Operating in Vicinity of Infrastructure and a SAR-Vessel

The second scenario is based on a passenger vessel carrying up to 3000 passengers, operating in
closer vicinity to infrastructure, 50 nautical miles from a helicopter base and 50 nautical miles from a
SAR vessel.

It is evident (Figure 2) that there is little time required to get the SAR resources in position.
The effectiveness of the FRC operation compared with a helicopter hoisting operation outweighs the
reduced travelling time of the helicopter. The most efficient means of rescue is the utilization of FRCs
in combination with helicopters (PTS3 and PTS5). It is also evident that avoiding hoisting and enabling
the personnel to “walk” onto the evacuation platforms increases efficiency substantially, reducing
the TTR with about 33%, from 46 to 31 h. This would require the survivors to evacuate to land by
themselves. In a real scenario, a temporary place of safety should be established at the same location.
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4.3. Scenario 3—A Larger Passenger Vessel Operating in a Remote Region

Scenario 3 is based on a relatively large cruise vessel (up to 3000 persons onboard) operating
in a remote region, 200 nautical miles from a helicopter base and 200 nautical miles away from the
nearest SAR-vessel.

The plot (Figure 3) for PTS2, flying the survivors directly back to the helicopter base is removed
from the plot as it would take more than 400 h and is not regarded as a feasible option.

Due to the long response time for the SAR-vessel, it is evident that with the exception of PTS1,
establishing and flying the survivors to a safe haven/vessel of opportunity near the scene of the incident,
the operation will not reach its full effectiveness until about 14 h into the operation. The helicopter is
an important asset, but the FRCs play an important role for the larger part of the operation.
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4.4. Uncertainty Associated with the Results

The uncertainty associated with the model is defined as the model’s ability to provide an accurate
answer that represents the time to rescue associated with a real scenario. Due to the static nature of the
input parameters and the lack of ability to cover unforeseen events, the model represents a best-case
scenario with 100% operational efficiency.

The uncertainties associated with the result increase for operations of longer duration. This is due
to the effect of several mechanism, e.g., human fatigue caused by prolonged working h, fatigue due to
continuums repetitive operations (e.g., operator of FRC winches will have conducted several hundred
hoists during a relatively short time frame), stretching of maintenance intervals for essential equipment,
additional resources being introduced to the operation and variable metocean conditions.

The model assumes twin hoisting (hoisting 2 survivors simultaneously). It is experienced that
when the helicopter approaches its full carrying capacity, it is preferred to conduct single hoist
operations due to the challenge of the stowage of the survivors inside the helicopter.

If the survivors are in a physical state that requires single hoisting, e.g., being on a stretcher
(e.g., due to serious injuries or hypothermia), the efficiency of the helicopter operation is reduced by
more than 50%, further increasing the TTR substantially. Stowage of survivors on stretchers inside
the helicopter is also highly time consuming. It is of very high importance that the survivors are in a
physical state that enables an efficient hoist and stowage.

The efficiency of a SAR operation is highly dependent on numerous unknown variables. Based on
experience from SAR-helicopter operators [11], the efficiency in a hoisting operation is reduced
when rolling motion is encountered on the vessel/survival crafts the survivors are to be hoisted from.
The rolling motion is related to a variety of parameters like vessel size, vessel heading, vessel metacentric
height, sea state and wave periods. This study assumes 100% efficiency in the rescue operation. Due to
factors like bad weather, lack of/improper communication/logistical challenges etc., the operational
efficiency can be reduced significantly. In a real scenario, this could result in a substantial increase in
the TTR, and this study is to be regarded as a best case.
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5. Discussion

5.1. Model Results—Scenario 1

In Scenario 1 it is evident that PTS1, freighting the survivors by helicopter to a temporary place of
safety established onshore/vessel of opportunity, is efficient, especially when the number of survivors
is relatively low (e.g., below about 500 persons). This will require establishment of a safe haven,
in addition to a fuel depo near the scene of the accident. The time utilized for the operation is greatly
affected by the distance from the survival crafts to the temporary place of safety and fuel depo (Figure 4).
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Increasing the distance from the incident to the temporary place of safety from 2 nautical miles to
20 nautical miles will result in an increased flying time per round trip for the helicopter. Based on
Figure 4 it is evident that the increase in distance (from 2 nautical miles to 20 nautical miles) will reduce
the efficiency of the operation by about 20%. However, the potential waiting time associated with
multiple helicopter operations taking place in a limited airspace simultaneously will reduce the
efficiency for short distances.

