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A solitary number that can be utilized to describe some property of the graph
of a particle is known as a topological index for that graph. There are various
topological indices that have discovered a few applications in hypothetical
science. In this thesis, different topological index are computed, algorithims are
devised for complicated computations and also  where  mathematical
computation was not possible. In the first thesis, construction algorithm for
zero divisor graph with finite rings is developed. Computer based experiments
are conducted to find the properties or characteristics of these graphs. On the
basis of those properties further algorithms arc developed to compute cccentric
topological indices for zero divisor graph. The results of algorithm are compared
with mathematical computations. Also, degree based topological indices are
computed for line graph and subdivision of line graph of benzeuc ring in
P-type-surface network and conductive two dimensional metallic organic
frameworks Cug(HITP)z[mn,n]. Also, algorithms are developed for distance
calculator and distance based topological indices calculations for complete

binary tree and complete ternary tree.
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Nombor tunggal yang dapat digunakan untuk memerihalkan beberapa sifat graf
bagi suatu partikel dikenali scbagai indck topologi bagi gral berkenaan.
Terdapat berbagai indek topologi yang mempunyai aplikasi  dalam  sains
hipotetikal. Dalam tesis ini, indek topologi berbeza akan dikira, algoritina akan
direka untuk pengiraan yang komplcks and di mana pengiraan bermatematik
adalah mustahil ditunjukkan. Dalam permulaan tesis, algoritima pembinaan
untuk graf pembahagi sifar dengan gelanggang terhingga akan dibangunkan.
Eksperimen berdasarkan komputer akan dijalankan  untuk menentukan
sifat-sifat atau pencirian bagi graf berkenaan. Atas dasar sifat-sifat tersebut,
algoritma lanjutan akan dibangunkan untuk mengira indek topologi cksentrik
bagi graf pembahagi sifar. Keputusan beralgoritina akan dibandingkan dengan
pengiraan bermatematik. Indek topologi berdasarkan darjah juga akan dikira
untuk graf garisan dan sub-pembahagian untuk graf garisan bagi gelanggang
benzene dalam jaringan permukaan-jenis-P dan kerangka logam organik
berdimensi dua konduktif Cus(HITP)ylm,n].  Algoritma juga dibangunkan
untuk kalkulator jarak dan indek topologi berdasarkan jarak untuk pokok binari

lengkap dan pokok ternari lengkap.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, basic terminologies and notations of graphs, trees and
algorithms are discussed.  Initially graph theory was used to deal with
recreational purpose, but gradually this mathematical domain evolved as
multi-disciplinary research and development for applied sciences. Graphs can
model the situations to resolves different kinds of problems. Applications of
graphs in chemistry, physics, robotics, optimizations, computer  science,
statistics, algorithms have served the mankind a lot as shown in Figure 1.1, In
1736, Konigsberg formula related three variables as vertices, edges and faces,
V+ E+ F = 2 that was start of combinatorial topology. Trees (a type of
graphs) have played a vital role in the field of computer science and networks,
as they are used in memory management, compiler construction and software

development. Binary search trees are used in the ficld of data structures.

Topological index is an important grapl invariant (a numeric valuc)
represents characteristics of the whole graph. Nowadays, rescarch in the area of
topological index is expanding in the ficld of chemical graph theory, computer
networks, physics, robotics, memory management, and  statistics. In
Quantitative  Structure-Activity Relationship  (QSAR)  and  Quantitative

Structure-Property Relationship (QSPR), topological indices are used  to



~

H
. ) A
[ . . j/ j/'“
. g \j/ Sw
LT AN T Chermwal
f'- ' Graph
N\ _t
’ Russia China

Australia
Mobila Application Users

UsA

UK Ingia

A Computer Network

Figure 1.1: Applications of graphs.

determine the organic movements and the atonic properties.  Topological
indices can be classified in different ways degree based topological indices.
distance based topological indices and eccentric topological indices.  Wiener
index was the first topological index introduced by Ilarry Wiener in 1917 93],
A number of topological indices have been introduced including zagreh indices
[51], atom bond connectivity [35], geometric arithmetic index [52]. randic
connectivity index [72], harmonic index [75], sum connectivity index, hosoya

index and schultz indices [82].

An algorithm is a well-defined procedure that can he implenmented on a
computer to solve the problem. They provide a road map for accomplishing a
given task, in an accurate and efficient way for any complicated complex
computations.  The term algorithin belongs to the mathematician of 9th
century, Abu Jafer Muhammad Ibn ¢ Musa al-Khawarzimi. Some basic graph
algorithms like Dijkstra’s, breadth first search (BFS), depth first search (DEFS),
shortest paths and spanning-tree, Bellman-Ford and Floyd-Warshall algorithms

are of great interest to use them in different applications (22].

In this thesis, rescarch is expanded by caleulating different. types of
topological indices on zero divisor graph containing finite rings, line graph and
subdivision of line graph of benzene ring, graph. line graph and subdivision of
line graph of chemical structures of the conductive two dimensional metallic

organic frameworks, complete binary trees and complete  ternary  trees,



Algorithms are devised for complicated computations. It was complicated 1o
create graphs of large size manually for zero divisor graphs with finite rines. and
for complete binary trees, and complete ternary trees mathematical calenlation
of topological indices was tough. Construction algorithm is devised for zero
divisor graph with finite rings. Computer based experiments are conducted 1o
find the properties or characteristics of these graphs. On the basis of hose
properties further algorithms are devised to compute eccentric topological
indices for zero divisor graph.  The results of algorithm are compared with
mathematical calculations. Degree based topological indices are computed for
the graphs of benzene ring and conductive two dimensional metallic organic
frameworks. Algorithins are devised for distance calculator and distance hased
topological indices calculations for complete binary tree and complete ternary

tree.

1.2 Graph Terminologies

A graph G = (V, E) consists of non-empty set of vertices V and edges 2.
The number of vertices and edges of graph are known as order and size of the
graph, respectively. If the set V of graph G is finite (infinite) then the graph is
finite (infinite) graph. Two vertices in an undirected graph are adjacent | il these
is an edge between them and such edge is known as incident. If more than one
edges have same two end points then such edges are called the multiple cdges and
the graph contains multiple edges is known as multigraphs. An edge connects to a
vertex itself is called loop. A graph which does not contain the multiple edges and
loops is called simple graph. The degree of a vertex #; in an undirected graph is
number of edges incident to a vertex ), except a loop at a vertex z; contributes

twice to the degree of that vertex, it is denoted by d,,,.

A path of length m — 1, denoted by P,,. is a sequence of distinet, cdges



T Y T, o 1 A closed pathea path with oy ey, is called o eyele or
a cireat. Figure 1.2 gives example of the evele O and the path 20 For any two
vertices &y and x5 in graph, the shortest path hetween them is called distanc
between them and it is denoted by d(wy, ). A connected graph G is o graph in
which there is a path between every two pair of distinet vertices. Otherwise. a
graph is called disconnected. A circuit free and conmected graph is called a frec,

A path is a special kind of tree.

X2 x8

X3 4

X1 X2 X3 X4 X5 X6 X7 XB

Figure 1.2: Graph of the cycle (5 and the path P

The maximum distance of a vertex to all other vertices in a graph is called
the eccentricity of that vertex and the maxinnm cccentricity of a vertex in a graph
is the diameter of that graph. The maximum and minimum degree of a graph
is denoted by A and 4, respectively. Figure 1.3 gives an example of connected
graph G, disconnected graph H, the diameter, maximumn degree and mininum
of graph G is 3,4 and 1, respectively. The eccentricity of vertices @, u, w, = is 3

and y,v is 2.

®

Figure 1.3: Connected graph G and disconnected graph H.



Types of graphs

A complete graph is a graph that consists of exact one edge between each
pair of vertices. A complete graph of m vertices is denoted by K, Fieure 1.1

shows examples of complete graphs.

Figure 1.4: Complete graphs.

If the vertex sct V of a simple graph G can be partitioned into two disjoint
sets X and X, such that every edge in the graph connects a vertex in X, and a
vertex in Xy, then it is called bipartite graph. Let the order of the set X, is m
and set X, is n. If all the vertices of set. X, are connected with all vertices of sot.
Xo, then it is called complete bipartite graph, denoted by K. Figure 1.5 and
Figure 1.6 shows some examples of bipartite and complete bipartite graph.

X1 x

'®
x X
) e’
2 =@
X5 . X5
*3 > @
Bipartite Graph G Vertex Set X1 Vertex Set X2

Figure 1.5: Bipartite graphs.

A non-empty set R with two binary operations, addition and
multiplication is called a ring. If the multiplication operation is commutative,
then the ring is a commutative ring. Let 12 he a commutative ring with identity
and Z(R) is the set of all zero divisors of R, G(1?) is said to be a zero divisor

graph if xy, 2y € V(G(R)) = Z(R) and (xy..5) € I(G(IR)) if and only if



Figure 1.6: Complete bipartite graphs.

z1.29 = 0. Beck [14] introduced the notion of zero divisor graph.  Figure 1.7,
shows a zero divisor graph of Z(25). Where, Z(25) is a set of positive integers
of modulo n = 25, containing clements 0, 1,2,3..1.5,6,....24. If the remainder
from 25, of the product of any two clements of 7 is 0, then the elements are

adjacent in the zero divisor graph.

15 20

Figure 1.7: Zero divisor graph of Z(25).

A graph of Benzene ring refers to the graph of chemical structure that,
consists of six atoms of carbon, hounded by alternative hounds. In study of
chemical structures, benzene ring is represented by CiHg.  In graph theory,
benzene ring is represented by hexagon.  Benzene rings are part of many
important chemical structure as naphthalene, anthracene, phenanthrence. and
pyrene. In Figure 1.8, graph A consists of four benzene rings and graph 13
consists of 8 benzene rings. O Keeffe, Sankey and Adams worked together for
low energy forms of carbon [76].  They have distributed around a (quarter
century a letter managing two 3D systems of henzene one of the structure was
called 6.82P (additionally polybenzene) and has a place with the space gather
I'm3m (one of the cubic phase or hexagonal tubular arrangement ), comparing to

the P-type surface. Actually this is imserting of the hexagon-fix in the surface of



negative ebb and flow (phases of tide) P20 The P-tvpe surface is coordinated to

the Cartesian arranges in the Euclidean space.

H L H XI\ L]
H ‘I: W :{‘ \nHu SN
NN
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H | £l
H
«  P9EIEL

Graph A

Figure 1.8: Benzene rings.

A graph of MOFs or melallic organic framcwork refers to the structure

of  Cus(HITP)(HITP = 2,3,6,7.10. 11 hexaiminotriphenylene).
Cus(HITP)y(HITP = 2,3,6,7, 10, | | —hexaiminotriphenylene) is an incipient.
electrically conductive two dimension metallic organic framework. i recent
years, therc has been incrementing interest  in utilizing  metal-organic
frameworks (MOFs) as next-generation functional materials in electronic and
optoelectronic countrivances.  Owing to their high surface arca and robust
chemical tunability predicated on a "bhottom-up”™ synthetic approach. MOIs
have been especially targeted for use in sensors. The utility of metal-organic
frameworks (MOFs) as functional materials in clectronic contrivances has heen
inhibited to date by a lack of MOFs that exhibit high electrical conductivity. A
line graph of a graph G is a graph in which cach edge of G represents a vertex
and two vertices in line graph are adjacent if and ouly if their corresponding
edges share a common endpoint. Figure 1.9 is  representing
Cus(HITP),(HITP = 2,3,6,7,10,11—hexaiminotriphenylene) and its line

graph.
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Figure 1.9: The unit cell of graph 2D MOF of Cuz(HITP), and its line graph.

1.2.1 Graph Operations

The union of two graphs is simply the union of their vertex and cdge sets.
G =V, E)) and H = (Va, £,) are two graphs, then their union is ViUvs and
Er U Es, it is represented by G U H. The intersection of two graph ¢ = (V. k)
and H = (V,, Ey), involves the operation of Vi Vo and Ky () Ea. it is denoted by
G H. The join graph of two graph (¢ = (Vi I5)) and 11 = (V,. 15,). is a union
of both graphs with connecting all the vertices of Vi to Vo through additional

edges.

A Cartesian product of two graphs G and H, denoted by G x /1, is the
graph with vertex set V(G) x V(H), where two vertices (e, yn) and (g, g) are

adjacent if and only if ; = 25 and y,y, € E(H) or y; = yy and 2,1y € 1),

The corona product of two graphs G and H, is the graph obtained by
taking one copy of G and |V (G)]| copics of H and Joining the ¢ — 1h vertex of ¢/

to every vertex in the 4 — th copy of H [94].

A subdivision graph of a graph G is obtained by inserting a vertex on
each edges in G. According to the handshaking lennma, in any graph, the sum of
degree of all the vertices is equal 1o twice the number of edges [22]. The vertex
partition of a G hased on the degree of vertices consists of the degree of vertices
and their count. If ¢, , denotes the number of edges connecting the vertices of

degree d, and d,. Then the edge partition of ¢ based on the degree of end



vertices of cach edge consists of all ¢, . € E(G), and their number of edees. I
m; ; denotes the number of edges of Ghwith e S, and j S, Whereo 5,0 and
Sz,, are the summation of degree of neighbor vertices of . and . respectively.

Then, the edge partition of graph G based on degree sum of neighbor vertices of

end vertices of each edge, will consists of all m,, in ¢, their number of edges.

N

iy

Graph G GraphH . GUH . Graph A Graph B ANB
AN I !
Graph A _ L
Graph G Graph H Graph B

Joining of G and H

AN A

Graph G Subdivision Graph of G Graph G Line Graphof G

Cattesian Product

MY
( ) AHy
N -
(G)((H) = { G-‘/
(h)

Corona Product

Figure 1.10: Graph opcrations.

1.3 Tree Terminologies

A. Cayley introduced tree in 1857, while counting the types ol some
chemical compounds. An undirected connected graph without circuits and loops
is called a tree. Usually a tree is denoted by 7. There arc n — 1 edges if there
are n vertices in a tree T. Nowadays trees are playing an important part in
many disciplines, including mathematics, computer sciences, social sciences,
chemical sciences, civil networks. They are used in memory management, and
compiler constructions. They provides solutions for complex problems. Inmany
applications of tree, one vertex is designated as root of the tree. Fach edge is

directed away from that root. Such a tree is a rooted tree. Structure of a rooted
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tree is based on hierarchical Tevels, I there exists a direct edge from o vertes o
to a vertex oo then w is the parcnt or ancestor of ¢ and ¢ is the chidd of u. All
the children of vertex u are descendants.  All the vertices which have same
parent vertex arc siblings. Root is a vertex without any parent. The vertices
which have no child are leaf or pendant verter and represented by 1. Anv vertex
v other than root which have at least one child is called internal verter. In a
rooted tree, the length of the unique path from any vertex ¢ to the root is the
height of that vertex in the tree. All the vertices of height Hoarve at leocl 1] in
the tree. The root is the only vertex with level 0. A rooted tree where children
of each internal vertices are ordered is called ordcred rooted free. The main
purpose of ordered rooted tree is to show children of all the vertices in an order

from left to right. Figure 1.11 shows the rooted trees.

Figure 1.11: Rooted tree.

An m-ary tree is a rooted tree with all the internal vertices have maxinnnmn
m children. The m-ary tree with all internal vertices have exact, m children is
called full m-ary tree. If all leaves are at the same height in a full m-ary tree then
it is a complete m-ary tree. An m-ary tree with m = 2 is called a binary tree.
An me-ary tree with me = 3 is called a ternary tree. A complete m-ary tree with

m = 2 and m = 3 is called, complete binary tree(CBT) and complete ternary



tree(CTT). respectively. Naximun leaves inan mi-ary tree can be determined by

I < m". The total number of vertices can also be caleulated from leave ™

e 1
[81]. In any complete m-ary tree with height the H. the number of vertices are

mH+l

equals to —=1 the degree of root is equals to m, there are m¥ leaves which
m-1
H . . . .
have the degree 1 and 2——* internal vertices which have the degree m+ 1. Figure

1.12 shows the binary and ternary tree.
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(

N
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Figure 1.12: Complete Binary tree and Complete Ternary tree.

1.3.1 Tree Traversals

Tree traversal is a systematic procedure or approach to visit each vertex of
an ordered rooted tree. Some known tree traversal are preorder traversal, inorder
traversal and postorder traversal. If T is an ordered rooted tree with root . If
T have only a single vertex r, then preorder traversal is . If 7" consists of sub-
trees 1\, 15, ..., T, at » from left to right, then preorder traversal starts from r,
continues traversing 77 in preorder, thien traversing 75 in preorder and so on. until
completes the traversing of 7;, in preorder. If T is an ordered rooted tree with
root 7. If T have only a single vertex r, then inorder traversal is . If 1" consists
of sub-trees 171, T, ..., T,, at r from left to right, then inorder traversal starts from
Ty, then visits r, continues traversing Ty in inorder, then traversing 7% in inorder
and so on, until completes the traversing of T, in inorder. If 7" is an ordered
rooted tree with root . If T have only a single vertex r. then postorder traversal
is . If T consists of sub-trees Th, Ty, ..., T, ator from left to right, then postorder

traversal starts from 7T} in postorder, coutinues traversing 7, in postorder. and



so o1, until completes the traversing of 7, in postorder and then visits the root.

