PREDICTION OF OZONE CONCENTRATION AT SELECTED COASTAL SITES IN PENINSULAR MALAYSIA USING PROBABILITY DISTRIBUTION

MUHAMMAD IZWAN ZARIQ MOKHTAR

MASTER OF SCIENCE UNIVERSITI MALAYSIA TERENGGANU

PREDICTION OF OZONE CONCENTRATION AT SELECTED COASTAL SITES IN PENINSULAR MALAYSIA USING PROBABILITY DISTRIBUTION

MUHAMMAD IZWAN ZARIQ BIN MOKHTAR

Thesis Submitted in Fulfillment of the Requirement for the Degree of Master of Science in the School of Fundamental Sciences Universiti Malaysia Terengganu

May 2017

TABLE OF CONTENTS

		Page
ABSTRA	ACT	i
ABSTRA	AK	i۱
ACKNO	WLEDGEMENTS	V
APPRO	VAL	vi
DECLA	RATION	ix
LIST OF	TABLES	>
LIST OF	FIGURES	х
LIST OF	ABBREVIATIONS	xii
СНАРТ	ER	
1	INTRODUCTION	1
	1.1 Air Pollution Scenario in Malaysia	1
	1.2 Aim and Objectives	8
	1.3 Problem Statements	8
	1.4 Scope of Study	11
	1.5 Thesis Guideline	13
2	LITERATURE REVIEW	15
	2.1 Ozone	15
	2.2 Physical and Chemical Characteristic of Ground-Level Ozone	16
	2.3 Sources of Ground-Level Ozone Precursors	17
	2.4 The Photochemical Formation of Ground-Level Ozone	18
	2.5 The Adverse Effect of Ground-Level Ozone	20
	2.6 Ozone Transport Mediums	20
	2.7 Monsoon Seasons	23
	2.8 The Relationship between Ozone, its Precursors and Meteorological Factors	24
	2.9 Statistics in Environmental Studies	25
	2.9.1 Previous Studies on Ozone	25
	2.9.2 Probability Density Function (PDF) and Cumulative Density	23
	Function (CDF)	28
	2.10 Gamma Distribution	30
	2.11 Rayleigh Distribution	31
	2.12 Laplace Distribution	32
	2.13 Log-logistic Distribution	32
	2.14 The Performance Indicators	33
3	METHODOLOGY	35
	3.1 Research Flowchart	36

	3.2 Area of Study	37	
	3.3 Materials and Method	43	
	3.4 Missing Value Replacement	45	
	3.5 Descriptive Statistic	47	
	3.5.1 Mean	47	
	3.5.2 Median	48	
	3.5.3 Variance	48	
	3.5.4 Standard Deviation	49	
	3.5.5 Skewness	49	
	3.5.6 Kurtosis	49	
	3.6 Statistical Distributions	50	
	3.6.1 Gamma Distribution	50	
	3.6.2 Laplace Distribution	51	
	3.6.3 Rayleigh Distribution	52	
	3.6.4 Log-Logistic Distribution	52	
	3.7 Exceedances and Return Period	53	
	3.8 Performance Indicator	54	
4	RESULTS AND DISCUSSIONS	55	
	4.1 Descriptive Statistics of Ozone and Meteorological Data	55	
	4.2 Investigation on Seasonal Variability of the Highest Ozone Level	63	
	4.3 Hourly Plot of the Maximum Ozone Concentration	72	
	4.4 The statistical distribution analysis	80	
	4.4.1 Kemaman (S1)	80	
	4.4.2 Pulau Langkawi (S2)	88	
	4.4.3 Kuala Terengganu (S3)	95	
	4.4.4 Universiti Sains Malaysia (S4)	102	
	4.4.5 Tanjong Malim (S5)	109	
	4.5 Prediction of Exceedances and Return Periods	116	
	4.5.1 Universiti Sains Malaysia (S4)	116	
	4.4.2 Tanjong Malim (S5)	117	
5	CONCLUSION	119	
	5.1 Recommendations	121	
REFER	ENCES	123	
APPEN	IDICES	128	
LIST O	LIST OF PUBLICATIONS		
CURIC	ULUM VITAE	133	

Abstract of thesis presented to the Senate of Universiti Malaysia Terengganu in fulfillment of the requirement for the degree of Master of Science

PREDICTION OF OZONE CONCENTRATION AT SELECTED COASTAL SITES IN PENINSULAR MALAYSIA USING PROBABILITY DISTRIBUTION

MUHAMMAD IZWAN ZARIQ BIN MOKHTAR

May 2017

Main Supervisor : Nurul Adyani Ghazali, Ph.D.

School : School of Ocean Engineering

Generally, high ground-level ozone concentration can affect human health, agriculture and materials. The aim and objectives of this study is to determine the monsoonal variability of ozone concentration in selected sites (Kemaman, S1; Pulau Langkawi, S2; Kuala Terengganu, S3; Universiti Sains Malaysia, S4; Tanjong Malim, S5) accompanied with prediction via statistical distribution. Four different parent distributions such as gamma, Laplace, Rayleigh and log-logistic were applied in order to achieve second and third objectives. Matrix Laboratory version 2014 (MATLAB R2014a) was used to estimate the maximum likelihood estimation (MLE) and method of moment (MOM) distribution parameters; thus obtaining probability density function (PDF), cumulative distribution function (CDF) and performance indicator. Five selected performance indicator used in this study were mean biased error (MBE), normalized absolute error (NAE), prediction accuracy (PA), index of agreement (IA) and coefficient of determinant (R²). The hourly ozone concentrations that exceed 100 ppb (Malaysia Ambient Air Quality Guideline, MAAQG) are considered exceedances event. The exceedance probability that exceeded MAAQG line in CDF plot was later used in achieving the third objective. Based on the outcomes for the first objective, high ozone concentrations were recorded during southwest monsoon in selected sites probably due

ii

to high temperature and less rainfall. Other than that, the results based on performance indicator values show that S1, S2 and S4 fits the gamma distribution with MOM approach as the best model while S3 and S5 fits the Rayleigh distribution with MOM approach and gamma with MLE approach as the best distribution respectively. Pulau Pinang (S4) monitored exceedances in 2012 and 2013 while Tanjong Malim (S5) recorded exceedances from 2009 to 2013. In 2013, S4 and S5 were predicted to exceed MAAQG for 0.58 day and 2.05 days in 2014 with a return period of one occurrence per 629.3 days and per 178.3 days. In this ozone study, seasonal variability and prediction model via statistical distribution have been effectively determined.