A more robust and realistic approach would be to focus on PTS3, as utilizing this approach,
the helicopter will have access to required helicopter support systems at each drop off of survivors at
the SAR-vessel. Utilization of this methodology was seen in the Maxim Gorkiy incident [6].

This is especially true when the number of survivors is approaching 600 or above, as the efficiency
of PTS1 and PTS3 converges around this point.

Introducing a marine asset to the operation will also contribute to increasing redundancy and
handling the scattering effect caused by the survival crafts.

Shipping survivors directly back to the helicopter hub will not be a feasible option unless the
number of survivors is relatively low, involving only a few helicopter flights. This will also reduce the
need for establishment of an onshore safety haven. An example of this was seen during the evacuation
of the crew of the fishing vessel Northguider [11].
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5.2. Model Results—Scenario 2

In Scenario 2 it is evident that PTS3 and PTS5 provide the lowest TTR. These paths to survival
enable a simultaneous operation of 2 FRCs and 2 helicopters.

The lowest evacuation time observed is PTS5 where all the survivors are located onshore. In a
real scenario, it would be advisable to establish a safe haven at this location (if possible), and at a later
stage evacuate them in a controlled manner.

It is worth noting that even at these distances, very close to onshore infrastructure, PTS1 came out
about average. This option does not take into account that FRC and smaller local vessels of opportunity
could be utilized for evacuating personnel onto the shore. Few SAR-vessels have the capacity to
handle 3000 survivors, and additional accommodation resources must be brought into the scene of the
accident, either as other vessels or by establishing an onshore safe haven.

Based on the findings above it is evident that an onshore temporary place of safety would be an
asset also for incidents that took place in close vicinity of onshore infrastructure.

5.3. Model Results—Scenario 3

In Scenario 3, marine resources are essential for the operation and they reduce the TTR by more
than 50% compared to only utilizing helicopters. It is also clear that the time utilized by the marine
resource to reach the scene of the accident only represents a small portion of the total time required for
the rescue operation.

An operation that is to have a duration of several days will need to supply its own support
functions. This includes additional personnel, FRC fuel, helicopter fuel, technical personnel and food.
Establishing the logistics required for an efficient operation will require substantial efforts and time.
Parallel to the first responders rushing to the scene of the accident, a logistics support system should
be initiated and mobilized.

5.4. Common Denominators for All Scenarios

It is evident that for all scenarios the TTR is expected to be in the range of days, not h.
It is further apparent that three different key factors highly influence the TTR; the number of

persons to be rescued, the number of evacuation platforms available and the distance to be travelled
by the individual evacuation platforms.

The number of persons to be rescued represents a major driver when determining the TTR.
When the resources are at the scene of the incident, the number of evacuation platforms,

e.g., number of FRCs and helicopters available, is critical in determining the time to rescue.
Each individual platform provides rescue capacities as long as they can operate in parallel.
The cumulative capacity of the evacuation platforms highly affects the total speed of the evacuation,
which further defines the total time required for the rescue operation. Utilizing a substantial number
of evacuation platforms in parallel will, however, demand a high capacity reception facility to handle
the high and steady influx of survivors.

The distance travelled by the evacuation platforms is determined by the distance from the survival
crafts to the temporary place of safety established onshore/vessel of opportunity/SAR-vessel. As this
distance has to be travelled twice (back and forth) when picking up the survivors it will highly influence
the TTR. It is of uttermost importance that the SAR-vessel maneuvers close to the survival crafts
and that the temporary place of safety is established in close vicinity of the scene of the incident.
The location of the helicopter fuel depos also plays a significant role when assessing the efficiency of
the helicopters.

When evacuating a vessel in distress, involving an extensive number of rescue platforms will
reduce the TTR up to a certain point. Beyond that, it will only increase the robustness of the operation.
It is also important to consider the capacity of the reception facilities. The capacity to of the reception
facilities and the capacity of the evacuation has to be harmonized for an efficient operation. During the
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Viking Sky incident, the onshore casualty reception facility was manned with about 100 volunteers
from the Red Cross in addition to professional health workers, providing first aid and psychological
support [12].