Figure 1.13 shows an examples of preorder, inorder and postorder traversals,

Inorder Preorder Postorder
DBEAC ABDEC DEBCA

Figure 1.13: Tree traversal.

1.4 Algorithmic Terminologies

In this section, we define the algorithi designing structures.

1.4.1 Algorithm Design

An algorithm is intended to tackle a specific issue that may belongs to
any field of life.  Algorithms are frequently used in computing science.
Algorithm designing requires a solid scientific and computer science background.
Computer based algorithms have solved larger and complex problems of real life

with optimality, accuracy, and cfficiency.

In algorithm design, exactness and optimality arc the key attributes. In
any problem, algorithm must provide the required result otherwise it has no use.
Algorithm is also unacceptable, if it provides the required result but it is too
slow. For algorithm designing, different design architectures, design strategies
and data-structures can be used. But for eflicient and optimality prrpose nse of

appropriate architecture. strategy and data-structure must bhe used according to



logic of the given problem.

Algorithm Design Architectures

An algorithm design architecture can be iterative or recursive.  Iterative
design architecture involves loops for repeating a code seement while recursive
design architecture call itself again and again to manage repeating instructions.
Which design architecture will use in the algorithin is depends on the natnre of
the problem. In this thesis. construction algorithm for zero divisor graph and
algorithm for edge-based eccentric topological indices for zero divisor graph in
chapter 3 are designed using iterative approach.  In the chapter 5. the
algorithm for distance calculation and the algorithin for calculating distance
based topological indices for the complete binary and ternary trees use hoth
iterative and recursive architectures according to complex nature of problem,

that is explained in detail as algorithm description.

Algorithm Design Strategies

Selection of design strategy is the most technical and crucial task in
algorithm designing. Because appropriate design strategy may lead towards
accuracy of results and efficiency of the algorithin. Efficiency of an algorithm
can be analyzed by measuring its time complexity. Time complexity 7'(n) of an
algorithm means quantification of time taken by an algorithm to produce
desired output from given input. 7 is time and 7 is size of input. data,
Algorithms are analyzed on three asymptotic hounds that are known as
worst-case analysis O(n), average-case analysis 0(1n) and hest-case analysis Q(n)
[22]. By considering that instructions are executed one after another. with no

concurrent operations so each instruction is assigned a unit cost. 1. If set of



instructions are repeated by loops then the cost of instruction will he mnltiplied
with number of iterations to caleulate total cost. 1 algorithm is desioned with
recursive approach then T'(n) will be formed as a recurrence relation. To solve a
recurrence, there exist four techniques named substitution method, recursion

tree method, master method and Generating function [70].

A data structure is a data organization. management. and storage format
that enables efficient access and moditication. NMore precisely. a data structure
is a collection of data values, the relationships among them. and the functions
or operations that can be applied to the data. An array is a data structure
consisting of a collection of elements (values or variables). cach identified by at
least one array index or key. The two-dimensional array can he defined as an
array of arrays. The 2D-Array is organized as matrices which can be represented
as the collection of rows and columms. A Trec-of-Array is a dynamic array data-
structure for maintaining an array of separate memory fragments (or “leaves™) to
store the data clements, unlike simple dynamic arrays which maintain their data

in one contiguous memory arca.

Design strategy directly effects the algorithm correctness and  its
efficiency thats why it is an important task. There are number of design
strategies available like Brute Force, Divide and Conquer, Decrease and
Conquer, Backtracking, Brauch and bound, Greedy Algorithim, Dynamic

programming, and Genetic Algorithms.

Brute Force is a straightforward approach to solve a problem according to

its nature. It is a simplest way to design an algorithm but usually time consuming.

In Divide and Conquer approach original problem is divided into sub-
problems as its obvious from its name. Then sub-problems are solved and reanited
to compute the result of original problem. Backtracking deals with combinational

problems, in which a possible solution is started that satisfies all the required



conditions. Then we move to the next level and if that level does not produce a

satisfactory solution. we return one level back and start with a new option,

Branch and bound looks for the hest solution for a given problem as a
whole aud once solution is found. it can keep improving the solution. In Greedy
method the best available solution is chosen at any moment. It is called greedy
hecause it decides on the basis of current situation rather considering the whole
problem, so at the end of total solution result may not be optimal. Dynamic
programming works exactly like divide and conquer but dvnamic programining,

reuses the solution of sub-problems many times.

Depth First Traversal (DFT) is a scarching algorithm nsed in traversing
the nodes of tree or graph. It starts from the root and moves downward (o
its child nodes and keeps on moving until reach to pendant (leaf) nodes. DET
algorithm involves Stack (LIFO Architecture) that is why after reaching the leaf
node back-tracking process starts to visit. the siblings and other descendants of
root. Alternatively Breath First Traversal (BFT) another traversing approach
works level by level or by visiting the immediate nodes of current, node.  After
visiting all immediate neighbors then it move to next level. BFT involves Quene
(FIFO Architecture) to traverse the nodes of graph and tree level by level. Path-
Finding, Searching algorithms, Topological Sorting (Scheduling Jobs). Solving
Puzzles, Detecting Cycle in a graph are some main applications of DIFT and

BFT.

In Chapter 3, the algorithmn to construct a zero divisor graph and the
algorithm to calculate edge-based topological indices for zero divisor graph both
have iterative design architecture and Brute Force design strategy. In chapter 5,
the algorithm for distance calculator and the algorithm for calenlating distance
based topological indices for hoth the complete binary trees and the complete

ternary trees are recursive and have Divide and Conguer design strategy.
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1.5 Aims and Objectives

To investigate the claims of study rescarch-process carried out in a way
that it achieved its objectives to support. algorithmic and mathematical solutions

of topological indices of certain graphs:

(i) To calculate cecentric topological indices of zero divisor graph.

(ii) To calculate degree based topological indices for line graph of benzene ring,
i p-type surface, and subdivision of line graph of benzene ring in p-tyvpe

surface.

(iii) To calculate degree based topological indices for two dimensional moetallic
frameworks, line graph of two dimensional metallic frameworks. and the

subdivision of line graph of two dimensional metallic frameworks.

(iv) To calculate distance based topological indices for complete binary trees

and complete ternary trees.

1.6 Research Methodology

This section describes the research method how it is adopted to conclude
the final results. In the first step problems were identified with the help of
detailed literature review. Real gaps and significant problems are discovered 1o
define the scope of research. In phase of rescarch definition, topological indices
of graph are focused. Literature review helped to pose the claims in specific to
work on topological indices for zero divisor graphs containing finite ring,
benzene rings, two dimensional metallic conductive frameworks, complete
binary trees and complete ternary trees.  Deductive technique is adopted to

conclude the hypothesis.
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In the phase of research instrimentation. construction algorithm s
devised for zero divisor graphs containing finite ring. By using this algorithn,
computer based experiments are conducted for differem araph  structures.
Hypotheses are generated on the basis of assumption that the results of
algorithm and empirical experinient will be same.  For validation, topological
indices will compute from the algorithm. will caleulate mathematically as well,
and both results will compared.  Obtained empirical results used in Qe hoer
algorithims to calculate cecentric topological indices for zero divisor oraphs.
Results of algorithms are also compared with mathematical caleulations and
theorems are proved for eccentric topological indices for zero divisor oraphs
containing finite ring. Line graphs and subdivision of line sraphs are reviewed.
for benzene rings in P-type sinface and two dimension metallic conductive
frame works. Assumptions are made by studying graph structure and growths
from smaller graphs to larger graphs. Empirical data is collected and (heorcims
are constructed for distance based topological indices for henzene rngs in
P-type surface and two dimension metallic conductive frame works,  For
distance based topological indices complete binary trees and complete ternary
trees are studied.  In a computer based experiment algorithms are executod
multiple time by changing the parameter of m = 2.3 and similarly for height 2
to 8 for distance calculation. With the help of this algorithm, further algorithins
are devised to calculate distance base topological indices for complete binary

tree and complete ternary tree.

1.7 Organization of the Thesis

In Chapter 1, bhasic terminologics and notations of graphs, trees,
algorithmic complexity and rescarch objectives are given.
In Chapter 2, concepts and preliminary results on graph topological indices

including degree, distance and cccentricity based are explained,



In Chapter 3. eccentrie topological indices of zero divisor graphs is computed
using computer based algorithims,

In Chapter 4, degree based topological indices are calculated for line graph of
benzene ring, line graph by utilizing subdivision of benzene ring. graph of two
dimensional metallic framework, line graph of two dimensional metallic oreanic
framework and line graph by utilizing subdivision of two dimensional metallic
organic framework.

In Chapter 5, distance calculator and distance based topological indices are
computed using computer based algorithms for complete binary trees and for
complete ternary trees.

In Chapter 6, conclusions and future works are given to summarize the results,



CHAPTER 2

TOPOLOGICAL INDICES

2.1 Introduction

To identify molecular structures of chemical compound, the molecular
graph invariants, called topological indices can be used. Topological indices are
designed basically by transforiing a molecnlar graph into a number. The st
use of a topological index was made in 1947 by the chemist Harold Wicner.
Wiener originally defined his index (W) on trees and studied its use for
correlations of physico-chemical properties of alkanes, alcohols, amines and their

analogous compounds [93].

Analysis of topological indices for a particular graph helps us to
understand graph characteristics, their similarities and their differences with
respect to the other graphs. Topological indices guide us that how the chemical
structure can further grow and what mathematical operations on the graphs
with the help of topological indices can extend multidisciplinary rescarch.
Moreover these indices have wide applications in nanotube structures [12, 13]
and networks [61]. They have achieved an important place in the field of
chemistry, pharmaceutical science, memory managements, complex distance

related problems, algorithims and networks.

Depending on the importance of topological indices on a graph, these
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indices are categorized in three tvpes “degree based topological indices™. “distinee
based topological indices™ and “eccentricity based topological indices™ of graphs.

In this chapter, we discuss the some important types of these indices.

2.2 Degree Based Topological Indices

This section is completely dedicated to managing degree-hased topological
indices. Before discussing thenmi, we must, understand basic graph notations and
terminologies, these are already defined in Chapter 1, also these notations and
terminologies are followed from the hook [81]. A topological index is a munmiber
that depicts vital and valuable information about molecular structure. In 1975,

the very first degree-based index was introduced by Randic [77]:

;%(G): Z ; (2.1)

xra€l(G) d‘T' X (l‘r'z

The authors {17, 6] independently proposed the general Randié index. For

more details of the Randi¢ index see [72]. The general Randié index is defined as

Ra(G) = > (dy x d,,)", (2.2)

Tyl (G)
where o # 0 is a real number. If o = —%, then equation (2.2) is called Randié
index which is already defined in equation (2.1). By putting o = 1 and o = 1,

in equation (2.2), we obtain the “second Zagreb index” and the “sccond modificd
) g

Zagreb index”, respectively.

Zhou et al. [96] introduced the general sum-connectivity index v, ((/) and

defined as

XalG) = " (dyy +dy)", (2.3)

T €lN(()



where o is a real number. o = —1 o = 1 and o = 2. then equation (2.2) s
known as the sum-connectivity index. the tirst Zagreb index and hyper-Zagreh
index [86], respectively. Gutman and Ghorbani defined Narumi-Katayama index

(58] as:
NK@G) = [] (d.)" (2.4)

1 eV(()

Zhong [95] defined the Harmonic index as:

(S
s

710c) PR (2.5)

d, +d,,
apwp€ () T2

The general Zagrebh index studied in [73] and defined as:

Mu(G)= D (d)", (2.6)

ueV(()

where o is a real number. If o = 2, then the equation (2.6) is also known as first
Zagreb index. If v = 3, then the cquation (2.6) is called forgotten topological
index (also called F-index), which was introduced by Furtula and Gutman in 2015
[45]). Estrada et al. invented atom-bond connectivity index which is abbreviated
as ABC index [34]. ABC index is of much importance due to its correlation with

the thermodynamic properties of alkanes, sce [33, 55]. The definition for ABC

ABC(G) = V (2.7)

T122€ E(G)

index is as follows:

The fourth version of ABC index was introduced by Ghorbani and Hosscinzadeh

[49] and defined as:

521455, -2
- Doy tSr, =2 ‘
ABC4(G) = ey (2.8)
T1x2€ 1X(G)
where S, = > d,, and S,, = ST d,.,. Another important degree
rrzel(G) g€ 15(()

based topological index is geometric-arithmetic index which is abbreviated as (/A

index. It was invented by Vukicevi¢ and Fuartula [89] and is of much importance



due to its application to acyvelic, unieyelic and bicvelic molecular graphs 25]0 The

formal definition of G4 index is as follows:

GAG) = VALY

dy, +d,,

(2.9)
rra€l(G)
Recently the fifth version of GA is introduced by Graovae el al. [53] aud defined

as:

2\/S,;, xS,

a2 €l ()

Urtula et al. [44] introduced an augmented Zagreb index as:

dey X dypy " A
AZI(G) = Z <m> (2.11)

x1ae€I0(G)

Ranjini et al [80] defined the redefined versions of the Zagreh indices as

follows:
RZ(G) _ z (l.’l,‘] + (l.'ltz “ (2 ]2>
’ N dy, xd,, '
1226 5(G)
where «v is a real number. If o = 1, then the equation (2.12) is called first
redefined Zagreb index. If o« = —1, then the equation (2.12) is called second

redefined Zagreb index.

In [50], Ghorbani and Azimi defined first multiple Zagreh index PAL ()

and second multiple Zagreb index PM;(G) defined as:

PMi(G) = [] (do, +dus,). (2.13)
1726 5(G)
PMy(G) =[] (duy xdsy). (2.14)

w6 ()
These multiple Zagreh indices are studied for some chiemical structures in {18, 32,

56, 71, 85). the first Zagreb polynomial M (G, ) and second Zagreb polynoniial
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My(GLr) are defined as:

MG, ) = Z phiherdin), (2.15)

r1z2€ K(G)

My(Gr)= 3l (2.16)

rz2€ B(G)

2.3 Eccentricity Based Topological Indices

The distance between two vertices a; and .y is the length of shortest path
between them, it is denoted by d(, x5). The maximum distance between a vertex
x1 to other vertices in graph is known as the eccentricity of #; and mathematical,

eccentricity is defined as:

e(xy) = max{d(x,,xy) VY a9y € V(G)}. (2.17)

Sharma et al [84] introduced the eccentric connectivity index in 1997, The

general formula of eccentric connectivity index is defined:

EG) = dy, x () (2.18)

eV
where e(zy) is the eccentricity of vertex x; in G. Some authors studied the
applications and mathematical properties of eccentric connectivity index in
[29, 65, 69, 97]. The total eccentricity index is the sum of cceentricity of all the
vertex z; in G and it was introduced by Farooq and Malik [43], which is defined

as:

(G) = e(n1) (2.19)

eV

The first Zagreb index of a graph G was studied in [73] based on degrees

and a new version of the first Zagreb index based on eccentricities was recently



introduced by Ghorbani and Hosseinzadeh [51]. as follows:

MG = D () (2.20)

r1EV(G)

The eccentric connectivity polynomial is the polynomial version of the
eccentric-connectivity index which was introduced by Alacivan, Mojarad and
Asadpour [4] and some graph operations can be found in [10]. The cecentrie

connectivity polynomial of a graph G is given by the following formula:

ECP(G,z2) = Z dy, X 2o, (2.21)

eV (()

Gupta, Singh and Madan [54] defined the augmented eccentric connectivity

index of a graph G as follows:

G = Y Wy (2

T eV(G)

o
o
o
N

where M(x;) denotes the product of degrees of all vertices adjacent to the
vertex x;. Some interesting results on augmented cccentric connectivity index
are discussed in [23, 28]. Another very relevant and special eccentricity based
topological index is connective eccentric index. The connective eccentric index
was defined by Gupta, Singh and Madan [54] as follows:

G = > I (2.23)

mev(()

Ediz [30, 31] introduced the Ediz eccentric connectivity indez and reversc
eccentric connectivity index of graph G, which is used in various branches of

sciences, molecular science and chemistry etc. Ediz eccentric connectivity index



and reverse cccentrie connectivity index are defined by the following formulas:

where S;, is the sum of degrees of all vertices adjacent to the vertex ay and ()
is the eccentricity of x;. In [51, 90], the authors defined the first and third Zagreb

eccentric index as:

MM (G) = Y (e(r1) +e(a2)). (2.26)

r1x2€ E(G)
M (G) = ) (elz1) x e(a)). (2.27)
r1x2€ E(G)
Ghorbani and Khaki [52] introduced the “geometric-arithmetic cccentric index”

defined as:

G = Y 25(5(‘”‘)“(“2). (2.28)

T112€ E(G) :L‘l) + 6(:1:2)

Farahani [35] defined the “atom-bond connectivity eccentric index” in 2013 as:

ABCs(G) = eln) +ef@) =2 (2.29)

e e(z) x e(xq)

In [42, 46], Farahani et al defined the fourth type of eccentric harmonic index

Hi(G)= ) ___* (2.30)

N e(x1) + e(z2)

2.4 Distance based Topological Index

Distance is an important graph invariant that has wide applications in

computing science and other fields of sciences. Some important. distance based
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topological indices are Wiener index. Hyper-Wiener index. Hosova polviomial.
Schultz and maodified Schultz polvnomials.  In this section. we defined these

indices.

