THE REMOVAL OF IRON (II) FROM AQUEOUS SOLUTION BY SAWDUST ADSORPTION

SUBHI BIN OWAR

FAKULTI SAINS DAN TEKNOLOGI EJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA

THE REMOVAL OF IRON (II) FROM AQUEOUS SOLUTION BY SAWDUST ADSORPTION

By

Subhi bin Omar

Research Report submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology (Environmental)

Supe and Anton Mice Adda Statung

555

Department of Engineering Science Faculty of Science and Technology KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA 2005

1100036923

DEPARTMENT OF ENGINEERING SCIENCE FACULTY OF SCIENCE AND TECHNOLOGY KOLEJ UNIVERSITI SAINS DAN TEKNOLOGI MALAYSIA

APPROVAL AND CERTIFICATION FORM RESEARCH PROJECT I AND II

I certified that this research report entitled: The Removal of Iron (II) From Aqueous Solution By Sawdust Adsorption by SUBHI BIN OMAR, Matric No. UK6904 have been read and all corrections recommended by the examiners have been done. This research report is submitted to the Department of Engineering Science in partial fulfillment of the requirements for the degree of Bachelor of Technology in Environmental, Faculty of Science and Technology, Kolej Universiti Sains dan Teknologi Malaysia.

Approved by:

..........

Supervisor Name: Associate Professor Dr. Senin Hassan Stamp:

Supervisor Name: Hasiah Binti Salleh Stamp: PROF MADYA DR. SENIN BIN HASSAN

Ketua Jabatan Sains Fizik Fakulti Sains dan Teknologi Kolej Universiti Sains dan Teknologi Malaysia (KUSTEM) 21030 Kuala Terengganu

Date: 13 April 2005

PM. HASIAH SALLEH PENSYARAH JABATAN SAINS FIZIK FAKULTI SAINS DAN TEKNOLOGI 'KOLEJ UNIVERSITI SAINS DA FKNOLOGI MALAYSIA KOS MENGABANG TELP 21030 KIJALA TE

Date: 13/04/05

Head of Department Name: Associate Professor Ir. Ahmad Jusob Stamp:

Date: 13/04/05

ACKNOWLEDGMENT

Firstly, I am thankful to God for giving me enough strength, enthusiasm and high determination to finish my thesis. Secondly, I wanted to pay infinite tribute gratefully to my family, especially my dear parent for their unlimited support along the process of making this thesis.

My principal gratitude is due to my supervisor, Associate Professor Dr. Senin Hassan, whose guidance and dedication to make this thesis a pleasure to produce. Also, I wish to thank all the lab assistants of Chemistry Laboratory and Environmental Laboratory for allowing me to use the apparatus and instruments inside for my experiments.

Also, I wish to express my gratitude and my thanks to all my colleagues and friends who have willing and kindly assisted me in many ways. I am indebted so much with you all for the valuable assistance that making all my effort to fruition.

Stones

4 of Dep

Airrughts Perificung Iv, Admind Tareth

Last but not least, a million thanks to whom reviews this thesis. If by any chances, of error in any part of my thesis, I offer my sincere request for my forgiveness in advance.

iii

One of the

LIST OF CONTENTS

			Pages
FRONT-PAGE			ì
APPROVAL AND	CERTIFI	CATIONS FORM OF THESIS	ü
ACKNOWLEDGE	MENT		iii
LIST OF CONTEN	ITS		ĩv
LIST OF FIGURE	S		vii
LIST OF TABLES			ix
LIST OF ABBREV	TATION		x
LIST OF APPEND	ICES		xi
ABSTRACT			xìĭ
ABSTRAK			xiii
CHAPTER 1	INT	RODUCTION	
	1.1	Problems Statements	3
	1.2	Objectives	4
	1.3	Scope Of Study	4
CHAPTER 2	LIT	ERATURE REVIEW	
	2.1	Sawdust	5
		2.1.1 Structure of Sawdust	6
		2.1.2 Untreated and Treated Sawdust	6

		2.1.3 Capability of Sawdust as an Adsorbent for	
		Heavy Metals	7
		2.1.4 Other Beneficial Of Sawdust	9
	2.2	Adsorption Isotherms	10
CHAPTER 3	MET	HODOLOGY	
	3.1	Materials	12
	3.2	Adsorbents	13
		3.2.1 Preparation of Sawdust	13
		3.2.2 Untreated Sawdust	13
		3.2.3 Sulphuric Acid Treated Sawdust (SDC)	14
	3.3	Cleaning of Glassware and Apparatus	14
	3.4	Determination of the Dominant Wave Length	
		of Fe (II)	15
	3.5	Preparation of Standard Fe (II) Stock Solution	16
	3.6	Preparation of Calibration Curve for Fe (II)	16
	3.7	Preparation of Fe (II) Solution	16
	3.8	Determining of Time Required to Reach	
		Equilibrium	17
	3.9	Batch Test	18
	3.10	Column Test	19
	3.11	Flow Rate	20

CHAPTER 4	RESU	LTS AND DISCUSSION	
	4.1	Calibration Curve for Fe (II)	21
	4.2	Batch Test	22
		4.2.1 Adsorption Efficiency of Fe (II) onto	
		Sawdust	23
		4.2.2 Adsorption Capacity of Fe (II) onto Sawdu.	st
		Using Langmuir and Freundlich Adsorptio	n
		Isotherms	26
	4.3	Column Test	33
	4.4	Discussion for Batch Test	36
	4.5	Discussion for Column Test	38
CHAPTER 5	CONC	CLUSSIONS AND RECOMMENDATIONS	
	5.1	Conclusions	41