During the Viking Sky incident 397 persons were evacuated in about 16 h, giving an average
time of 2.4 min per person. Five helicopters were involved in the operation, and the helicopters were
refueled at the same time as they were dropping off the survivors. However, only one helicopter was
able to conduct hoisting operations at the vessel at any time due to issues caused by turbulence, [12–14].
The indications of reduced efficiency during utilization of several helicopters together is also addressed
in the guidelines defined by [15]. They state that an efficiency of 50% is to be expected for the second
helicopter arriving at the scene of the accident.

It is evident that the distance from the nearest helicopter base/SAR-vessel influences the TTR.
In scenario 3 the lowest TTR was about 40 h utilizing a combination of helicopters, FRCs and a
SAR-vessel. Out of this time the SAR-vessel utilizes about 13 h and the helicopters utilizes about
1.6 h to get to the scene of the incident. This represents respectively about 30% and 2.5% of the total
TTR. From a cost/benefit perspective, the recommended focus should be on increasing the rate of
survivor evacuation by increasing the number of evacuation platforms not only focusing on reducing
the response time.

In PTS 5 and PTS6 the survivors were able to reach shore by their own means. If the location is
suitable, it would most likely be advisable to establish a temporary place of safety at this location
instead of moving the survivors.

During the Maxim Gorkiy incident about 325 people were rescued in about 3.5 h [6]. This means
an average of 0.65 minute per person. This achievement was achieved utilizing multiple helicopters
landing and refueling onboard KV Senja, in addition to survivors directly climbing/being onto the aft
deck of the SAR-vessel. The large discrepancy between the evacuation speed (time utilized per person)
in the Maxim Gorkiy scenario compared with the evacuation time in the Viking Sky or Northguider
scenario is mainly due to survivors evacuating directly from the survival crafts onto the aft deck of
KV Senja from the life boats by walking/climbing. This reduced the need for FRC/hoisting operations
which are time consuming.

To be able to conduct this operation on calm seas was a necessity. Despite the extraordinary good
conditions, there were incidents where helicopters almost slide off the helideck and lifeboats obtained
considerable damage under the stern/side of KV Senja, due to the rolling motion of the vessel.

Conduction of part of the operation was beyond normal regulatory directives but a chosen option
due to the limited time available.

This incident proves the importance of multiple evacuation platforms being utilized simultaneously.
It also indicates the increase in speed when having a system that enables the survivors to “walk” off

the evacuation platform instead of being hoisted/lifted.

5.5. Robustness of the Operation

The model is based on 100% functionality of all technical equipment. Malfunction and technical
breakdowns are to be expected for an operation that is to have a duration of several days. Due to lack
of infrastructure, reduced availability of critical spare parts and technical competence, the operation
can be significantly delayed when comparing to a real SAR operation; according to the results from the
application of the model.

To reduce the likelihood of the above-mentioned mechanism, it is important to evaluate different
aspects of the robustness of the operations, Table 3.

PTS6 assumes that the survivors have been able to reach a protected location onshore. With the
exception of PTS6, it is clear that none of the PTS’s are clearly favorable. It is however clear that
mobilizing many assets to the scene of the accident is of high importance to increase the robustness of
the operation.
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Table 3. Robustness of the different paths to survival.

Survival Path Robustness Weather Robustness Technical Robustness Human Element

PTS1 High Low Medium

PTS2 High Low Low

PTS3 Medium Medium Medium

PTS4 Low High High

PTS5 High Medium High

PTS6 High High High

The weather limitations associated with FRC operations will also affect the robustness of the
operation. According to JRCC Bodø, personnel transfer by FRC is not advisable in seas above 1 m
unless the FRC operators have special training and the survivors are fit [6]. For most of the offshore
sector in the North Sea, the wave height limitations for a specially trained crew is defined to be a
significant wave height of 4.5 m [16].

If the survivors seek a sheltered location or the shore, the probability of efficient FRC operations
would significantly increase.

The effect of having a SAR-vessel at the scene of the accident increases both the robustness from a
technical and a human element perspective. The vessel would provide valuable assets like helicopter
logistic support, food, water, medical facilities and improved abilities for communication.

5.6. Human Resources Required in an Efficient SAR Operation

When dimensioning a SAR-system it is important to consider the human resources involved in
the operation. For an operation that is to be conducted on a continuous basis for several days it is
important to follow standard operation procedures to prevent development of fatigue and reduce the
likelihood of failures.

Below (Table 4) is an example of the human resources involved in transportation and reception of
survivors from survival crafts. This does not take into account the resources needed for staffing of
SAR-vessel operations, first aid treatment or accommodation of the survivors.