In 1947, a chemist Harold Wicner [93] illustrate connection between the
physico-chemical properties of organic compounds and the index of their

molecular graphs. This index is called the Wicner index and defined as:

WG = Y dlry.r) (2.31)

arpraeV ()

Randié {78, 79] introduced the Hyper-Wiener index which is used for for
redicting physico-chemical properties of organic compounds and defined as
le)

follows:

wWwG) = Y ((z(g,-],mg) + (1(2:1,1'2)2) (2.32)

1r2€V((G)

In 1989, Hosoya [62] introduced the Hosoya polynomial which is defined as:

H(G,z) = Z gHEre) (2.33)

T132€V(G)

For detail literature review on applications and properties of Wiener index. Hyper-

Wiener index and the Hosoya polynomial for cliemical structure see (21, 21, 61,

47, 48).

Schultz [83] introduced a topological index for characterizing alkancs by an
integer number. The ”Schultz molecular topological index” (MTI) of the graph

G is defined as follows:

MTI(G) =Y [d(A + D)), (2.31)

i=1

where A and D are the adjacency and distance matrixes of G of order 1 ¥ 1 and



d is vector of degrees of the vertices of ¢ with order 1 x 1. For a connectod eraph

G and d,, the degree of avertex oy in (L the degree distance of G is defined as:

DD(G) = > (dy +do)d(wy,r2) (2.35)

2 CV(G)
This degree distance index introduced in 1994 by Dobrynin and Kochetova [27]
and at the same time by Gutman [57], they named this degree distance index

“Schultz index”.

Klavzar and Gutman [66] defined the modified Schultz index of ¢ as:

ScH(G) = Z (dyy X dpy)d(xy, 29) (2.36)

rz2eV(G)

In [57], two topological polynomials of a graph G are defined as:

Sce(G,x) = Z (dy, + d.,)xtre) (2.37)
1026V (G)
and
SE(Gx) = Y (dgy X dy,) 2072 (2.38)
T122€V(G)
The Schultz index Sc(G) and modified Schultz index Sc*(G) for a graph
G as:

Sc(G) = 8scéf’x) . (2.39)
0Sc* (G, )
Sc*(G) = ca(a: z) B (2.40)

Immense work on Schultz polynomials and indices, and other related

indices is done in these articles [5, 36, 37, 39, 40, 41].



CHAPTER 3

ECCENTRIC TOPOLOGICAL INDICES FOR GRAPH
CONTAINING FINITE RINGS

In this chapter, vertex eccentric topological indices and edge cecentric
topological indices are focused for zero divisor graph containing finite rings.
Algorithms are devised to calculate correct topological indices and  are

comparecd with mathematical calculations.

3.1 Introduction

The maximum distance between a vertex x; to other vertices in graph is

known as the eccentricity of z; and mathematical, eccentricity is defined as:

e(xy) = max{d(xi,x2) : V 20 € V(G)}. (3.1)

In 1997 eccentric connectivity index was introduced by Sharma [84], he
was studying the structure of piperidinyl methyl ester and methylene methyl
ester analogs as analgesic agents. By using cccentric connectivity index, the
mathematical modeling of biological activities of diverse nature is done. The

general formula of cccentric connectivity index is defined in equation (2.18).

Farooq and Malik introduced total cccentricity index  while working  on
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eccentricity based topological indices of nanostar dendrimers [13]. which is

defined in equation (2.19).

In 2012, Ghorbani and Hosseinzadeh [51] introduced a new version first
Eccentric Zagreb index which is defined in equation (2.20). In equation (2.21).
the eccentric connectivity polynomial was proposed by Alaciyan, Mojarad and
Asadpour [4] and Gupta, Singh and Madan [54] defined the augmented eccentric
connectivity index in equation (2.22), they also defined another very relevant
and special eccentricity based topological index, connective eccentric index in
equation (2.23). In cquations (2.24) and (2.25). Ediz introduced the Ediz cecentric

connectivity index [33] and reverse cccentric connectivity index [30] of graph (.

Let R be a commutative ring with identity and Z(1?) is the set of all zero
divisors of R. G(R) is said to be a zero divisor graph if «,y € V(G(R)) = Z(R)
and (x,y) € E(G(R)) if and only if 2.y = 0. Beck [14] introduced the notion
of zero divisor graph. Aunderson and Livingston [8] proved that G(R) is always
connected if R is commutative. Anderson and Badawi [7] introduced the total
graph of It as there is an edge between any two distinet vertices w,v € R if and
only if u+v € Z(R). For a graph G, the concept of graph parameters have
always a high interest. Numerous authors briefly studied the zero-divisor and

total graphs extracted from commutative rings [3, 9, 11, 15, 16, 82, 87].

Let p1, p2 and ¢ are prime numbers, with p, > py. and I(Z,,,, x Z,)
be zero divisor graph of the commutative rings Z,,,, x Z,. In this chapter, we
investigate the eccentric topological descriptors namely, cccentric connectivity
index, total eccentric index, first Zagreb eccentricity index, connective cccentric
index, Ediz eccentric index, eccentric connectivity polynomial and augmented
eccentric connectivity index of zero divisor graphs I'(Z,,,, x Z,). Now onward in

this chapter, we use G as a zcro divisor graph of the commutative rings Z,,,,,, x Z,,.



3.2 Construction Algorithm for Zero Divisor Graph

We adopted  interdisciplinary  methods by combining,  aleorithmic
approach for graph construction and outcome of algorithm are aligned with
eccentric topological indices.  For prime numbers piopsg with ps > pyoowe
consider the commutative ring R = 7Z,,, x Z, with usual addition and
multiplication. The zero divisor graph ¢ = 1(Z,,,,,, X Z,,) associated with rving, I?
is defined as: For a € Z,,,,,,, b € Zy, (a,b) ¢ V(G) if and only if a # kpy.a /7 spo
for b =1,2,---,po—1L,s=12,--- ;pp=Land b # 0. Let J = {(a,b) ¢ V() :
a # kpi,a # sppyk = 1,2, ypp— Ls = 1,20 pp = L&D # 0} then
IJ| = (pip2 — 1 — 2 + 1)(g — 1). The elements of the set J are the non zero
divisors of R. Also (0,0) € Z,,, x Z, is a non zero divisor.  Therefore.
|Jl+1 = (pip2 — p1 — p2 + 1)(¢ — 1) + 1 are the total number of non zero
divisors of R and the total number of clements of 12 are pyp.q. Hence.
pip2q — (pipe —p1r —pe+ D(g— 1)+ 1= (p;+p2- D(g - 1)+ pypa - | are the
total number of 7010 divisors. This implies that
IV(G) = (p1 + p2— 1){g — 1) + p1p2 — 1. We can construct the zero divisor

graph of commutative ring R = Z,,,, x Z, by the following algorithm as:

Algorithm 1 ZeroDivisorGraph(pl,p2,q)
Input: pl,p2 and g are three prime numbers.
Output: ordered pairs for zero divisor.

1: if (pl < p2)

2 for z1 + 0 to pl x p2

3: for y1 <+ 0togq

4 if (z1 #£0 OR yl #0)

5 createGraph(x1 , y1, pl, p2, q)




Algorithm 2 createGraph (x1. v pl. p2.q)

1: for o2 < 1l to pl x p2

2 for y2 « yl to g

3 if (1 #£ 42 AND yl # y2)
4: if (1 #£0 OR a2 #0)
5: Al =0

6 else

7 kl =2l x a2

8 if (y1#0 OR y2 #0)
9 K2=20

10: else

11: k2 =yl x y2

12: if (k1 mod pl =0 AND A1 mod p2 =0 AND k2 = 0)
13: return x1,y1,x2,y2

Algorithm Description

Algorithm 1:  ZervoDivisorGraph is a construction algorithm for zero
divisor graph from primes py.py and ¢. It requires. the three input parameters
p1,p2 and ¢ to execute. Line | in the algorithm just check the basic condition
L.e, p; must be greater than py. Line 2-4, exceute nested for-loops. These loops
create all possible combinations of « and O coordinates for any vertex v other
than both z; and y; cquals to 0, such that 2y may vary from 0 to p; x pu and y,
may vary from 0 to ¢. Line 5, in the nested loop call createGraph algorithm for
all the 27 and y; combinations. The collective running time of Algorithm I, and

the Algorithin 2 is O(p1paq).

Algorithm 2: createGraph requires @p,y,,p1,p2,¢ parameters to execute.
For any vertex having coordinates wxy,y;, this part finds the connecting vertex
u coordinates xy,y,. Line 1-2, execute nested for-loops. These loops create all
possible combinations of x5 and y, coordinates for any vertex u, such that @y may
vary from z; to p; X py and yy may vary from ¥, to ¢. Line 3, apply the condition
to omit the edges that create self loops in the graph. Line 4-7. assign A the

product of ar and @5, Line 811 assign by the product of gy and y,. Line 12-13.



enstires the conditions for zero divisor and return the ordered pairs ol adjacent

vertices, (ry.yp) and (. ya) .

3.2.1 Computer Based Experiments

Algorithm 1 Output
pp=2 p2=5Sandq=7 , . -~ 5
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Figure 3.1: Graph gencrated by experimenting Algorithm 1.

Algorithm 1 has been implemented in computer. A number of zero divisor
graphs has been generated from different prime numbers, one of which is shown
in the Figure 3.1. Zero divisor graph for Z,,,, x Z, with p; = 2, py = 5, and
g = 7 has been generated. We found six different partitions of vertices and their
adjacencies, the maximum cccentricity 3 and the minimum eccentricity 2. After

analyzing these graphs, mathematical properties has been found out.

Outcomes of above algorithm, the degree of cach vertex (a,b) € V() can

be depicted mathiematically in the following cases:



-
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Case 1: If « = 0 and anv b € Z,\ {0}. then cach such type of vertex
(0.0) is adjacent to the vertices (/. 0) for every o’ € Z,,,\ {0}, Henee the deprec

of each vertex (0,b) is pips — 1.

Case 2: If a = kpy,b = 1,2,--+ py — 1 and b = 0. then each such
type of vertex (a,0) is adjacent to the vertices (0.0), (a',0) & (o’ V') for every
V=1{1,2,--- ,g—1}, and « = sps,s = 1,2,--- . p; — 1 . Henee the degree of
each vertex (a,0) is ¢ — 1+ p — 1+ (p — )(g = 1) = pyg — 1. Similarly. if
a=spys=12---,p —1and b =10, then degree of cach such type of vertices

(a,0) is pag — 1.

Case 3: Ifa € Z,,, \ {0 kpy,spy with b = 1.2, -+ .y — 1.
s=12---,p;— 1} and b = 0, then cach such type of vertex (a,0) is adjacent
with only (0,') for every I € Z, \ {0}. Hence the degree of cach vertex (a.0) is

qg—1.

Case 4: If a = hp k=12, py— 1 and b € Z, \ {0}, then cach
such type of vertex (a,b) is adjacent with only («’,0) for every o = spy. s =
1,2,---,p1 — 1. Therefore, the degree of cach vertex (a,b) is p; — 1. Similarly, if
a=spy,s =12 ,pr—1and beZ,\ {0}, then degree of cach such type of

vertices (a,b) is po — 1.

From the above discussion, let us partition the vertex set of G based on

their degrees as follows:



Vi ={(0,2) 2 € Zgy £ 0}

Vo ={(z,0) : 2 =kp,k=1,2,...,p2 — 1}

Vs ={(z,0) : 2 = sp,s =1,2,...,py — 1}

Vi ={(2,0): 2 € Zp,,, \ {0}, z # kpr,x # spr,k=1,2,...,pa — L.
s=12...,;m -1}

Vs ={(z,y) :x =kpi,k=1,2,...,po— 1,y € Z, \ {0}}

%Z{(‘Tay) X = 8pg, s = 1325"'ap1 - lwaZq\{O}}

This shows that V(G) = VUV, U V3 UV, U Vs U Vg, Tt is easy to sce that
Vil = g1, [Va| = po— 1, Va| = p1 =1, [Va| = (p1 = 1) (p2—1), [Vs| = (P2~ 1) (4~ 1)
and |Vi| = (p1 — 1)(¢ — 1).

3.3 Main Results for Vertex-based Topological Indices

g-1

(p2-1)(g-1)

Figure 3.2: Different partitions found in graph generalizing for py,p2,q primes.
14472,
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Different vertex partitions found in graph can generalize for py. po. and ¢
primes as shown in Figure 3.2, We have six different vertex partitions V. Vo
V3, Vi, V5, and V5. The vertex partition V) is adjacent to Vi, Vi, and V. The
vertex partition V; is adjacent to Vi, and the vertex partition Vg is adjacent to
Va. The eccentricity of the partitions V;, Vo, and V4 is 2, and the eccentricity of
the partitions V4, Vs, and Vj is 3. The cardinality of the partitions V; is (¢q—1).
Vais (pp — 1), Vais (o — 1), Vyis (o — D)(pa — 1), Vs is (py — (g —1). and \§
is (p2 — 1)(g — 1).

Let dy(u) denotes the degree of a vertex w in U and d(U, V) denotes the
distance between the vertices of two sets U and V. In the following theorem, we

determined the eccentricity of the vertices of G.

Theorem 3.3.1. Let G be the zero divisor graph of the commutative ring R. then

the eccentricity of the vertices of G is 2 or 3.

Proof. From case 1, the vertices of the set V; are at distance 1 with the vertices
of the sets Vo V3 & Vj i.e d(Vy, Vo) = d(V},V3) = d(V;,Vy) = 1. From Case 4,
the vertices of the sets V, and V3 are adjacent with the vertices of the sets V
and Vs, respectively. This implies that d(V;, V5) = d(Vi, V) = 2. The distance
between any two different vertices of the set V; is also 2. Therefore the cceentricity
of the vertices of set Vi is 2 i.e e(V}) = 2. Similarly, it is easy to sce that,

e(V2) = e(V3) = 2.

As d(Vi,Va) = d(Vi,Va) = d(Vi,Va) = 1 and d(V4, V&) = d(Vi, Vi) = 2.
This implies that d(V4, V) = d(Vy, Vi) +d(V;, Vs) = 3. This shows that, ¢(V,) = 3.

Similarly, it is easy to calculate that e(V5) = ¢(V4) = 3. This completes the



proof. L]

Summarizing the above cases, partition of vertices and their cardinality of

Theorem 3.3.1 are shown in Table 3.1,

Table 3.1: The representation of vertices, their degree, eccentricity and frequency
of the vertices in G.

Representatives

of vertices Degree  Eccentricity Frequency
Vi pip2 — 1 2 q-—1

Va pig—1 2 Py — 1

V3 p2q — 1 2 pr—1

Vs q—1 3 (1= D —1)
Vs m—1 3 (p2 —1)(g - 1)
Ve p2—1 3 (p1—1)(g—1)

In the following theorem, we determine the eccentric connectivity index of

the graph G.

Theorem 3.3.2. Let py < ps, q be prime numbers, then eccentric connectivity

index of graph G is £(G) = p1pa(15q — 11) — (p1 + p2)(11g = 7) + 7q — 3.

Proof. By using the degree of each vertex partition and corresponding their

eccentricity from Table 3.1 in the equation (2.18), we obtain

€G) =) day e(x)

=2(p1p2 — 1)(g — 1) + 2(p1g — 1)(p2 — 1) + 2(p2g — 1) (p1 — 1)
+3(p1 — 1)(p2 —1)(g—1) +3(p1 — 1)(p2 — 1)(g - 1)

+3(p1 — 1)(p2—1)(g - 1)
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After simplification, we get

£(G) = p1p2(15g — 11) — (py + p2)(11g = 7) 4+ 7q — 3.

This completes the proof. (]

The eccentricity of the vertices of graph G and their frequency is given in
Table 3.1, by putting these values and after simplification, we obtain the following

two corollaries.

Corollary 3.3.1. Let p; < pq, q be prime numbers, then total-cccentricily inder

of G is given by ((G) = 3(pip2 + p1g + peg+ 1) —4(pr + 12 + q).

Corollary 3.3.2. Let py < po, q be prime numbers, then the first Zagreb
eccentricity index of G is given by My*(G) = 9(pip2 + p1q + pogq) — 14(p) + o

+q) +15.