5.2	Recommendations	42

REFERRENCES	43
APPENDIXES	45
CURRICULUM VITAE	51

LIST OF FIGURES

Figures		Pages
3.1	Untreated Sawdust (SD)	13
3.2	Acid Sulphuric Treated Sawdust (SDC)	14
3.3	Atomic Absorption Spectrometer (AAS)	15
3.4	Orbital Shaker Incubator Model LM-510R	17
3.5	Column Test	20
4.1	Calibration curve for Fe (II)	22
4.2	Plots for adsorption efficiency of Fe (II) using SD	25
4.3	Plots for adsorption efficiency of Fe (II) using SDC	25
4.4	Plot of q_e vs. C_e for the data obtained from the batch test by using SD	26
4.5	Plot of q_e vs. C_e for the data obtained from the batch test by using SDC	27
4.6	Freundlich plots for adsorption of Fe (II) onto SD	28
4.7	Freundlich plots for adsorption of Fe (II) onto SDC	28
4.8	Langmuir plots for adsorption of Fe (II) onto SD	30
4.9	Langmuir plots for adsorption of Fe (II) onto SDC	30
4.10	Fitting of Langmuir and Freundlich isotherm into the experimental	
	data for SD	32
4.11	Fitting of Langmuir and Freundlich isotherm into the experimental data	
	for SDC	32

4.12	Removal efficiency of Fe (II) by SD towards time in packed column	34
4.13	Removal efficiency of Fe (II) by SDC towards time in packed column	35

LIST OF TABLES

Tables	5	Pages
4.1	Adsorption efficiency of SD with respect to Fe (II) removal at different	
	masses	23
4.2	Adsorption efficiency of SD with respect to Fe (II) removal at different	
	masses	24
4.3	Freundlich adsorption equations for both SD and SDC	29
4.4	Langmuir adsorption equations for both SD and SDC	31
4.5	Efficiency of Fe (II) removal at different flow rates by SD	
	packed in column	33
4.6	Efficiency of Fe (II) removal at different flow rates by SDC	
	packed in column	34

LIST OF ABBREVIATION

Abbreviations

AAS	Atomic Absorption Spectrometer
Fe (II)	Iron (II)
nm	Nano meter
ppm	Part per million
SD	Untreated Sawdust
SDC	Acid Sulphuric Treated Sawdust
UPEN	Economical Strategy Units of Terengganu
μm	Micro meter

LIST OF APPENDICES

Appendix		Pages
A	Data obtained from AAS for both SD and SDC in batch test	45
В	Data for adsorption efficiency of Fe (II) on different dosage for	
	both SD and SDC in batch test	46
С	Data for Freundlich adsorption isotherm of Fe (II) on both SD	
	and SDC in batch test	47
D	Data for Langmuir adsorption isotherm of Fe (II) on both SD	
	and SDC in batch test	48
E	Data obtained for SD in column test for specific flow rates	49
F	Data obtained for SDC in column test for specific flow rates	50

ABSTRACT

Sawdust, a relatively abundant and which always present a disposal problems is currently being investigated as an adsorbent to remove chemical substances including heavy metals from waste water, dyes, oil and toxic salts. This research investigates the potential use of sawdust; either untreated or pretreated sawdust in the removal of Iron (II). The adsorption phenomenon of sawdust has been carried out using both batch and column test. The Langmuir and Freundlich isotherm were used to observe sorption phenomena of sawdust in the removal of Iron (II). The results found that the sawdust was capable in removing Iron (II) in aqueous solution. The results also showed that Langmuir isotherm was found well fitted into the experimental data as compared to the Freundlich isotherm. It was found that, chemisorptions and physisorption were the prime mechanism for the process of adsorption to occur between the sawdust and Iron (II). The results also proved that the treated sawdust is better than that of untreated sawdust as an adsorbent for Iron (II).

ABSTRAK

Habuk kayu gergaji antara sisa kayu yang boleh didapati dengan banyaknya dan juga menimbulkan permasalahan bagi proses pelupusannya dipercayai mempunyai keupayaan sebagai bahan penjerap untuk menyingkirkan bahan kimia seperti logam berat dalam air sisa, pewarna, minyak dan garam toksik. Penyelidikan ini adalah untuk mengkaji tentang potensi habuk kayu gergaji samada dirawat atau tidak dalam penyingkiran Ferum (II). Fenomena penjerapan oleh habuk kayu dikenalpasti dengan menjalankan ujian berkelompok dan ujian turus. Isoterma Langmuir dan isoterma Freundlich digunakan untuk menentukan mekanisma penjerapan yang berlaku dalam penyingkiran Ferum (II). Keputusan menunjukkan habuk kayu gergaji mampu menyingkirkan Ferum (II) dalam larutan akues. Keputusan juga menunjukkan isoterma Langmuir lebih baik berbanding isoterma Freundlich kerana hampir menyamai data kajian. Didapati bahawa penjerapan antara habuk kayu gergaji dan Ferum (II). Keputusan juga membuktikan bahawa habuk kayu gergaji yang dirawat bertindak lebih baik daripada habuk kayu gergaji tidak dirawat sebagai bahan penjerapa bagi Ferum (II).