Table 4. Human resources required for a multiday SAR operation.

Operation Minimum Number of Persons
Conducting Operational Tasks

Minimum Number of Persons
Allocated to the Operation on a

Continuous Basis (3 Shifts)

FRC operation

FRC crew 3 9

Crane operators 2 6

Reception facilities (only
registration) 2 6

Total FRC operation 7 21

Helicopter operation

Pilots 2 6

Winch operator 1 3

Mechanic 1 3

Vessel HKO + 2 NAVKIS 3 9

FDO (Flight Deck Officer) 1 3

FDA (Flight Deck Assistant) 1 3
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Table 4. Cont.

Operation Minimum Number of Persons
Conducting Operational Tasks

Minimum Number of Persons
Allocated to the Operation on a

Continuous Basis (3 Shifts)

FDM (Flight Deck Crew) 4 12

Mechanic preparing heli-fuel 1 3

Reception facilities (only
registration, no medical treatment) 2 6

Total Helicopter operation 16 48

Total all transportation
operations 69

The table indicates what would ideally be required for a multiday SAR operation. The figure
does only take into account the evacuation processes and does not address the personnel required for,
e.g., casualty treatment or organizing logistics. Much of the above-mentioned personnel would not be
available as the first responders rush to the scene of the accident. Mobilization and transportation of
additional required personnel to the scene of the incident should be initiated in the early phases of
the operation.

It is also worth considering mobilization of the human resources required for the survivor reception
facilities, including the staffing of safe havens. In the Viking Sky incident, there were about 100 persons
involved in the reception and premedical treatment of the survivors [12].

6. Conclusions

Despite the uncertainty associated with the model, there are several learning points identified.
Increasing the number of evacuation platforms greatly affects the TTR. Utilization of FRCs and
helicopters simultaneously proved to be the beneficial for all three scenarios. However, this requires
access to helicopter support functions (e.g., ability to refuel) and the reception facilities to be dimensioned
to handle a large influx of survivors.

For incidents taking place in remote areas (far from infrastructure and SAR-vessels), the time
required for the SAR-vessel to arrive at site affects the rate of rescue. The following generalization can
be made for the most efficient path to survival:

• Less than 40 survivors—PTS2, utilizing helicopters, freighting the survivors directly back to the
helicopter base.

• 50 to about 600 survivors—PTS1, utilizing helicopters, establishing a temporary place of safety
onshore while waiting for arrival of SAR-vessels as long as helicopter fuel is available in the vicinity.

• More than about 600 survivors—PTS3, utilizing a combination of all evacuation platforms available.

In all cases the survivors would benefit from seeking sheltered waters/the shore to increase the
efficiency of the rescue operation.

It is also evident that access to helicopter fuel/support facilities is essential for prolonged operations
involving helicopters. All paths to survival, except PTS2, require this in the vicinity of the scene of
the incident. The issue of access to helicopter support facilities was also essential for the successful
outcome of the Maxim-Gorkiy incident [6]. Shore-based depos located in vicinity of the scene of
the accident, available before any SAR-vessels arrive, utilized in combination with SAR-vessels with
helicopter facilities is regarded as the most beneficial approach.

7. Recommendations

The general learning points can be divided into two different categories: vessel operator
recommendations and SAR operator recommendations.
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7.1. Vessel Operator Recommendations

From the perspective of a vessel operator, the following issues are to be considered:

• For vessels containing more than a couple of hundred persons, the time to rescue is expected to be
days not h for most areas of the Arctic/Antarctic.

• The number of persons onboard is a key parameter when estimating TTR. As a result, it is to be
expected a longer TTR for a large passenger vessel than for a smaller vessel.

• The availability of SAR-resources is critical when determining TTR, and it is to be recognized that
prolonged helicopter operations are not a viable option for a large part of the Arctic/Antarctic due
to lack of support infrastructure, e.g., helicopter fuel.

• Rescue by marine resources will require relatively calm waters (wave height below 1 meter is
recommended by JRCC Bodø) [7].

• The survivors should try to avoid spreading over a large geographical area (reduce the scattering
effect) and seek sheltered waters or preferably evacuate to onshore. This will increase the
probability for efficient evacuation operations, reduce the probability for conducting helicopter
hoisting operations and reduce the TTR and increase the probability of survival

• Having a companion vessel (twin vessel operation) can increase safety. This will require special
training and purposely built equipment to enable efficient ship to ship transfer of personnel.
This is only a viable option in calm waters.