Theorem 3.3.3. Let p; < py, g be prime numbers, then connective eccentric

index of graph G is £€(G) = (p; — 1)(pz — 1)(g— 1) +2+ p‘p2(3q_l)_(’;’ BZERIUARN

Proof. By using the values of degrees and their eccentricity in the equation (2.23),

we obtain the following:



C _ dzl
6 (G) ’—a:l;/ 5(331)
_(ppe =D -1) | (pg=D(p2—1) | (p2g—1)(pr — 1)
B 2 + 2 + 2
+(pl - 1)(1723— 1)(g—1) N (p1 — 1)(?23— 1)(g—1)
_|_(P1 — 1)(2923— 1)(g—1)

mp2(3¢—1) —(pr+p2+ )¢ + 1)

=p1 — D@2 —1g—-1)+2+ 5

After simplification, we obtain

E€G) = -Dp—Dg-1)+2+ pip2(3¢ — 1) - (p21 +p2+ 1)+ 1)

This completes the proof. 0

Theorem 3.3.4. Let py < po, q be prime numbers, then Ediz cccentric

connectivity index of graph G is

E¢(G) = 9(p1—1)(p2-1)(q—1)+8[(p1—1)(p2q;1)+(p2—1)(mq—1)+(mp2—l)(q—m.

Proof. S;, is the sum of degrees of all vertices T, which are adjacent to vertex
z,. Calculate the values of S;, with the help of Table 3.1. Also the eccentricity

of each vertex is given in Table 3.1. Putting these vales in equation (2.24), we



obtain the followings:

E©)= Y
1€V(G) 1

_ -1 1)@ - 1)+ (pr = 1)(p2g — 1) + (p2 — 1) (g - 1)
2

Lo =D = D@ =1 + (= Dlpg — D + (g = D(pap2 — 1)
2

+(Pl —Dp= D=+ pa—=D(pg—1)+ (g = 1)(pmp> - 1)
2

+(q — 1)(1;1172 —1) N (p1 — 1):())192(1 - 1) + (p2 — 1):(3])10 — 1)

After simplification, we obtain

E((G) = 9(p1—1)(p2—1)(q—1)+8[(p1—1)(p2q;1)+(p2—1)(mq—1)+(p1p2—1)(q—1)].

This completes the proof. O

Theorem 3.3.5. Let p1 < po, q be prime numbers, then eccentric conncclivity
polynomial of graph G is ECP(G,z) = (3p1p2g — pip2 —P1g —P1 — P2g — P2 — G+

3)z +3(p1 — 1)(p2 — 1)(g — 1)2°.

Proof. By using the degree of each vertex partition and corresponding their

eccentricity from the Table 3.1 in the equation (2.21), we obtain



iy

ECP(G,z) = Y dpa®)
= z:;z —1)(g~ D)a® + (pg — D(p2 — 1) +
(p2g — 1)(pr — Da® + (pr — 1)(pz — 1)(g — Da* +
(1 = D)2~ 1)(g = D+ (pr = D(p2 = (g = D’

= (3pip2g —p1p2—P1g—P1 —P2q—P2—4q+ 3)z® +

3(p — 1)(p2 — 1)(g - 1)z°.

After simplification, we obtain

ECP(G,z) = (3pip2q—pip2—Piq—P1—p2g—pP2—4q+ 3)z? +
3(m — 1)(p2 — 1)(g — 1)2°.
This completes the proof. O

Theorem 3.3.6. Let pi < po, q be prime numbers, then augmented cccenlric

connectivity index of graph G is

£2o(() = Do) @) 1) (e Dprg=12 e 1(g=1)(pag- 1)

+ (p1—1)P29-9-P2+2(p,q—1)P2 = (p1pa — 1)1~ 4 (pa —1)P19"P1 ~9+2(p; py— 1)~ ! (pag—1)P1 !
2

I T T Vo il
L :

Proof. M(v) is the product of degrees of all vertices u which are adjacent to
vertex v. Calculate the values of M(v) with the help of Table 3.1, Also the

eccentricity of each vertex is given in Table 3.1. Putting these vales in equation



(2.22), we obtain

M,
Q)= 3
neV 1
=D -V - 1) (- D@ - (g — 1)
= +
3 3
+(P2 — (g = D(pg - 1)"!
3
L (1= D(py = )P DD (pig — 1) pipp — 1)
2
5= Dl = DO, — 1) (ppg — 1
2
+(q — 1)((] _ 1)(1’1“1)(1)2*1)(1)1(] _ 1)7)2_1(1)2(1 _ 1)P1—1
2
After simplification, we obtain the result as desired. ]

3.4 Edge-based eccentricity

Edge-based eccentricity indices involved edges rather then vertex in
calculations.  As an analogy with the first and the sccond Zagreb indices,
Vukicevié and Graovac [90] and Ghorbani and Hosseinzadeh [51] introduced two
types of Zagreb eccentricity indices that are defined as in equations (2.26) and
(2.27).  In 2010, Ghorbani and Khaki [52] defined the geometric-arithmetic
eccentric index GA4(G) in ecquation (2.28) and atom-bond connectivity
eccentric index ABC5(G) was defined by Farahani [35] in equation (2.29). In
2017, Farahani et al. [42] while working on harmonic indices of certain

nanotubes, defined the fourth type of eccentric harmonic index H4(G) which is

defined in equation (2.30).



Algorithm 3 calculateTopologicalludices (a. h. o)
Input: Three prime numbers a. b and c.
Output: Edge-hased eccentric topological dices.

1: createGraphSets (a.b.c)

2. firstZagreb «+ 4 x Ecclidgesl + 9 X Feckdges?2

3. thirdZagreb « 4 x Ecclidgest 46 x Eccludges?

4: GA < 2 x EccEdges] +2 x (/6/5 x EecEdges?

5. ABCH ¢+ \/m x EeclKdges) + \/m x [JecEdges2

6: harmonic < 1/2 x EccEdgesl +2/5 x Leclidges?2

7. return firstZagreb, thirdZagreb, GA, ABCH, harmonic

3.4.1 Algorithms for Edge-based Eccentric Topological Indices

3.4.2 Algorithms Description

Algorithm 3:  calculateTopologicallndices requires, the three input
parameters a, and ¢ to execute. Line 1 executes createGraphSets algorithm for
the input parameters. Line 2-6, calculates edge eceentric topological indices.
Line-7 return the edge cccentric topological indices. The collective running time

of Algorithm 3, and the Algorithm 4 is O(p1p2q)-

Algorithm 4: createGraphSets is designed on the basis of mathematical
properties(already discovered in this chapter).  Line 1-2, execute nested
for-loops. These loops create all possible combinations of i and j coordinates for
vertex v. Line 3-28 in for-loops, calculate the size of vertex sets(V1,Va,.., V)
stated in previous section), by analyzing cach vertex. Line 29-34, calculate size
of two types of edges by using size of vertex sets, one with eccentricity 2 and the
other one with eccentricity 3. The outcome of this algorithm further used by

calculateTopologicallndices to calculate edge eccentric topological indices.



Algorithm 4 createGraphSets (a,b,c)

Input: Three prime numbers a, b and c.

Output: All possible vertex sets of zero divisor graph with eccentricity of cach

set.

I: fori<—0toaxb

[N T NG T NG T NG N T NI N B N B i i S i e i e i
SREESBNEGRIRESE NG REBRES

34:

for j « 0 toc

if (i£0O0Rj+#0)
if (a #b)
if (1 mod a0 AND imodb=#0 ANDi#0 AND j = ()
D[di] + AddPoint(i, )
else if (i =0 AND j # 0)
Alat] « AddPoint(i, j)
else if (i mod a = 0)

if (j =0)
Blbi] « AddPoint(i, j)
else

Elei] - AddPoint(i, 7)
else if (i mod b = 0)
if (j #0)
F[fi] « AddPoint(i, j)
else
Clci] < AddPoint(i, 5)
else
if (i moda# 0 AND i # 0 AND j = 0)
DI[di] < AddPoint(i, 7)
else if (¢ =0 AND j # 0)
Alai] - AddPoint(i, 7)
else if (i mod ¢ = 0)
if (7 =0)
B(bi] + AddPoint(i, 5)
else
Clci] <= AddPoint(i, j)

if (a#0)

EccEdgesl + ai x bi+ ai x ci + bi x ci
FccEdges2 + ai X di +bi X fi+ci x ei

. else

EccEdgesl + ai x bi
EccEdges2 + ai x di + bi X ci

35: return FccEdgesl, EccEdges?2




3.4.3 Verification of Algorithmic Results for Edge-based Eccentrice
Topological Indices

For any two positive integers @ and b, where G(R) be a zero divisor
graph containing commutative ring R = Z, x Z;, with vertex set V(G(R)) and
edge set E(G(R)) then
V(G(R)) = {(z,y) € R : zlaorylborz = Oory = 0} \ {(0,0)} and
E(G(R)) = {((fﬂl,yl),(fﬂmw)) e V(G(R)) x V(G(R)) : (122, 0142) =
(0,0) in R}.

Case 1: Lo x Ly

For a = p* and b = ¢, where p, ¢ are prime numbers. Let G be a zero
divisor graph containing commutative ring R = Zy2 x 7. From [2], we obtain
Ve(Gi) witht =p—1,¢—1,p> = I,pg -2 and |V, | = (p — (g —1), |V, |
| =pp—1), | Vieer | = ¢ =1, | Vpea| = p— 1. By hand shaking lennna

|E(Gy)| = (P—l)(4IJ2(I—3I’—2).

Let Z,s = {uv € E(G)) : e(u) = r,e(v) = s} be the sct contain the edges
with endpoints has the eccentricity » and s. From the above discussion, we have
|Z22| = (p_l)(’+2q_4), 1Z23] = (p— 1)(¢ — 1)(2p — 1). Mathematical formulation

of above edge-based eccentric topological indices can be represent for graph G,

in the following theorem.

Theorem 3.4.1. For p,q be prime numbers. Let G, be the zero divisor graph

containing commutative ring Zye X Lq, then first Zagreb eccentric index of (5,

M{(Gr) = (p— 1)(10pg — 8p — ¢ — 3)



the third Zagreb eccentric index:

M3(G1) =2(p — 1)(6pg — 5p — q — 1)
the geometric-arithmetic eccentric index

GAG) = (p—1) (“ 204 201y 1))

the atom-bond connectivity eccentric index

ABC5(G,) = \%lE(Gl)I

the fourth type of eccentric harmonic index

—1
Hy(Gy) = ?—20— (16pg — 11p + 2g — 12).

Proof. By putting |254| = (”_L;m’_‘”, |Z23] = (p—1)(¢—1)(2p—1) in cquations

(2.26), (2.27), (2.28), (2.29) and (2.30), we obtain the required results. O

For verification purpose algorithimic results are compared by substituting
some instances of the values of a = p? and ¢ = q in Theorem 3.4.1. It is observed
that both results are same that proves the accuracy of algorithm. Some of the
results are given in Table 3.2 for sake of computing fidelity and their use in future

applications.

Figure 3.3 shows a pictorial representation of the results. Zero divisor
graphs for Z,: x Z, with primes p = a, and ¢ = ¢ are represented along the

x-axis, and the topological indices are represented along the y-axis. The primes
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Table 3.2: Algorithmic results of edge-hased topological indices for zero divisor
graph with Z,» x Z,,.

Algorithmic Results
Case [a=p* c=¢q| Al My G, ABC;  Harmonic
1 2 3 38 44 7.879 5.657 3
2 3 5} 232 272 17.192 33.941 20
3 ) 7 1176 1392 235.636 169.706 A
4 7 11 4140 4920 824.241 093.970 312
5 11 13 13080 15600  2589.086  1866.762 1068
6 11 7 6540 7800 1294.543  933.381 H3l
7 13 5 6192 7392  1223.755  882.169 501
8 17 5) 10816 12928  2133.329  1538.664 876
9 19 3 68304 8136  1341.088  967.322 Hh0)
10 23 3 10076 12056 1983.996 1431.184 811

Topological Indices
18000

16000
14000
12000
a Ml
10000
—M3
8000 GAd
~&- ABCS
6000 Harmonic
4000
2000
4] Case

1 2 3 4 S 6 7 8 9 10

Figure 3.3: Plot of Table 3.2 results.

p and g are taken randomly. The values of topological indices were increasing in
the initial five zero divisor graphs while increasing the value of p and ¢, the values
were decreased at the sixth and seventh graphs, when p was increasing while ¢
was decreasing, the values were increased again while increasing p and decreasing
g. Thus, q has a stronger impact on topological indices. In all the graphs, My
has the largest value, the harmonic index has the smallest value, ABC}, is greater
than the harmonic index, GA, is greater than the ADBCy index, and Ay is greater

than GA, index.



Case 2: Z,,,, X Z,
For a = pip; and b = q, where py, ps, ¢ are prime numbers. Let (s be

a zero divisor graph containing commutative ring R = Z x Z,. \We obtain

mp:
Vi(Ga) witht = pipo — Lipig— Lipag—1,g— Lipy = Lips— Land |V, 1] -
=1, | Vo1 | = p2 =1, | Vgt | =1 — 1, [ Vi | = (0 — D2 - 1),
| Vo1 | = (P2 — D)(g— 1), | Vpr | = (1 = D¢ 1). By hand shaking lemima
|E(G2)| = 3p1paq—2p1p2—2p1q—2p2g+p1+patq. Let 2, = {uv € I9(Gy) : e(u)

r,e(v) = s} be the set contain the edges with endpoints has the eccentricity - and

s. From the above discussion, we have

Eoal = pip2+ gt pag—2p1—2py - 2q4 3,
|Z2.3| = 3p1p2g —3p1p2 — 3p1g—3pag+ 3p1 +3p2+3¢— 3. Mathematical formulation
of above edge-based eccentric topological indices can be represent for graph (7

in the following theoren.

Theorem 3.4.2. For py < py and g be prime numbers. Let Gy be the zero divisor
graph containing commutative ring Zp,p, X ZLq, then first Zagreb eccentric inder
18

M} (G2) = 15p1peq — 11 (p1p2 + 1@ +p2q) + 7T (p1 +p2+4q) — 3

the third Zagreb eccentric index is

M} (Gs) = 18pipeq — 14 (pip2 + p1g +p2q) + 10 (p1 +p2+q) — 6

the geometric-arithmetic eccentric indez s

5
6v06
+< \5/_—2> (m+p2+q) +3.

66 66
GA4(Gy) =—\5/—— (p1p2g — 1) + (1 — ——) (p1p2 + P19 + P2g)
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Table 3.3: Algorithiic results of edge-based topological indices for zero divisor

graph with Z,, ,, x Z,.
Algorithmic Results
Case| a b c¢| M, Ay G A, ABC;  Harmonic

1 2 3 5 176 200 37.015 26.870 16

2 3 5 5| 603 7O 126.060) 50.912 -1

3 5 7 5] 1696 1984 346.181 248.902 117
4 o 11 7| 4096 4816 829.153  596.798 300
5) 7 11 71 6024 7104 1214.180  873.984 o10
6 11 13 7| 11808 13968 2368.359 1705.542 990
7 13 17 5| 12736 15040 2561.450 1844.135 1073.6
8 17 19 5| 18976 22432 3810.175 2743.574 1591
9 19 23 3| 13784 16160 2803.995 2016.669 1188
10 |23 29 2| 11904 13752 2476.663 1777.666 1072

the atom-bond connectivity eccentric index is

ABG(Gy) = %IE(GM

the fourth type of eccentric harmonic indez is

6 7 1 3
Hy(Go) = ¢ (P1p2q) — —= (mp2 + m1g+p2q) + = (p1 +p2 +q) + —

5 10 5 10°
Proof. By equating |Z9| = pip2 + p1g + pag — 2p1 — 2p; — 29 + 3, |Zuy| =
3p1p2q — 3p1p2 — 3p1q — 3p2q + 3p1 + 3ps + 3¢ — 3 in equations (2.26), (2.27),

(2.28), (2.29) and (2.30), we obtain the required results. O

For verification purpose algorithmic results are compared by substituting
some instances of the values of a = p;,b = p; and ¢ = ¢ in Theorem 3.4.1. It is
observed that both results are same that proves the accuracy of algorithim. Sonie
of the results are given in Table 3.3 for sake of computing fidelity and their use

in future applications.

Figure 3.4 shows a pictorial representation of the results. Zero divisor
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Figure 3.4: Plot of Table 3.3 results.

graphs for Z,,,, x Z, with primes p; = a, py = b, and ¢ = ¢ are represented
along x-axis, and the topological indices are represented along the y-axis. The
primes p;, ps and ¢ are taken randomly with condition p; < . The values
of topological indices were increasing in initial cight. zero divisor graphs while
increasing the value of ¢, at the ninth zero divisor graph, the value ¢ decreased.
as a result, the values of topological indices also decreased. Thus, ¢ has a stronger
impact on topological indices. In all the graphs, Ay has the largest value, the
harmonic index has the smallest value, ABCj is greater than the harmonic index,

G A, is greater than the ABCj5 index, and M, is greater than G A, index.