• Installation of helicopter support facilities onboard passenger vessels/vessel of convenience can
substantially increase both the efficiency and the duration of helicopter operations.

7.2. SAR Operator Recommendations

From the perspective of a SAR operator, the following issues are to be considered:

• Dispatching a combination of purposely built and trained marine SAR-resources to the scene of
the accident to provide a safe heaven, helicopter support facilities and enabling of FRC operations
are essential to reduce the TTR and increase the robustness of the operation.

• Mobilization of additional resources (including personnel) is critical for logistics and support of
an extended operation that is to last for several days.

• Maximize of the number of evacuation platforms available at the scene of the incident will in most
cases reduce the TTR.

• The reception facilities must be dimensioned for the capacities provided by the cumulative capacity
provided by the evacuation platforms.

• For many scenarios involving a substantial number of passengers, an onshore temporary place of
safety is a critical asset. Equipment and personnel should be readily available at the helicopter base
and pre-established helicopter fuel depos should be available in the geographical area of interest.

• Contingency plans addressing mobilization and transportation of additional essential
SAR-personnel to the scene of the accident should be prepared as an efficient operation of
an extended duration will most likely involve more than 100 SAR personnel at the scene of
the accident.

• It is important to consider the safety, food and water required to support the SAR-resources
brought to the scene of the accident.

• Helicopter fuel depos—the depos should be located at short distances from each other to reduce
the time utilized for transportation. The depos should enable helicopter operations for a duration
equivalent to the time required for SAR-vessel to reach the area.

8. Concluding Remarks

In the risk assessment required by the IMO Polar Code, a majority of the vessel operators aim for
the minimum time to rescue requirement of “minimum 5 days” [1].
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Being rescued within the timeframe defined will require an enormous functional SAR-system in
place, in addition to favorable metocean conditions. This is especially valid for larger vessels carrying
more than a couple of hundred people. Within the IMO Polar Code area, the SAR-resources are sparse
and far apart. When conducting the risk assessment as defined in the “Polar Water Operation Manual”,
it is important to consider the elements described in this manual to ensure the time defined as “time to
rescue” is valid for the area of operation.

It is also of importance that the governmental agencies responsible for the SAR facilities are
actively communicating the availability and functionality of the SAR system within geographical areas.
This information is essential input for the marine industry to enable defining a realistic time to rescue.

9. Epilog

Deficiencies in a vessels SOLAS equipment [9] will cause incompliance with the governing rules
and regulations. Such a vessel would be detained and prohibited from leaving port as the functionality
of the safety equipment would be regarded as not adequate to provide the functionality required for
survival in the event of an incident involving the vessel.

Bad weather will also reduce the functionality of the safety equipment. A relatively high significant
wave height will prohibit launching of the lifeboats/life rafts and evacuation of the vessel in distress
would not be possible.

A vessel with compliant SOLAS equipment would not be restricted from leaving port, despite a
valid weather forecast defining conditions where the functionality of the safety equipment is severely
reduced. In this event, the vessel operators purposely put the vessel in a position where they should
know that the safety is compromised.

This paradox imposed on the marine industry is relatively recent. In previous times the vessels
traveled slowly, and the weather predictions were unreliable or unavailable. In more recent times the
accuracy and availability of weather forecasts has improved significantly, and most vessels can avoid
bad weather, if prioritized.

For vessels operating on the high seas, avoidance of bad weather is at times difficult. However,
most cruise/passenger vessels operate in coastal waters for a larger part of the time. Avoidance of
situations where the functionality of the safety equipment is significantly reduced is perfectly possible
with today’s technology. This will require prioritizing safety and a willingness to bear the cost
associated with the implications of the mitigation measures.

Slogans like “Never compromise on safety” are frequently observed in the marine industry.
However, as the industry accepts the risks associated with lack of functionality of safety equipment
associated with bad weather, safety is compromised every day, in all parts of the world. Operating
with risk acceptance criteria that compromise on safety is not necessarily a bad thing—a human life
has a price. It is, however, important that this fact is accepted and communicated to relevant parties,
including the passenger who puts his/her life in the hands of the vessel operator.

It should be noted that the paper is based on the results of a series of search and rescue exercises
conducted in the waters north of Spitzbergen, Norway from 2016 to 2018, [17–20].
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