CHAPTER 4

DEGREE BASED TOPOLOGICAL INDICES

In this chapter, degree based topological indices are computed for line
graph of benzene ring embedded in the P-type-surface network, line graph hy
utilizing the system of subdivision of benzene ring embedded in the P-type-surface
network, graph of conductive 2D MOD, line graph of conductive 2D MOD and

line graph by utilizing the system of subdivision of conductive 2D MOD.

4.1 Degree Based Topological Indices

Degree based topological indices are computed from the degree of
vertices in the graph. A standout amongst the most critical topological index is
the outstanding stretching index presented by Randi¢ [77] which is characterized
as the whole of certain bond commitments ascertained from the vertex level of
the hydrogen stifled atomic graphs. This index was discovered reasonable with
the end goal of medication plan [77]. The numerical elements of Randié index
incorporates its association with the standardized Laplacian framework [19)].
Ghorbani and Azimi defined two new versions of Zagreb indices of a graph ¢/ in
2012 [50]. The first multiple Zagreh index PAL(G), second multiple Zagrel)
index PM,(G), first Zagreb polynomial M\ (G ) and second Zagreh polynomial

M, (G, ) are defined in cquations (2.13),(2.14).(2.15) and (2.16), respectively.



Hl

Urtula et al. [44] introduced an angmented Zagreh index see cquation
(2.11). Estrada. Torres, Rodriguez and Cutian [34] have imtroduced atom-bond
connectivity indez (ABC index) in equation (2.7). Ghorbani and Hosseinzadel
[49] obtained the updated version of ABC' index termed as ABCy index that is
shown in equation (2.8). Vukicevic:  and  Furtula [R9]  defined
geometric-arithmetic indes (G A index) as shown in equation (2.9) and Graovac.
Ghorbani and Hosseinzadeh [53] introduced extended version of (4.1 index
termed as G A5 index and shown in equation (2.10). Farahani. Ediz and hnran
[42] introduced the Harmonic index in equation (2.5).  In the scection, we
determine these indices for line and para-line graph of benzene ving and

chemical structures of the conductive 2D MOFs Cuz(HIT P)y[m, n.

4.2 Line graph and line graph of subdivision of benzene ring

The topological indices of benzene ring embedded in P-type-surface in 21)
network are computed by Ahmad in [1]. Now onward, benzene ring embedded
in P-type-surface in 2D network is denoted by G as shown in Figure 4.1, its
line graph is denoted by L(G) and line graph of subdivision of G is denoted hy

L(S(G)). The line graph of G is shown in Figure 4.2.

4.2.1 Topological Indices of Line Graph of Benzene Ring

In this section, we determine the topological indices of line graph of
benzene ring embedded in P-type-surface in 2D network, namely Randic index,
general  sum-connectivity  index, atom-bond  connectivity index,
geometric-arithmetic index, fourth version of atom-hone connectivity index and

fifth version of geometric-arithmetic index.
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Figure 4.1: Benzene ring embedded in the P-type-surface network.
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Figure 4.2: The line of G with n = 5 and m = 4.

The line graph of the henzene ring in the P-type surface is shown in Figure
4.2. For our convenience, we suppose that there are n munber of benzene rings
in any row and m number of benzene rings in any column. The total number of
vertices in this graph are 32mn — 2m — 2n, among which 4m + 4n vertices are
of degree 2, 16mn vertices are of degree 3, and 16mn — 6m — 6n vertices are of

degree 4 as represented in the vertex partition in Table 4.1.

Let ey,, denotes the number of edges connecting the vertices of degree

dy and d,. The line graph of the benzene ring in the P-type surface contains



Table 4.1: The vertex partition of L(G) based on degree of vertices.

Degree of vertex Number of vertices

2 4+ 4n

3 16mn

4 16mn — 6m — 6n
Total 32mn — 2m — 2n

only e3,2, €2,3, €3,3, €3,4, and e4,4 edges. These edges are mentioned in the edge

partition in Table 4.2.

Table 4.2: The edge partition of L(G) based on degree of end vertices of cach
edge.

(de,, ds,), where 2120 € E(G)  Number of edges
2,2) i

(2,3) 8m +8n — 8
(3,3) 8mnn + 4
(3,4) 32mn — 8m — 8n
(4,4) 16mn — 8m — 8n
Total o6mn — 8m — 8n

Theorem 4.2.1. Let L(G) be a line graph of G and « is a real number, then

(1) Mo(L(G)) = (m +n)2°*2 + (8mn — 3m — 3n) 222+ 4 (16 mn) 3,

(2) Ra(L(G)) = 2°*%2 + 2°%3 (m + n — 1) 3% + (2mn — m — n) 21e+3

+2%%3 (dmn —m —n) 3% + 4 (2mn + 1) 32,

(3) Xa(L(G)) = 2°**2 + (8 m + 8n — 8) 5% 4 (8 mn + 4) 6

+ (32mn — 8m —8n) 7* + (16 mn — 8m — 8n) 8.

Proof. The vertex partition with respect to the degree of vertices of L{GY) is
calculated in Table 4.1. The edge partition with respect the degree of end vertices
of L(G) is calculated in Table 4.2. By putting the values calculated in Table 4.1

and Table 4.2 in equations 2.2, 2.3, and 2.6, and by simplifying them with the



help of Maple, we determine the general Randic index. general sum-conneetivity

index and general Zagreb index as follows:

Ra(L(G)) = D (duds,)®
1226 E(L(G))
= 62,2(2 X 2)“ + (12,3(2 X 3)” + (33,3(3 X 3)“13 + 63‘4(3 X “1)“
+64,4(4 X 4)04
= (4)4" + (8m + 8n — 8)6* + (8mn + 4)9* +
(32mn — 8m — 8n)12* + (32mn — 8m — 8n)16”

— 22a+2 + 2a+3 (m 4+n— 1) 3a 4+ (an —-—m - n) 24a+3 +

223 (4mn — m — n) 3 + 4 (2mn + 1) 3%

Xa(L(G)) = Y (do +di)”
1226 E(L(Q))
= €22(24+2)%+e23(24+3)* +e33(3 +3)* + e34(3+4)* + eq4(4+4)"
= (4)4% + (8m + 8n — 8)5* + (8mn + 4)6“ + (32mn — 8m — 8n)7" +
(32mn — 8m — 8n)8"

= 2°%%2 1 (8m 4+ 8n — 8) 5% + (8mn + 4) 6% + (32mn — 8m — 8n) 7" +

(16mn — 8m — 8n) 8°.

My(L(G)) = (m+n)2*2+ (8mn — 3m — 3n) 2%**! + (16mn) 3.

This completes the proof. 0]

Theorem 4.2.2. The ABC index and GA index for L(G) is



(1) ABC(L(G)) =2V2+ { (8m +8n —9) V24 Winn+ 5+

é (32mn — 8m — 8n) V15 + lx (16mn — 8m — 8n) V.

(2) GA(L(G)) = 8+ 2 (8m + 8n — 8) V6 + 24mn + 3 (32mn — 8 — 8n) V3

— 8m — 8n.

Proof. Let e;; denotes the number of edges in the edge partition with degree of
end vertices is i and j. By putting the values of edge partition of L(G) calculated

in Table 4.2 in equations (2.7) and (2.9), we determine the ABC index and (A

index as:
— day +dzy—2
ABC(L(G)) = > T
z122€ E(L(G))
_ 2422 2+43-2 3+3-2 344-2
= e/ 7 Te3y/ 53 T3\ 53 + €34/ 553 +
444-2
64,4 4x4

After simplification, we obtain

16
ABC(L(G)) = 23+ 5 (8m+8n —8) Va+ zmn+ S+

1
é (32mn — 8m — 8n) V15 + 1 (16mn — 8m — 8n) V6.
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2¢/d(u) x d(v)
GA(L@G) = ),
weE(L(G)) d(u) + d(’U)
2v/2 x 2 2v2 % 3 2/3 %3 23 x 1

5 Tes w5 s + 34— +

242 243 3+3 T3+
2v/4 x 4

444
2x2 24/6 2x3

g (8m + 8n — 8)7\/_ + (8mn + 4)—>6<— +

J

212 2 x4
7

= €22

€44

=

(32mn — 8m — 8n)

+ (16mmn — 8m — 8n) g

After simplification, we obtain

GA(L(G)) = 8+ g (8m + 8n — 8) V6 + 24mn +

4
- (32mn — 8m — 8n) V3 — 8m — 8n.

This completes the proof. O

In the following theorems, we present the fourth atom-hond connectivity
index (ABCy) and the fifth geometric-arithmetic index (GAs).  Table 4.3
represents the edge partitions based on degree sum of neighbor vertices of end
vertices of each edge in L(G). We use this partition of edges to caleulate ABC
and GAs indices. The edge set E(L(G)) divided into thirtecen edge partitions
based on degree of end vertices. The edge partition Fy, .,(L(G)) contains m,, .,

edges T,Ty, where S(x)) = x1, S(22) = x2 and My, », = | By, 00 (L(G))].

Theorem 4.2.3. The ABCy index and G Ay index for L(G) is

(1) ABCy(L(G)) = 2V2+ 1815 + & (dm -+ 4n - 8) VT8 + &

(4m + 4n — 8) V210 + o (4m + 4n) V170 + & (4m + 4n) V57 + 1



Table 4.3: The edge partition of graph G based on degree sum of neighbor vertices
of end vertices of each edge.

(Say, Sea), where vy € E(G) Number of edges
(5,5) 1

(5,9) 8

(6,9) dm+4n -8
(6,10) dm+4n -8
(9,10) 4m+4n
(9,12) dm + 4n

(10, 10) 4

(10,11) dm+4n -8
(10,12) dm + 4n

(10, 14) 8m +8n — 16
(11, 11) 8mn —-8n — 8n + 8
(11, 14) 32mn — 24m — 24n + 16
(14, 14) 16mmn — 8m — 8n
Total obmmn — 8m — 8n

(dm +4n —8) V2090 + L (4m+4n)V6 + 2 (8m + 8n — 16) V770 +
Z (8mn — 8m — 8n + 8) Vb + 1L (32mn — 24m — 24n + 16) /3512 +

4 (16mn — 8m — 8n) v/26.

(2) GAs(L(G)) =16 + 25+ 2 (4m + 4n — 8) VG + 1 (4m + 4n — 8) /T
+ 15 (4m 4+ 4n) V10 + 4 (4m +4n) V3 + Z (4m + 4n — 8) V110 + z
(4m + 4n) V30 + % (8m + 8n — 16) V35 + 24mn — 16m — 16n +

2 (32mn — 24m — 24n + 16) /154

Proof. Let m; ; denotes the number of edges of L(G) with i = S,, and j = S,.,.
It is easy to see that the summation of degree of edge endpoints of given graph
has thirteen edge types ms s, ms.g, mg,9, Mg 10, Mg 10, M9,12, M10,10, 10,11, Mli0,12,
10,14, 11,11, M11,14 and 414 that are calculated in Table 4.3. By using these
values in equations (2.8) and (2.10), we get the following:

ABCy(L(G)) = X

1226 E(L(G))




H4+5—
5x5H

(__
= mgs 2 4+ mggy/ 2222 + g

G110 2 ORI
(>d) ® + e, “’\ G> 10 + My, 1"\/ a.n f

9412-2 [10+10-2 o112 10 TTS
7”’9,12 9% 12 + ,”1() 10 10x 10 + ,”l() 11 10~ 11 + oz ll')‘ 12
104+14—2 1411-2 114142 14+14-2
10,144/ “Tox14 T MiLuy/ g Ty nar T \VARTTIE!
8 12 13 L. T
=4,/ 2 +8,/Z+{m+4n—8)/ B+ (dm+4n—8)\/ S+ (dm+4n) /31 + (1

B 44/ + (dm+4n—8)\ /5 + (4m+4n) /3% + (8m 4+ 8n — 16)

lll{

(8mn—8m—8n+8),/ & +(32mn—24m—24n+16) /2= +(16mn—8m—=8n) \/Ti:;)

and

GA(LG) = ¥ A

Sy +Sz
ciz€E(L(G)) 2

_ 2/5x%x5 2\/5>< 2,/6%9 2v/6x10 24/9% 2/0x 12
=Mss5 55 TMs59 519 T 769 6rg 176,10 6570 T 129,10 9+10 2 +mg 1 S or12 T
2/10x10 2y/10x11 2v/10x12 2y/10x 14 211 %11

10,0 gm0+ 710,11 g T 0,12

Tor1z. T Mo T T Moo Ty

2v/11x14 2+/14x14
Mi1,14 197 T ™14,14 5314

=42‘/_+82r+(4m+4n 8)£ +(dm+4n —8) @+(477'L+47L)2—1\/?)®+(47H,+
4n) 2108 | 42VI00 4 (g 4 4y — 8) 2410 4 (dyn + 4n) 2420 4 (8n + 8 — 16) 24510 +

ﬁ

25

8mn—8m—8n+8) 2221 1 (3210 — 24m— 24n+16) 245 4 (16mmn — 8m — §n) 2410
28

After simplification, we obtain the desired results. ]

4.2.2 Topological Indices of line graph of subdivision of Benzene Ring

The line graph of subdivision of G is shown in Figure 4.3. In this scction,
we determine the topological indices of line graph of subdivision of benzene ring,

namely namely generalized Randic, general Zagreb, general sum-connectivity,

ABC, GA, ABC, and G As indices.

Theorem 4.2.4. Let L(S(G)) be a line graph of subdivision of G, then



Figure 4.3: The line graph of subdivision of G with n =5 and m = 5.

Table 4.4: The vertex partition of L(S{G)) based on degree of vertices.

Degree of vertex Number of vertices
2 16mmn + 8m + 8n
3 48mn — 12m — 12n
Total 64rmn — dm — 4n

Table 4.5: The edge partition of L(S(G)) based on degree of end vertices of cach
edge.

(dyy,dzy ), Where 2122 € E(L(S(G)))  Number of edges
(2,2) 8mn + 8m + 8n
(2,3) 16mn

(3,3) 64mn — 18m — 18n
Total 88mn — 10m — 10n

(1) M, (L(S(G@))) = (2mn + m + n)2°*3 + 4(dmn — m — n)3>*!,
(2) RL(L(S(@))) = (mn+m+n)22*3 + (64mn — 18m — 18n)3%* + (161n)6",

(3) xa(L(S(@))) = (mn + m + n)22**3 + (16mn)5* + (64mn — 18m — 181)6",

where « 15 a real number.
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Proof. The vertex partition with respect to the degree of vertices of L{S(() is
calculated in Table 4.4. By using these values in the formula of first ceneral

Zagreb index defined in equation (2.6), we obtain the result.

Let ez, z, denotes the number of edges connecting the vertices of degree
dz, and dg,. The edge partition with respect the degree of end vertices of L(S(())
is calculated in Table 4.5. By using these values in the formula of general Randi¢
index defined in equation (2.2) and in the formula of general sun-connectivity
index defined in equation (2.3), we obtain the following results:
Ro(L(5(G))) = > (dz,dyy )
z122€ B(L(S(G))
= €22 (2 X 2)0 + €23 (2 X 3)" + €33 (3 X 3){'
= (8mn + 8m + 8n)4* + (16mn)6“ + (64mn — 18m — 18n)9*
= (mn 4+ m + n)222%3 4+ (64mn — 18m — 18n)3%* + (16mn)6°.
XQ(L(S(G))) = Z (d231 + dmz)a
T1z2€ E(L(S(G)))
=e22(24+2)" +e3(2+3)* +e33(3+3)°
= (8mn + 8m 4+ 8n)4* + (16mn)5* + (64mn — 18m — 18n)6*

= (mn +m 4+ n)22**3 + (16mn)5* + (64mn — 18m — 18n)6°.

This completes the proof. O

Theorem 4.2.5. Let L(S(G)) be the line graph of the subdivision graph of G.

Then its ABC indez and GA index for L(S(G)) is:

(1) ABC(L(S(@))) = (12V2 + 2) mn + 1 (8 + 8n) V2 — 12n — 12m.

(2) GA(L(S(G))) = (72 + 2/6) mn — 10m — 10n.



Proof. By using the values of edge partition calculated from Table L5 of graph
L(S(G)) in the formula of ABC index and GA index. After simplification. we

obtain the required results. [

Table 4.6: The edge partition of graph L(S(G)) based on degree sum of neighbor
vertices of end vertices of each edge.

(Sz1, Sz,), Where 125 € E(L(S(G)))  Number of edges
(4,4) dm+4n+4
(4,5) 8n+8n — 8
(5,5) 8mn —4m —4n +4
(5,8) 16mn

(8,8) 4m + 4n

(8,9) 32mn — 8m — 8n
(9,9) 32mn — 14m — 14n
Total 88mn — 10m — 10n

Let m; ; denotes the number of edges of L(S(G)) withi = S, and j = Sy
It is easy to see that the summation of degree of edge endpoints of given graph has

seven edge types maa, Mas, M55, Mg, Mmgg, Mgo, and mg g that are calculated

in Table 4.6.

In the next two theorems, we calculate the fourth atom-hond
connectivity index ABCy and the fifth geometric-arithmetic index GAs. There
are seven types of edges on degree based sum of neighbors vertices of cach edge
in L(S(G)). We use this partition of edges to calculate ABCy and G As indices.
Table 4.6 gives such types of edges of L(S(G)). The edge set E(L(S((})))
divided into seven edge partitions based on degree of end vertices. The edge
partition Ey, .,(L(S(G))) contains my, ,, cdges z12,, where Sy, = x;, S

'.'172 =1y
and mzl,xg = lExl,zz(L(S(G)))\

Theorem 4.2.6. The fourth atom-bound connectivity indez ABCy of L(S(G)) is



given by

16
ABCy(L( ( \/_—i- \/11 + - \/_+—)mn+
1
Z(4m+4n+4)\/_+—6 (8m + 8n — 8) V35 +
2
5

(—4m — 4n+4)\/_+8 (dm + 4n) V14 +

2( 8m—8n)\/§6—-59—6m—%n

Proof. By the definition of ABCy index and using the values from Table 1.6, we

obtain
: Sz, +8s,-2
ABG(L(S@) = Y. EE
z122€ E(L(S(G)))
= (dm+4dn+4)/122 4 (8m +8n — 8), /1422 4+
(8mn — 4m — dn +4) /2522 4 (16mn) /3222 +
(4m + 4n) + 2(32mn — 8m — 8n) /422 +
—2
(32mn — 14m — 14n), / #22,
After simplification, we obtain the desired result. O

Theorem 4.2.7. The fifth geometric-arithmetic index GAs of L(S(G)) is given

by

GAs(L(S(G))) = <4O + 64\/_+ 318;1\/§> mn — 10m — 10n +

4 12
8 + 3 (8 + 8n — 8) V5 + T (—8m — 8n) V2.

Proof. By the definition of GAs index and using the values from Table 4.6, we



obtain

2\/Sy xS,
GAs(L(S(G))) = W
z122€ E(L(S(G))) *1 b
2V4 x 4 20T %5
(4m + 4n + 4) A4 + (8m + 8n 8)—4+5 +
2v/5 SR
(8mn —4m —4n + 4)@ + (16mn)2 S5x8
5+5 5+ 8

24/8 x 8 v
————— 4+ (32mn — 8m — 87L)2 8x9

(4m + 4n)

848 849
(32mn — 14m — 1477,)2 9 x9
949
64 384
= (40 + 210+ 2222 ) mn — 10m — 10n + 8 +
13 17 9
12
(8m+8n—8)\/5+1—7(—8m—8n) V2.
This completes the proof. O

4.3 Chemical structures of the conductive 2D MOFs Cus(HIT P)y[m,n|

Cus(HITP),(HITP = 2,3,6,7,10,11—hexaiminotriphenylene) is an

incipient electrically conductive 2D MOF.

The graph of chemical structures of the conductive 2D MOF's
Cuz(HITP)s[m,n] is shown in Figure 4.4. These graphs consists of a main
hexagons and minor hexagons. For our convenient, we suppose that there arc mn
number of main hexagons in any row and n number of main hexagons in any
column. The number of vertices in this graph are 72mn + 22n + 2m among
which 30mn + 14n + 4m vertices are of degree 2 and 42mn + 8n — 2m vertices

are of degree 3, by Table 4.7.

Let 4(G) and A(G) be the minimum and maximum degree of G,
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Figure 4.4: The graph of chemical structures of the conductive 2D MOIs.

respectively. The edge set E(G) can be divided into scveral partitions: for any ¢
and j, 6(G) < 4,7 < A(G), let By = {e = zy29 € EG) : dy, = i,dsy = J},
ei; = |Eijl, and V; = {z1 € V(G) 1 doy = i}, ni = |Vil.

Table 4.7: The vertex partition of graph G based on degree of vertices.

Degree of vertex Number of vertices

2 30mn + 1d4n + 4m
3 42mn + 8n — 2m
Total 2mn + 22n + 2m

Table 4.8: The edge partition of graph G based on degree of end vertices of cach
edge.

(ds,, dz,), where 2122 € E(G)  Number of edges
(2,2) 4n + 2m

(2,3) : 60mn + 20n + 4m
(3,3) 33mn + 2n — dm
Tetal 93mmn -+ 26m +m

Theorem 4.3.1. Let G be a chemical structures of the conductive 2D MOFs



Cug(HIT D)y . nlowith i is the wumber of maii hcragons g o and noes

the number of main heragons in any colum. Then

LM (G) = (15mn 4 To 4 2m).200 0y 2020mn e a3

S RG) = (20 4 )22 (B3 4 20 ) VWSmene 4 D) 60

&

I N (G) = 20+ )22 L 1(15mn 4 iy ST (3m 20 )G

where o is a real namber.

Proof. The graph of the chemical structures of (Lo conductive 21 NMOI's
Cus(HITP)y(m, n] is shown in Figure 101 Lot Cop, denotes the number of
edges connecting the vertices of degree d,, and ., In this graph ¢ there are
total munber of vertices are 72imn 4220 + 200, The nuniher of vertices of depree
two and three are 30mmn + 1dn 4 D and A2mn + 8o - 20, respectively, as
shown in vertex partition in Table 4.7. By using these values in the formula of

first general Zagreb index. we obtain the desired result.

The total number of edges of chemical structures of the conductive 2D
MOFs Cuz(HITP)s[m, n] are 93mn + 26n 4+ m. The edge partition hased on the
degree of the end vertices of each edge as shown in Table 4.8. Since, the fornula

of general Randié¢ index is

Ra(G) = Z (diE]d:EQ)n’

z122€ E(G)

this implies that

RQ(G) = €22 (2 X 2)a + €23 (2 X 3)a -+ €33 (3 X 3)a



LL

= (dn 4+ 2m).22 + (60mn + 200 + 4m).6 4+ (33mn + 20 — Hi) 32
= (20 +m). 22 4 (33mn + 20 — 5m).32 + A(15mn + b+ m).6°

The formula of general sum-connectivity index is

Xa(G) = D (doy +ds)",

r122€ E(G)

this implies that

Xa(G) = €22 (24+2)* + €23 (2 +3)* + e33 (3 + 3)°
= (4n + 2m).2% + (60mn + 20n + 4m).5* + (33mn + 2n — 5m).6%
= (2n 4+ m).22¢F1 4+ 4(15mn + 51 + m).5% + (33mn + 2n — 5m).6%.

This completes the proof. O

Theorem 4.3.2. The atom-bound connectivity index ABC of the chemical

structures of the conductive 2D MOFs Cug(HITP)q[m,n] is given by
4 1
ABC(G) = (30V2 + 22)mn + (2V2 + 10V2 + S)n + (V2 + 2V2 - §)7,,,.

Proof. Consider the graph of the chemical structures of the conductive 2D
MOFs Cug(HITP)s[m,n]. Let e, 4, denotes the number of edges connecting
the vertices of degree d,, and d,,. Two-dimensional structure of the given graph
contains only €32, €23 and ez 3 edges. The number of ey 9, €23 and ez 3 edges are

mentioned in Table 4.8. Since, the atom-bond connectivity index is defined as

ABC(G)= ) d;:jjizz

T1x2€15(G)



'

this implies that

By using Table 1.8, we obtain

(1M

ABC(G) = (Ao + 2m) %“’f’ + (GOmn + 200 4 »l//;)\/i“’,i,'%:‘ 1
(33mm + 210 — Him) \/T'T““’
After simplification, we obtain the desired result (]

Theorem 4.3.3. The geometric-arithmetic inder (A of the chomical structures
of the conductive 2D MOFs Cus(HIT D)y n] is given by

8V6

)

‘GA(G) = (33 4+ 24V6)mn + (6 + 8V6)n + | —3)m.

Proof. The number of €22, 23 and ez 5 edges are mentioned in Table 4.8, Since

the geometric-arithmetic index is defined as

GAG) = Z 2\/dy, x d,,

dy, + d,

bl

J,‘ll‘QEE(G)

this implies that

2/2 x 2 24/2 x 3 24/3 % 3
GA(G) = €22 5 TE3 (G +tegz——.
242 243 343



By using Table 1.8, we obtain

RAPIR

2\ 0O

GAGY = (n 2/1/)——71—_ FA(OOmn 4 200 4 ) 0

2 X
O

(33 4 200 Hin)

2

3

After simplification. we obtain the desired result.

HN

[ the next two theorems. we calculate the fourth atom-bond connectivity

index ABC' and the fifth geometric-arithmetic index Gl There are nine tvpes

of edges on degree based sum of neighbors vertices of each edge in the chemical

structures of the conductive 21 NIOVFs Cug (11T P)y (. n]. We nse this partition

of edges to caleulate ABC and (A5 indices. Table 1.9 gives such types of edges

of the chemical structures of the conductive 2D MOIS Cuy(H 1T P n).

“able 4.9: The edge partition ol graph ¢ hased on degree sum of neighbor vertices

of end vertices of cach edge.

(5.5 Su)s where wpey € F(G)  Number of edges
(5,5) dn + 2
(5,7) 8n + dm
(6,7) AOmn + 160 + 4in
(6,8) 20mn — 4n — 4
(7,7) LOmn + 2n
(7,8) 8n 4 4m
(8,8) 18mmn — 8n — 4
(8,9) dmn — 4m
(9,9) mn —
Total 93mn + 26n +m

Theorem 4.3.4. The fourth atom-bound connectivity index ABC,

of the



0l

chemical structures of the conductive 20 MOFs Cug(HTT Y yim n] is given by

ABC,(G (20\/K+ gx/ﬁ+2—0\/§+im> mn +
—g— (4n + 2m) V2 + = \/_(871 +4m) + %\/@(16" + 4m)
?\/gn — g\/_Om —2n — ?m + = \/g 2(8n +4m) +
%\/ﬁ(—Sn —4m).

Proof. Let e;; denotes the number of edges of the chiemical structures of the
conductive 2D MOFs Cuz(HIT P)ym,n] with i = S, and j = S,,. It is easy to
see that the summation of degree of edge endpoints of given graph has nine cdge
types ess, €57, €67, €68, €77, C78, €838, €39 and egg that are shown in Table 4.9

The fourth atom-bound connectivity index ABCY is defined as:

Sz +SI2—2
ABC4(G) = Z Sla:IXSJ:Q ’
T122€E(G)

this implies that

_ 54+5—2 54+7—2 _2

ABCy(G) = esp 5 1657\ T5x7 T €67 +
6482 748-2

€681/ 6xg T E7.7 7><7 2 terg 7>8 T
848-2 8+9-2 94+9-2
€881/ “sxa T €891/ sxa T €991/ Toxg -



By using Table 4.9, we obtain

ABC4(G) = (471, + 27]’),) 5+5-2 + (8” + 477L) 5472 +

5%5 S5x7

(40mn + 16n 4 4m) /SE22 + (20mn — 4n — 4in), /94822 4

(10mn + 2n),/ 322 + (8n + 4m) |/ T822 4

%7 TxX8
(18mn — 8n — 4m) /8222 4+ (dinn — 4m) | /8922 4
9+9-2
(mn —m)y/ 7557
After simplification, we obtain the desired result. 0

Theorem 4.3.5. The fifth geometric-arithmetic index GAs of the chemical

structures of the conductive 2D MOFs Cus(HIT P)y[m,n] is given by

80 48
GAs(G): = (?\/M 29 + 1—3\/42 + 1—7\/§> mn — 2n — 3m +
4
%\/35 (8n + 4m) + 133\/42(16n+ 4m) + Tg\/14 (8n + 4m) +
48
é\/g(—éln —4m) — 1—7\/§m

Proof. Let e;; denotes the number of edges of the chemical structures of the
conductive 2D MOFs Cuz(HITP)y[m,n| with i = S;, and j = S;,. It is easy to
see that the summation of degree of edge endpoints of given graph has nine cdge
types ess, €57, €67, €68, €77, €75, €838, €89 and egg that are shown in Table 4.9.

The fifth geometric-arithmetic index G As is defined as




this implies that

2v/5 %X 5 25 x 7 26 x 7
GAs(G) = ess—p g Fesr— g +co 617
24/6 x 8 27T x 7 27 x 8
€68~ t €77 +e78 +
6+ 8 T4+ 7 7+ 8

2/8 x 8 2/8 x9 2v/9x 9

+€ 20 ¢
818 | Tgyg toa

88 949

By using Table 4.9, we obtain

GAs(G) = (dn+2m)2Y2%5 | (g0 4 am) 22X T

+ (40mn + 16n +

+5 547
26 x 7 26
4m)ﬁ + (20mn — 4n — 4m) 5 +>; 8 + (10mn +
27T x 7 27 x8 2v8 x 8
2n) T + (81 + 4m) 718 + (18mn — 8n — 4m) 8+>; +
24/8 x 9 29
(4mn — 4m) 3 +>; + (mn —m) 9 +>; 9.
After simplification, we obtain the desired result. J

We compute hyper-Zagreb index HM(G), first multiple Zagreb index
PM(G), second multiple Zagreb index PM,(G), Zagreb polynomials M; (G, z),
My(G,z) for chemical structures of the conductive 2D MOFs

Cus(HIT P)s[m,n] in the following theorem.

Theorem 4.3.6. Let G be a chemical structures of the conductive 2D MOFs

Cus(HITP)s[m,n). Then

1. HM(G) = 1500n — 48m + 2688mn

2. PM](G) — 233mn+10n—m X 333mn+2n—5m % 560mn+20n+4m



)’ ])A\[;)((") — ._)l‘»llmu < ONp e NI " :{l'_’!»mu <20 tan

4o MG o) =l 2m) a4 (60 200 Ty
(33 + 260 — Sy a®
S Mo (GLa) = (o 2m) a4 (601200 Ayt

+ (33mn 4 260 — Sy at

Proof. Lot (¢ he a chemical  structures ol the  conduetive 21 MO
Cug(HIT P)o[m. n). The edge set () divided into three edpe partitions hised
on degree of end vertices. The first edge partition [ (G) contains o1 2
edges . where d, = d,., = 2. The second edge partition L (G contains
GOmn + 20m + 4 edges s, where d, = 2, d,, = 3. The third edge partition
E4(G) contains 33man + 20 — S edges s, where doo=30d,, = 301U is casy

El((;)’ =y . ‘E_)(Ct')‘ = (3 and

[‘/‘J{((’v)‘ = (3.3, Sill(‘(‘.

to sce that

HM(@G) = Y. (d,, +d,,)"

T € F(G)

— Z [(ZJ;,_,]Q + Z [(1:"1 + (/‘,.2]2 + Z [([.,.I + (/',.,_,J ’
1226 E1(G) x1x2€ () x1ara€ 155 (()

= 16|E\(G)] + 25| E5(G)| + 36| 25(G)|

= 16(4n + 2m) + 25(60man 4 200 + 4m) + 36(33mn + 2n — Sm),

this implies that

HM(G) = 1500n — 48m + 2688mn.



We have

~1

-

PM\(G) = J] (do +day)
T1T2€ E(G)
= I @atde)x ] (e +d)x [ (dey+d)
z172€ F1(G) z1z2€ E2(G) r1r2€ E3(G)
— 4BO) y §BAC) o lEE)]
— 44n+2m X 560mn+20n+4m X 633mn+2n—5m
— 233mn+10n—m X 333mn+2n—5m X 560mn+20n+4m,
and
PMyG) = [] (doy xday)
-’E1$2€E(G)
= H (day X dg,) X H (dzy X dgy) % H (dzy X d,)
z122€E1(G) z122€E2(G) z122€E3(G)
= 4B@)  glEAG) o glB(O)
— 44n+2m X 660mn+20n+4m % 933mn+2n—5m
— 260mn+28n+8m x 3126mn+24n—6m
We also gbtain that
M(Gz) = ) gl
z1z2€E(G)
— Z g(dartdag) 4 Z g(dartdzy) 4 Z ey +dzy)
r1T2€E1(G) z122€E2(G) z112€E3(G)

Z‘T+Z

I1z2€1‘;]((1) Jllzelg )

= [Ei(G)]z! + |Ey(G)

77—!— Z 8

x1E€103(0G)

(G))a*

(An + 2m) ' + (60mn + 20n + 4m) 2° + (33mn + 26n — 5m) 2"



and

Mp(Gyz) = ) gldnxdn)
z172€E(G)
- Z glder Xdny) | Z plday xday) 4 Z pldey Xdzy)
T172€E1(G) r122€E2(G) 71726 E3(G)
= Z zt + Z 2% + Z z°
1226 E1(G) 21726 E2(G) T122€ E3(G)

= |E(G)la® + |Ei(G)]a® + | E(G)]a

= (4n+2m)z’ + (60mn +20n +4m)z® + (33mn+26n — 5m).r”,

This completes the proof. O

4.4 Line graph and line graph of subdividion of chemical structures of
the conductive 2D MOFs

!

Figure 4.5, represents the unit cell of line graph of chemical structures of

the conductive 2D MOFs.

800\
XX X

X X
()

\/
A

A
\/

Figure 4.5: The unit cell of graph G and its line graph.
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4.4.1 Topological indices of 1 x n sheet of ()

Let G, be the line graph of chemical structures of the conductive 21)
MOFs. The unit cell of Gy, contains one main hexagon with minor hexagons is
shown in Figure 4.5. The unit cells of G}, can be arranged either linearly or in a
sheet form. A linear arrangement with n unit cells of GGy, is called n chain of unit
cell of G, m x n sheet of G, is obtained by arrangements of e unit. cells of ¢4
into m rows and n columns. A 1 x n sheet of (), contains 93mm +im+20n vertices
among of which 2m + 2n vertices are of degree 2, 60mn + 200+ 4m vertices ave of
degree 3 and 33mn + 2n — 5m vertices are of degree 4. By handshaking lemma,
the number of edges of m x n shect of G, arc 156mmn + 381 — 2m. In the following
theorem, we determine the first Zagreh index M, Narumi-Katayama index N/

and first multiplicative Zagreh index IPM,; for graph G,.

Theorem 4.4.1. Let G, be a mn xn sheet with m is the number of main hexagons

in any row and n is the number of main hexagons in any column. Then

i

1. Mi(GL) = 1068mn — 36m + 228n
2. NK(GL) = 266mn—8m+8n . 360mn+4m+20n

_ ol32mn-16m+16n 120mn+8m+440n
3. PMy(Gy) =2 '3 .

Proof. Let nflL denotes the number of vertices of degree d;, in graphs G;. In

G, the number of vertices of degree 2,3 and 4 are: nQGL = 2m + 2n, ng"" =

60mn + 20n 4 4m, and n$" = 33mn + 2n — 5m. Putting these values in equation

(2.6) and equation (2.4), we get the required results. O

We now determine Randi¢ index R(G), reciprocal Randié¢ index

RR(GL), second Zagreb index M,(G)), sccond multiplicative Zagrel index



PMy(G). hyper Zagreb index HM(G)). sum-conneetivity index SC(G) and
modified first multiplicative Zagreb index 7} (G)).
Theorem 4.4.2. Let Gy, be am xn sheet with m is the number of main hexagons

in any row and n is the number of main hexagons in any column. Then

1. R(Gy) = (139 40\,/_) mn 4+ (g\/é — g) m+ (45\/6+ 5+ %\/g) n
2. RR(G) = (254 + 160v/3) mn + (46 — 28) m + (8v/6 + 39v/3 + 38) n

3. My(Gp) = 1826mn — 100m + 338n

4 PMQ(GL) = 9264mn--36m+24n 3180mn+12m+60n

5. HM(Gy) = 7384mn — 396m + 1376n

6. SC(GL) = (23_5\/6+%\/?%-173\/§)mn+(1—76\/7+§\/5_\/§+3\/§)n+(%\/6+
45 - 3V

7 WT(GL) — 2128mn+6n—26m . 350mn+18n+4m . 54m+8n A 780mn+16n

Proof. Let €S , denotes the number of edges in the edge partition ETC';LM with
the degree of end vertices are d,, and d,,. This implies that eg 5 = 8n + 4mn,
eg’g = 50mn + 18n + 4m, 634 = 80mn + 16n and eg’:,'; = 20mn — 4n — 10m.
Putting these values in equation (2.2), for & = =}, 1,1, and after simplification
we obtain the Randi¢ index, reciprocal Randi¢ index and second Zagreb index,
respectively. By Using o = 2, 2! and 623 : (36'4 : c§’4 , (,16',’1 in equation (2.3), we get

the hyper Zagreh index and sum-connectivity index, respectively. The second

multiplicative Zagreb index PM,(G),) and modified first multiplicative Zagreh



index 77(G) can be obtained by putting the values of the edge partition of the

graph G in the equations (2.13) aud (2.1.1). This completes the proof, (]

We now compute the augmented Zagreh index AZ, Harmonic index /1.

atom-bond connectivity index ABC and geometric-arithmetic index GA for (/.

Theorem 4.4.3. Let G be a m xn sheet with m is the numnber of main hexagons
in any row and n is the number of main hexagons in any column. Then, we obtain
the following

_ 46839347, . 48413 44751247
1. AZ(GL) = 21600 """~ 432 ™ T Tosoon 1

1
2. HGL) = 83mn + Bm + 2n

3. ABC(GL) = (8 + V15 + 2v6)mn + (12+ 8VI5 +4v2 — V6) 1 +

(22~ 55+ 8 m

4. GA(Gy) = (76 + @\/ﬁ) mn + (%\/E—F 14 + %\/3) n+ (g\/é — 6) m.

Proof. By using the values the edge partitions for the graph Gy, in the equations
(2.11), (2.5), (2.7) and (2.9), after simple calculation and simplification, we obtain

the required results. a

Let denote the fourth version of ABC index and fifth version of GA index

as ABC4 and GAs, respectively.

Theorem 4.4.4. Let G, be a m X n sheet with m is the number of main hezagons

i any row and n is the number of main hezagons in any column. The ABC,



mder-and GA(C) of graph G are giecn as Jollows.

20) 6 IS
ABCH(GL) = (9V2 + f\ \/’(> I\/‘_’usm T s
. ) i
I N .
‘\/4 + \ 110 VAS3S n (NN T
15 Y 35
L RN R (N (R S
ij+;ﬁWMMWM—QMJrM T
15 K 15 5 15
2 . o
V206 - —\/11( \/wm VBRI IS
()l i 91
l Z2 l() ,'*"_' _)l /"
<)\ﬂh+ v \/14() \/'_ Ly YO0 V2
]
8 S 2 Snan L 20 s
7—7\/W+ (5}) V2730 o V2000 + ?n VIS2)n

and

80 [ R
GA(G) = ( \F+ \flw —r\/li—l—FW\/‘zl(H«]-‘i\/l(ifrl»
r) 2z .
32 21 8 2
m lr)nm+( Vi — \/ﬁ+—\ﬁ()+7\/1:m+—ﬁ;—
—\/10 + o \/ 182 —»\/‘)1 - )—l—] V110 ——\f 14
g\/14z§)m+(;—\fﬁ+9+~f+{)H\/ls 4o ( VT
2 16
5@+ J“3~-F \/17 55 VI30) .

Proof. Let m 5 denotes the number of edges of edge partition of Gy owitha = S,
and b = 5;,, where S, is the sum degrees of neighbor vertices of . It is casy
G

to see that there fifteen such type of edge partitions -y which are as follows:
GL _— . GL — " p (lv[l - p (lvll . . ,

meg = 4m + 8n,mgt, = 4m + 8n,my'yy = dm 4+ 8 iy, = 30mn + din

14 Cr = 20mn — dm — dn, G, = A0 + Sl = din + S, —
T, Mg = CT AT gy & ’ Wy = A1+ S0 Ty =

G, ! G, . , G ) (i
dm-+8n, myYyy = 36mn—8m—16n, m{, = dmn+dm, iy, = dinA-8n,myl =

G
16mn—4m—12n, m14 15 = dmn—dm, myy s = 2mn—2m and ”’1" ;= dmmn—Am.,

)



For the ABC, index of eraph (/. we have

ABCY(C) = V/ 3
£ 'I'_‘((/

)
GHo-2 o [urlo 2 P (TR
*mm, iy 1o — — by s - -
6Gx9 Vogx1o Voo

e OET0=2 /lu+ll - /“ R
1 : II

10,10 0% 10 A e Voo l_)

o I N I N

“””'”\/ [N

i
J‘i_

i
S

~

o G
TG0

1o
—
\‘
—
12

‘l\.,‘
B

| —

[

S
ot
X =

<

PR AT 17 I 20
=(4m + 8n) 1 + (dmn + 8n) 9[) + (din + 8n) 17

21 [ 22 23
+(4m + 8n) 130 + (4m + 8n) e + (3G — S — 16n) i

24 25 | | N EL
+(4mn + 4m) 66 + (4m + 8n) TS + (16mn — 4m — 12n) 06

27 28 29
+(4mn — 4m)4/ 210 + (2mn — 2m)4/ 30 + (4dmn — 4m) 220"



and for the Gy of araph G5 we have

S08,
(l'.‘l»' r' - .2 D L]’ *’;‘
(G PO ot
rproe FG T e
G~ 9 9 10 , 91
— (l)\/i‘,,, oo Vel AR ‘
= ’”m)-—( 19 by 2 91 10 LT P 'R
\/H)x 10 o SV 10> 1] PR (TN |
IH N 4 - ! e
T TR IR TE TNt IRRE
/10 % 13 , 1> 13 , L1 1
/. (i LV . , \%
”’m[.l:w*mf{_ BN o2 IR ”’11/11- TR ’
" \/ﬁ’ffl G,V IR T i /|1\11+
m 2— — 2 / 2
T s SR R ST
RVAE IS TRV LN b G,V ID R 16
My 2= M2 e [,/11—’
L+ 15 A PR 54 16
54 90 117
= 2(4mn +3n) +2(hin + h’n)i— +2(hm + (\‘u)! Ly
15 19 20

100 110
\F() + 202000 — b — An) \/) — 4 2(10mn

12 v 130 113
8n) 55—+ 2(dm +S//)j§~ + 200+ Sn \/) o

L

2(30mmn + dm + 14n)

3

NS

V154 1G5 )
: + 2(dmn + 111!)!)(—‘)' + 2(dm +bn)l/-)7 +

F4

2(36mmn — 8 — 16n)

20 2
v 196 210 V225
53 + 2(dimmn ~ dmn) \/)()i +2(2mmn - 2711)—3% +

2(16mmn — 4 — 12n)

v 240
2(dmn — dim) -~

After simplification, we obtain the desived results.

This completes the proof. 0

We now compute Zagreh polynomials MG, x) and My(Gy,, z) for the
graph G by using the cquations (2.15,2.16) and the values of edge partition

which are already mentioned in Theorem 4.4.9.

Theorem 4.4.5. The Zagreb polynomials M(G ) and My(Gy,x) for graph



Nl

G, are given as follows:

1. My(Gr,z) = (4m + 8n)z® + (50mn + 18n + 4m)z® + (80mn + 16n).7 +

(26mn — 10m — 4n)z®

2. My(Gr,x) = (4m + 8n)z® + (50mn + 18n + 4m)z® + (80mn + 16n)a'2 +

(26mn — 10m — 4n)z'¢,

4.4.2 Topological indices of m x n sheet of G,

Let Gp;, be the line graph of subdivision chemical structures of the
conductive 2D MOFs. The unit cell of Gp; contains one main hexagon with
minor hexagons is shown in Figure 4.6. The unit cells of G, can be arranged
either linearly or in a sheet form. A linear arrangement with n unit cells of Gy,
is called n chain of unit cell of Gpy, m x n sheet of Gpy, is obtained by
arrangements of mn unit cells of Gp;, into m rows and n columns. A m x n
sheet of G'p, contains total number of vertices are 186mn + 52n + 2m. It is Casy
to see that there are n, = [Vo| = 60mn + 28n + 8&n and
n3 = |V3| = 126mn 4 24n — 6m. By Handshaking Lemma, total number of edges

of m x n sheet of Gp; are 249mn + 64n — m.
Similar to Theorem 4.4.1, we obtain the following.

Theorem 4.4.6. Let Gpy, be a mxn sheet with m is the number of main hezagons

in any row and n is the number of main hexagons in any column. Then

1. Mi(GpL) = 1374mn — 22m + 328n

2 NK(G])[) — 260mn+28n+8m . 3]26mn+24n—6m



Figure 4.6: The unit cell of graph G and line graph of its subdivision.

3. PM](G)(GPL) — 21‘20um+56n+16m . 3252mn+48.nfl’2m'

Proof. Let nff’h denotes the number of vertices of degree d,, in graphs Gp,,. It
is easy to see that ngy?* = 60mn + 28n + 8m and n$"* = 126mn + 24n — Gin.
Putting these values in equation (2.6) and equation (2.4), we obtain the requirced
results. d

Similar to Theorem 4.4.2, we obtain the following result.

Theorem 4.4.7. Let Gpj, be a mxn sheet with m is the number of main hexagons

n any row and n is the number of main hexagons in any column. Then

1. R(GpL) = (68 + 10\/6) mn + (% + %\/6) n + (—% + %\/6) m

2. RR(Gpr) = (537 + 60v6) mn + (=21 + 4v/6) m + (20v6 + 114) n
3. M3(Gpr) = 1911mn — 51m + 426n

4' PMZ(GPL) — 2120mn+16m+56n . 3378mn+72n—18m

5. HM(GpL) = 7704mn — 200m + 1724n

6. SC(Gpy) = (15+12v/56+2 /6)mn+ (2 vV6+9+4v5)n+ (2 vV6+3—2V6)m



) ¢ 2n 9 15H G ) ) .
(CI L ) 19mnd m+-62n dl‘).huu P26 1l S(nllmu + 200 lm.

Proof. Let ef}’fz denotes the number of edges in the edge partition Eﬁ{’ﬁ_) with the

degree of end vertices are d,, and d,,. This implies that <§g' = 30mn+6m+18n.

eQG:’;L = 60mn + 20n + 4m and ()g’g’ = 10%mn + 26n — 11mn. Putting these values
1

in equation (2.1), for o = 5 1, Loand after simplification. we obtain values of

Randi¢ index, reciprocal Randié index and sccond Zagreb index, respectively,

(1"'[ G 1.
2

i — -1, LGrn «
By using o = 2, 5 and eyy", e )

B e in equation (2.2), we obtain the hyper
Zagreb index and sum-connectivity index, respectively. The second multiplicative
Zagreb index PMy(Gpy,) and modified first multiplicative Zagreb index 73 ((p;,)
can be obtained by putting the values of the edge partition of the graph Gp, in

the equation (2.13). This completes the proof. O

Similar to Theorem 4.4.3, we obtain the following result.

Theorem 4.4.8. Let Gpj, be the graph with m is the number of main hexagons in
any row and n is the number of main hexagons in any column. Then the following

holds:

1. AZ(GPL) = 16;29177»’, %m—i— %§n’
H(Gpr) = 92mn+ Ym + Un,
3. ABC(GpL) = (45v2 + 106) mn + 5mv/2 — 2 + (19v2 + 2) n

4. GA(GpL) = (189 + 24y 6) mn + (8\/6 + 44) n+ (—5 + ’—f\/é) m.

Proof. By using the values the edge partitions for the graph G p,, in the equations



(2.11). (2.5). (2.7) and (2.9). after simple caleulation and simplification. we obtain

the required results. (]

Similar to Theorem 4.4.4, we obtain the following result.

Theorem 4.4.9. The ABCjy indez and GAy index of graph Gpy are given as

follows.

20 23() 5
ABCy(GpL) = (3\/11 0+ 12V2+ = \/——-l- im)mn—l-

(;\/6_——% V35 + = \/_+ M)m-F

4
(V6 + g‘/35 + —5 22+ 5\/14 +3V30+ VI110)n — g
and

240 16
GAs(Gpr) = (109+—\/—+ \/_)mn-i—(—9+ —\/E_)

2 12
+1—§\/ﬁ)m+(20+%\/5+ \/—+ ) f)

Proof. Let mi,’,’L denotes the number of edges of edge partition of Gp, with

a =S, and b = S,,, where S;, is the sum degrees of neighbor vertices of u:;.

It is easy to see that there seven such type of edge partitions mf{)’ L which are

as follows: mgj’L = 2m + 4n, mG"’ = 4m + 8n, mG”L = 30mn + 6n, mG“ =

60mn + 4m + 20n, mS§* = 20mn + 4m + 12n, mg5* = 80mn + 16n and mSy =

59mn — 15m — 2n.



For the ABC; index of graph Gy, we have

ABCy(Gp)= )

:l,'].’IIQEE(GpL)

Gp, [4+4-2 merL +5_2+7GlL 9+5-2
4 4x4 5 4x5 & 5% 5
e Toxg Y Texs TR o
94+9-2
Gpr
m B ———
s 9x9 ~
(2m + 4n) 0 + (4m + 8n) ! + (30mn + 6n) 8
= )/ = +8n) [ o= i \ =2
16 20) 25
11 14
+(60mn + 4m + 20n) 0 + (20mn + 4m + 12n) e

15 16
+(80mn + 16n) = + (89mn — 15m — 2n)4/ Tk

For the G As index of graph G py,, we obtain

| V50,5,
GAs(Gpr)= Y 2X =2

Say + S

z1z2€E(GpL)

V4 x4 o VA XD 9 X H 5% 8
g ey P iy T
V8 x 8 G 8x9 G 9x9
gy T 2 g Y g
V16 V20 V25
=2(2m + 4n)T + 2(4m + 8n)—9— + 2(30mn + 6n)w
V40 V64
+2(60mn + 4m + 20n)——13 + 2(20mn + 4m + 12n)—16
VT2 V81
+2(80mn + 16n)—17—- + 2(59mn — 15m — Zn)w

After simplification, we obtain the results as desired. This completes the

proof. O
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We compute Zagreb polvnomials M (Gppoar) and Mo(Gppoa) for the
graph G'pp by using the equations 2.15. 2.16 and the values of edge partition as
in Theorem 4.4.7 in the following theorem.

Theorem 4.4.10. The Zagreb polynomials M,(Gpy,x) and Ma(Gpy,,x) for the

graph Gp are given as follows.

1. My(Gppr,z) = (30mn + 18n + 6m)z! + (60mn + 20n + 4m)z® + (159mn +

26n — 11, m)z°.

2. My(Gpp,z) = (30mn + 18n + 6m)z* + (60mn + 20n + 4m)z® + (159mn +

26n — 11m)z°.



CHAPTER 5

DISTANCE BASED TOPOLOGICAL INDICES

In this chapter. distance among the vertices of grapl and distance-hased
topological indices are  focused. Distance calenlator and  distance  based
topological indices are computed using computer based algorithms for complete

binary trees and for complete ternary trees.

5.1 Algorithmic Solution

This section is most prominent part of this chapter as it gives
algorithms, that arc implemented in computer to generate required outcomes.
To start with algorithmic solutions, first question is about suitability of
data-structure. Appropriate use of data-structure is the first. key to get optimal
results.  In design phase Trec-of-Arrays is used as one of the classical
data-structures. But in implementation phase 2D-Array is used for sake of
efficiency. As algorithm design architecture both iteration and recursion is used,
whereas to handle the distances of ancestors and descendants back-tracking is

used as algorithmic design strategy.

To traverse between the levels of complete binary tree(CBT) and complete

ternary tree(CTT) inline functions are used to probe the values of Left-Child,



Right-Child. Nid-C'hild. and Parent vertices.

2 x u. Right(u) returns location 2+ a4

SN

fn OB et retirns location

I and Parentiud returns location [\, i

Similarly in CTT Left (u) returns location 3+ w

Right(n) returns Tocation 3 a1 T and Pavent (u) retirns location

I oalidiuy returns location 3 - .

S0

Algorithm 5 Distance-Calculator(m. H)

Input: The two positive integers o and /1.

Output:

distance j for a vertex .

o

NS e Wk —

Il 1)

(1)

(1

Distance « 2 x [}
Array[V][Distance] < 0
for v « 1 to \’

g1
Fill(Array. u. root. j)
Back-Track(Array. u. root. j)

return rray

2D-array Array that stores the count ol all vertices which are at

Algorithm 6 Fill(Array, u. v, j)

Input: The 2D-array Array, three positive integers w.o. and .
Output: Array after adding distance counts in it.
1. if (i = 2)

10:

if (Right(u) <V)

Arraylu][j] < Arraylu](j] + 2

if (Right(Right(u))< V)

Apply recursive calls for all sub-child of u

if (m=23)
if (Right(u) <V)

Arraylullj] « Array(u)lj] + 3

if (Right(Right(n))< V)

Apply recursive calls for all sul»-child of u
11: return Array
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Algorithm 7 Back-Track(Array. u. v, j)

Input: The 2D-array Array. three positive integers woes and .
Output: Array after adding distance counts in it.

1: prev < u
2. if (m = 2)

3:
4:
5
6
7
8
9
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

while (Parent(u)# Right-Nodes())
if (prev = Left(Parent(u)))
Arraylu][j] « Array[u]j] + 1
Call Fill for right sibling for j+1 distance
prev,u < Parent(u)
g3+l
Arraylu][j] « Arraylu][j] + 1
Call Fill for right sibling for j+1 distance

if (m=3)

while (Parent(n)# Right-Nodes())
if (prev = Left(Parent(u)))
Arraylu](j] < Arraylu]lj] + 1
Call Fill for mid and right siblings for j+1 distance
Arraylullj] < Arraylu][j] + ]
if (prev = Mid(Parent(u)))
Arrayu][j] « Arraylu][j] +1
Call Fill for right sibling for j+1 distance
prev,u — Parent(u)
JeJt+1
if (prev = Left(Parent(u)))
Arraylullj] « Arraylu)[j] + 1
Call Fill for mid and right siblings for j+1 distance
Arraylulj] < Array[u][y] +1
else
Arrayu][j] « Arraylu][j] + 1
Call Fill for right sibling for j4+1 distance

29: return Array

5.1.1 Description of Algorithm Distance-Calculator(m,H)

of child for any internal vertex, and H is the height of the tree.

Algorithm takes two positive integers m and H, where m is the number

Output of

the algorithms is a 2D-Array that stores the count of all vertices which are at

distance j for a vertex u. These distances are used to compute topological indices

in Algorithm 2 and 3.
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Figure 5.1 Output of distance calealator for g = 2 and H 2 o CBT

The Distance-Calculator algorithim vequires two input pavameter e and
H to execute. Line 1.2 and 3. caleulate the maxinmun vertex Vo the maximum
distance D and defines a 2d-Arvay \rray. vespectively, Line 170 execute a for
loop to call Fill and Back-track part of the algorithim for all the vertices (from |

to V) with root and distance j = 1. Line 8 return the ouwtput array Array.

The Fill algorithim requires 2D-Arvvay  Array. vertex e, vertex o and

distance j as input. paramecters. Line -5, exceutes for binary tree when m 2
where as Line 6-10 for ternary trees when o = 3.0 It works like Depth First

Traversal. Tt count all the descendants of vertex o, from top to the hottom and
add the distance in the array Array. For example, if there exist a vertex o at

distance 2 from w, then it add 2 in Array|u](2].

The Back-track requires 2D-Array Array, vertex o, vertex o and distance
7 as input parameters. For any input vertex u, it counts all the vertices o which
are the descendants of the ancestors of « at right side. It starts with o, niove top
right vertex, add right sibling distance and all its ancestors distance in Arvay for
u, with the help of Fill algorithm. After that it keeps on moving up and right
and repeat the process, until it reaches to the root or Right vertex of the tree.
At the end, it updates all the vertices v distance from w in the Array, which are

at the top and right from w in the tree.

Distance-Calculator executes Fill and Back-track for all the vertices in



1

the tree. Fill calculates top to bottom distauce for all the vertices. Back-track
calculates the distance from left to right and bottom to top in the reverse
direction, without including direct ancestors distance(already calculated in Iill).
After executing Distance-Calculator, any to any vertex distance calculated in

the Array. Tree-of-Arrays given in Figure-1 depicts the algorithmic results.

5.2 Time Complexity

Time Complexity depends on the varied values of independent variables
(i.e) m and H. In order to caleulate the exact exccutions of Fill and Back-track,
a computer program was executed multiple times by variating the values of 1/
and m. The number of counts are shown in Table 5.1. For calculating the cost of

both algorithms empirically, asymptotic ranges were applied and we concluded

. . 21 1 . H41 _ .
that T'(m, H) for Fill cost is Z—=— and Back-Track cost is 2 Al For
the sake of simplicity, we can say the upper-bounds for Fill and Back-track are

O(m?%) and O(mH+h).

Table 5.1: Time Complexity for Algorithm Distance-Calculator(m,H).

H m | Fill Back-track m?:,ll:;”” m T kA
2 3 36 10 36 10

3 2 55 11 o6 11

3 3 279 36 351 36

4 2 231 26 240 26

4 3 | 2439 116 3240 116

5 2 959 57 992 o7

o 3 |21960 358 29403 358

5.2.1 Description of Algorithm Wiener-Hosoya(m,H,Array)

The Wiener-Hosoya algorithm requires input parameters m, H and Array

(calculated in Distance-Calculator algorithm) to execute. It calculates the Wiener
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Figure 5.2: Time Complexity for Algorithm Distance-Calculator(m,H).
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Algorithm 8 Wiener-Hosoya (i, H,Array)

Input: The two positive integers m, H and 2D-array Array.

Output: Weiner Index and Hosoya polynomial.
mi+i_1)

. (
1.V« =)

2: WeinerInder < 0
3: for j < 1 to Distance

HosoyaEap, HosoyalPol + 0

fori+— 1toV

4

5

6 WeinerIndex < WeinerIndex + Arrayli](j]
7: HosoyaExp < HosoyaExp + Arrayli][j]

8 HosoyaPol < HosoyaPol + HosoyaExp x =’
9: return WeinerIndex, HosoyaPol

Index, Hosoya polynomial and the Hosoya index for binary tree or ternary tree,

by utilizing the required distance available in the Array.



Algorithm 9 Schultz-Indices(mn,H)

Input: The two positive integers m and H.

Output: Two variables Sltz, and MSltz, containing Schultz index and modified
Schultz index, respectively.

(m”*l—l)
Vi (m 1)
Distance < 2 x H

Array{V][Distance] + 0
Sltz, MSltz «+ 0
foru+1toV
g« 1
Fill-Schultz( Array, u, root, j)
Back-Track-Schultz(Array, u, root, j)
return Sltz, M Sltz

R A

Algorithm 10 Fill-Schultz(Array, u, v, j)
Input: The 2D-array Array, three positive integers u,v, and j.
Output: Return Sltz and MSltz after calculating Schultz index and modified
Schultz index, from top to down distances.
i (m = 2)
if (Right(u) < V)
Calculate Schultz and Modified Schultz of all sub-child for j distance
if (Right(Right(u))< V)
Apply recursive calls for all sub-child of u as v
if (m =3)
if (Right(u) < V)
Calculate Schultz and Modified Schultz of all sub-child for j distance
if (Right(Right(u))< V)
Apply recursive calls for all sub-child of u as v
: return Sltz, MSltz

—

1

—
= O
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Algorithm 11 Back-Track-Schultz( Arvav, u. v j)

Input: The 2D-array rray. three positive mtegers woe, and g
Output:Retirn Slez and MShz after ealenlaring Sehultz indes and nioditiod
Schultz index. from bottom to up and left to rieht distances.

Lopree < u

20 4f (1 = 2)

3: while (Parent(u)# Right-Nodes())

3| if (prev = Left(Parent(u)))

5 Caleulate Sehultz and NModified Schultz of vieht sibline for 741 distanee

G: Call Fill-Schultz on right sibling for i1 1 distance

7: prevon < Parent(u)

3 J— )+ 1

9:  Caleulate Schultz and Modified Schultz of vight sibling for ji | distance

10: Call Fill-Schultz on vight sibling for j1 1 distance
1 if (= 3)

12:  while (Parent(u)# Right-Nodes())

13: if (prev = Left(Parent(u)))

14: Calculate Sehultz and NModified Schultz of mid and vight sibling for T
distance

15: Call Fill-Schultz on mid and right sibling for j 11 distanee

16: if (prev = Mid(Parent(un)))

17: Calculate Schultz and Modified Schultz of vight sibling for 11 distance

18: Call Fill-Schultz on right sibling for j4+1 distance

19: prev,u «— Parcent(u)

20: J—J+1

21: if (prev = Left(Parent(n)))

22: Calculate Schultz and Modified Schultz of mid and right sibling for j--1
distance

23: Call Fill-Schultz on mid and right sibling for j+1 distance

24: else

25: Calculate Schultz and Modified Schultz of right sibling for j+1 distance

26: Call Fill-Schultz on right sibling for j+1 distance

27: return Sltz, MSltz

5.2.2 Description of Algorithm Schultz-Indices(m,H)

The Schultz-Indices algorithm requires two input parameter m and H to
execute. It works similar to the Distance-Calculator algorithm. It utilizes Fill-
Schultz and Back-Track-Schultz algorithms. They are different from Fill and
Back-track algorithms as both of them apply dircct, calculations for Schultz index

and Modified-Schultz index in distance calculation (i.c, vertex u is connected



to the vertex ¢ with distance j). instead of updatine the distanee in Arrag.

Schultz-Indices algorichm returns the Selniliz indes and Moditied Scluiles indes

as its output.  Followings are the values of distance calenlator for mr 2 and
H=23.

H | Weiner  Hosoya  Schultz  Nodified Schulty,

1 3 311 10) 0

2 21 26.25 150 11

3 105 LR 1262 106G

4 165 760.51 8286 1386

) 1953 3759.66 17550 3706

6 S001 1833713 251262 2303886

7 32380 88992.56 125721 1192698

8 130305 131105.97 6055122 HTHYH322
Followings are the values of distance caleulator for m = 3 and H = 5.

H | Weiner  Ilosoya  Schultz Modificd Schultz
1 6 6.93 21 15
2 78 1021 708 564
3 780 1193.9 12048 10527
4 7260 13239.42 164328 119928
5 66066 144838.92 1999464 1867695
;I;]odp;g::gical CBT Results :’nod[:;)::gica! CTT Results
60000 3500000
3000000 -
50000 oo .
40000 :Zoooo :
30000 - 1500000 [
20000 1-- 1000000
10000 |- - 500000
0 Height 0! Height
1 2 3 4 5 1 2 3 4 s
—— Weiner Hosoya —Schultz —~ Modified Schultz

Figure 5.3: Comparison of Topological Indices.
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5.3 Concluding Remarks

The outcomes of this research are helpful i two different wavs, At fivsr.
it computes  distance-hased topological indices like Weiner indey. Hosova
polynomial. Schltz index. and the maodificd-Schultz index of CBT and CUT for
any height.  Sccondly distance caleulator algorithm for CBT and CT1 can he
brther modified to find the shortest path between anv-to-any nodes of network
graphs. By comparing the topological indices. it has heor found that the value
of the Schultz index is greater than the modified Schultz index. the modilied
Schultz index is greater than Hosova polvnomial for Lo and Hosova
polynomial is greater than Weiner index.  Given algorithnn is valid for anv
height as long as resources of computer supports. and its output can be used in
plenty of computer applications  like high-bandwidth  routers. search
applications, granmmar checking  applications, P2p  programs,  specialized
Image-signatures,  video  ganes, mplementing — efficient  priovity-quenes,

scheduling processes, cryptographic applications, memory managenient.,



CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

This study deepened the research by calculating topological indices
algorithmically and mathematically for different graph families. Novelty of this
study is that it provided the computer-based algorithms to compute cccentric
topological indices, and distance based topological indices whereas degree bascd
topological indices are calculated only mathematically for new graph families.

'

In the problem of zero divisor graphs with finite ring, construction
algorithm is devised for zero divisor graphs containing commutative ring

Z

oipe X Ly for prime numbers p;, p» and ¢. Algorithm is designed and
implemented on computer to explore the characteristics of the graph for vertex
eccentric topological indices. Characteristics of zero divisor graphs containing
commutative ring Z,2 X Z, with prime p and ¢ are also discovered. Algorithims
are devised for edge eccentric topological indices for both zero divisor graphs
containing commutative ring Z,,,, X Z, and zero divisor graph containing

commutative ring Z,2 X Z,  Algorithmic results arc compared with the

mathematically calculated results.

In the problems related to line graphs and their subdivision for benzene
ring in p-type surface and 2D conductive metallic organic framework

Cug(HITP)3[m,n], degrec based topological indices are calculated, namely,
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first  general  Zagreb  index.  general  Randi¢ connectivity index.  general
suni-connectivity index. atom-bond connectivity index. geometric-arithmetic
index, forth atom-bond connectivity index, fifth geometric-arithmetic index.
hyper-Zagreb index, first multiple Zagreb index, second multiple Zagreb index

and Zagreb polynomials are calculated.

In the problem of complete binary tree and complete ternary tree.
algorithm is experimented on computer by varying the domain values (m, H) to
calculate any to any vertex distance among thie nodes of t,l‘(;(!. In this
experiment different treatments are executed to find the distance based
topological indices for m = 2, 3 with different heights varving 2 to 8. Outcomes
of any-to-any distance table is utilized in further algorithms to calculate
distance based topological indices including Weiner index, Hosoya index,

Schultz index and modified Schultz index.

To conclude the hypothetical assumptions posed in research objectives
following open problem and conjecture are framed on the basis of results in

chapter 3, 4 and 5.

6.1.1 Open Problem

(i) Eccentric topological indices for zero divisor graphs containing commutative

rings Z, X Z for any a and b positive integers.

(ii) Algorithms for distance based topological indices for complete m-ary trees

for m > 3 and for different heights H.
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6.2 Future Work

(1) Construction algorithin and algorithm for cecentric topolovical indices for
zero divisor graphs containine conmmtative rines 2o,

(i1) Degree Based topological indices for zoro divisor eraph.

(iii) Edge cccentric topological indices for (wo dimensional conductive metallic

organic framework Cug(HITP)s [ ).
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